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Préface.

Ce mémoire apporte une contribution à l'étude et à la classification des fonctions
d'une variable réelle. Une place relativement importante y est consacrée aux classes
de fonctions indéfiniment dérivables Ces recherches, qui n'ont été abordées d'une
manière systématique que dépuis peu d'années, doivent leur origine à la théorie
des fonctions quasi analytiques où MM Den^oy, Carleman et Mandelbrojt, pour-
suivant des idées do MM Borel et Hadamard, ont obtenu des résultats dune
grande portée Cependant 1 étude des fonctions quasi anah tiques ne fait pas
directement partie de ce travail, c est plutôt sur les classes générales de fonc-
tions indéfiniment dérhables dune variable réelle, ainsi que sur la représentation
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des fonctions d'une variable réelle par des suites de fonctions analytiques que
portent nos efforts.

En partant de certaines inégalités entre les maxima des modules des dérivées
d'une fonction de variable réelle, qui sont démontrées au chapitre I, j'énonce
dans le chapitre II, quelques résultats concernant les classes de fonctions indé-
finiment dérivables Je donne notamment la condition, nécessaire et suffisante,
pour l'identité de deux classes de fonctions définies sur tout l'axe réel, la condi-
tion nécessaire étant d ailleurs celle de M Mandelbrojt, la démonstration du fait
que le produit de deux fonctions d une telle classe appartient également à cette
classe, etc

Le chapitre III est consacré à l'élaboration de quelques résultats concer-
nant une classe particulière de fonctions définies sur tout 1 axe réel, notamment

+ X

celles qui sont représentables par une intégrale de Stieltjes I etxtdV(t). J'étudie
00

les limitations de la fonction croissante V(t) en fonction des bornes des dérivées
successives de f{r). Ces résultats constituent une extension des évaluations con-
nues, par les travaux de MM de la Vallée Poussin et Mandelbrojt, des coeffi-
cients de Fourier d une fonction périodique

Enfin le chapitre IV est consacré à des généralisations, assez faciles, de
théorèmes connus de MM S Bernstein et de la Vallée Poussin sur la dérivabilité
des fonctions d une variable réelle suivant la nature de leur meilleure approxima-
tion par des poh nomes ou des expressions trigonométriques J énonce dans ce
chapitre quelques théorèmes sur la dérivabilité dune fonction d'une variable
réelle, limite d une suite de fonctions anah tiques quelconques

La plupart des résultats obtenus dans ce travail, ont été communiqués à
l'Académie des Sciences x

Je suis heureux d'exprimer ici ma vive gratitude à M S Mandelbrojt, Pro-
fesseur au Collège de France, qui s est toujours intéressé à mes recherches et
dont les conseils et le*> encouragements me furent toujours très précieux. Qu'il
me soit aussi permis de remercier MM Hadamard et Montel qui ont bien voulu
présenter mes Notes à 1 Academie des Sciences.

1 Comptes rendue, T 206, 1938, p 732» 1245 e* l%72 T. 208, 1939, p. 1864.
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CHAPITEE I.

Quelques inégalités entre les maxima des dérivées successives
d'une fonction.

i. Dans ce chapitre nous démontrons quelques inégalités entre les bornes
supérieures des dérivées dune fonction, définie sur un segment fini ou infini.
La méthode suivie est celle que ] a\ais indiquée dans deux Notes aux Comptes
rendus1, où j ai également donné quelques applications de ces inégalités à l'étude
des classes de fonctions indéfiniment dérhables dune variable réelle Ces rela-
tions furent dépuis retromée^ par M H Cartan2 qui les démontre dune mani-
ère analogue. J'ai adopté dans ce qui suit la forme que leur avait donné M.
Cartan.

Des inégalités analogues furent établie^ par plusieurs auteurs, on pourrait
notamment citer des travaux de Landau3, Hadamard4, Hard} et Littlewood5 et
Neder6 Cependant, ou bien, comme c est le cas des relations de Landau et M.
Hadamard, elles ne concernent que les maxima de trois dérivées successives, ou
bien, comme dans les travaux de Hard} et Littlewood et ceux de M. Neder, la
détermination des coefficients n est pas faite d une manière assez avantageuse,
ce qui les rend inapplicables pour le but que nous poursuhons, notamment dans
l'étude des classes de fonctions indéfiniment dérivables D ailleurs même sous
leur forme actuelle elles sont certainement susceptibles d être améliorées, et, en
particulier, le facteur exponentiel en l qui figure au second membre des inégalités
(n)—(14) peut certainement être réduit, bien que ceci importe peu pour les appli-
cations que nous avons en vue En ce qui concerne notamment 1 inégalité (14)
pour les fonctions définies sur tout Taxe réel, M Kolmogoroff a récemment7

1 Sur les maxima des modules d une fond ion et de ses detnees T 206, 1938, p I245\ ®ur

les fouettons indéfiniment (hniables T 206, 1938, p 1872
2 H Cartan, Sut les nugahtes ent) e les maxima des dérivées successives d'une fonction.

Comptes rendus T 208, 1939, p 414
3 Landau, Einige Vnqh ichnnqen fin zueimal dtfferenhierbare Funkhonen Proceedings of

the London Mathematual î^ocietv, Ser 2 Vol. 13, 1913
4 Hadamard, Sut h module martmum d une fond ion et de ses dérivées Société mathéma-

tique de France Comptes rendus d« s Stances de 1 année 1914
5 Hardv et Iitthwood (ontuhution lo tht anthmetic theory of series. Proceedings of the

London Mathematieal 'societN, »ser 2, Vol n , part 6, 1912
6 Neder, Absrhatzunqtn fui die Ableitunqen einer teellen Funktion eines teellen Arguments.

Mathematische Zeitsthnft T 31, 1930
7 Kolmogoroff, l m q< neiahiation de l ineqalite de M J Hadatnatd entte les bontés Hupérieurtê

des dérivées mœcessives d une fonction. Comptes rendus, T. 207, IQ38, p 764.
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précisé notre résultat. Dans la relation définitive qu'il obtient le facteur expo-

nentiel 16(2 e)k est remplacé par une constante inférieure à pour toutes les

valeurs de n et h. Sa méthode paraît être essentiellement différente de celle que
nous avons suivie.

2. Soit f(x) une fonction de la variable réelle x, possédant une dérivée
w-ième bornée dans l'intervalle [o, i l Désignons par MQy 3Il, . . ., Mn, la suite
des maxima de la fonction et de ses dérivées dans l'intervalle considéré:

max| / (x) | = J/0, umx\f(x)\ = Mu . . ., max \f<»>(x)| = Mn.

Soit Pn—1 (x) le polynôme de meilleure approximation1 de degré n— 1 de
f{x) dans notre intervalle, c'est-à-dire le polynôme qui s écarte le moins de f(x)
sur le segment fermé [o, i1. On sait que la différence ƒ (x) — Pn—i(x) atteint le
maximum de sa valeur absolue avec des signes alternés en n 4- 1 points de
l'intervalle et, par conséquent, cette différence s'annule n fois au moins dans ce
même intervalle. En remarquant que le polynôme indentiquement égal à zéro
s'écarte de Mo de la fonction f(x), on trouve

|P„_,(a;)|<2Jlf0.
Posons

f(x) = P„-i(x) + Bn-i(x),

et dérivons Je fois (le < «) les deux membres, on a

D'après ce qu'on vient de voir Pn_l {x) peut être considéré comme polynôme

d'interpolation de Lagrange de la fonction f(r) dans l'intervalle [o, 1]. On

en déduit, par suite d'une évaluation connue de la dérivée &-ième du reste,

1 Voir pour ce qui concerne les propriétés des polynômes de la meilleure approximation:
De la Vallée Poussin, Leçons sur l'approrimâtion des fonctions d'une variable réelle, p. 74 et suiv.
S. Bernstein, Leçons sur les propriétés extrémale* et la meilleure approximation des fonctions ana-
lytique» ^Collection Borel).
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3. Pour avoir une borne supérieure de P^}_1(x) nous utiliserons les impor-

tantes relations de Markoff et Bernstein qui donnent le maximum de la dérivée

d'ordre Je d'un polynôme de degré n sur un segment.1 Soit Pn (JC) un polynôme

de degré )i. Si le module maximum de ce polynôme sur un segment de longueur

2 h est égal à M on a alors aux extrémités de cet intervalle (et aussi dans tout

l'intervalle)

d) \)(x\<
K} ' ^ (X)l~ hk(n-k)\ (2/c)\

tandis qu'au milieu de l'intervalle on a les inégalités

M •

Observons ici qu'il résulte de ces relations que l'ordre du module de la

dérivée d'un polynôme est plus grand aux extrémités de l'intervalle qu'en un

point intérieur, on trouve, en effet, qu'aux extrémités la croissance du module

de la dérivée X-iènie peut être de l'ordre de >r*, tandis qu'au milieu de l'inter-

valle elle n'est que de l'ordre de nK. Cette distinction entre l'intervalle ouvert

et l'intervalle fermé se retrouvera à plusieurs reprises dans la suite de ce travail.

4. Les inégalités (1) donnent

pour toute valeur de x dans l'intervalle fermé [o, i], et finalement on trouve

pour o ^ x ^ i , o < h < n.

1 Ces importantes inégalités ont été déduites des recherches sur les polynômes extrémales par
des considérations assez délicates. Voir S. Bernstein Leçons sur les propriétés extrémales . . . p. 28
et suiv. Comme l'a montré M. Montel on peut obtenir des inégalités analogues, qui, bien qu'étant
moins précises, suffisent cependant pour notre but, par des considérations plus simples de la théorie
des fonctions. Voir P. Monteï Sur les polynômes d'approximation, Bulletin de la société mathé-
matique de France t. 46, 1918.

41 — 3932. Acta mathematica. 71. Imprimé le 1 novembre 1939.
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Simplifions l'expression des coefficients de Mo et Mn dans le second membre

de l'inégalité précédente.

On a

I ,
( n - * -

on a aussi

(«-*)! =

(2*)! > 1^2* (2 * )"+*

n! n!

et finalement la relation (3) devient

(4) M k < 2 n
w ^

Considérons maintenant la fonction fx (x) = ƒ {a x) où a est compris entre o

et 1. Cette fonction est encore dérivable sur le segment [o, 1] et on a

ƒ M (*) = akfik) {ax) s yjn) (a.) = an fin) („^

et l'application de l'inégalité (4) à la fonction ft (x) donne

,̂2fc 71/* pn nn—k

(5) f^ M n ^

Cherchons le minimum du second membre pour les valeurs de a comprises

entre o et i.

On a évidemment

M* < 4 mai

Or des deux fonctions de a qui figurent au second membre de l'inégalité précé-

dente, la première est décroissante et la seconde croissante et il est facile de voir,
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en représentant graphiquement ces deux fonctions, qu'on obtiendra la meilleure
expression pour le second membre en donnant à a la valeur correspondant au
point d'intersection, dans le cas où cette valeur appartient à 1 intervalle [o, i],
ou bien, en posant a = i dans la première fonction, si la valeur correspondante
au point d'intersection est en dehors de l'intervalle, on trouve ainsi

où

. r / »»+*j/-0 v-

Comme, pour i ^ k ^ «,

et comme le second membre est une fonction décroissante de a, on trouve

avec

ce qui peut également s'écrire

avec

_ 1

Mo n 6
n

car

D'où l'on tire finalement
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Jfn désignant la plus grande des deux quantités 3£n et 3Ionl.
Nous avons supposé que l'intervalle de définition de la fonction avait la

longueur i, il est facile d'obtenir une inégalité valable pour un intervalle de
longueur quelconque ô en considérant la fonction f{ôjj dans l'intervalle (o, i);
on trouve

En particulier, si la fonction f(x) est définie sur un intervalle de longueur
infinie, on a

(7) Mk < 4 e™ (jY Mo1 ~ ï Mnn,

Mo, Mk, Mn désignant cette fois-ci les bornes supérieures de | / (#) | , l/1*'^)! e*
\fi*{x)\.

5. On obtient des inégalités analogues, valables pour le milieu du segment,
en partant des relations correspondantes pour les polynômes. Soit, en effet, f(x)
une fonction possédant une dérivée d'ordre n dans un intervalle de longueur 2.
Posons encore

f(x) = Pn(x) + Rn(x),

Pn{x) étant le polynôme de meilleure approximation de degré n de la fonction
ƒ (x) dans l'intervalle considéré. On aura, en particulier, au milieu du segment

|Z2"^) (x) I < I P ^ + D (x) I + I *<?*+« (x) I;

or, en vertu des relations de Bernstein et Markoff, on a

I S W l *
et comme

(i£jîjï=("+*)(» + p - 0... (« -
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on a finalement

comme, d'autre part,
. ^ Mn <1 (w — 2J>)\ t l n ~ 2 ^

on trouve donc finalement, pour le milieu du segment

„_2p-l

La même inégalité a d'ailleurs aussi lieu pour la dérivée d'ordre 2p% comme on

le voit par un calcul analogue, donc

| ƒ *) (x) | < 2*+3 nk Mo + ̂ £- (o<k<n)

d'où Ton tire, comme dans le cas du segment fermé,

| / * ' (x) | < 2*+» n* Mo a-* + *•*£—. (o <ï a < i),

|/«»»(a;)|<2*+«w*Jf0a-*,
où

*+»««^ )J
et finalement

(8) \fkHx)\ <iô(2 ef 31^-31^

avec
Mn = mai (Jfw, Jf0 n\).

De même, on trouvera, dans le cas d'un intervalle de longueur 2 d, an

milieu de l'intervalle

(9) \fW(x)\<i6(2e)kM0
1~»M'n«

avec
M' = max (J/n, Mo n\ ô^).

En particulier, si la fonction est définie sur tout Taxe réel, on en déduit, en

considérant un intervalle de longueur 2 ô autour du point d'abscisse x, qu'on a

alors pour toute valeur de x
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I

et, en faisant tendre ô vers l'infini, on trouve finalement

(io) \fk){x)\ < 16(2 e)*M0
 nMn

n (—oo<#<+oo)

où Mi est maintenant la borne supérieure de [/^(a?)!-

6. Résumons les résultats obtenus1

Théorème. Soit f(x) une fonction n fois dérivable définie sur un intervalle

fermé I de longueur ô, et soit

on a pour toute valeur de x de l'intervalle I et lorsque o < Je < n

tandis qu'au milieu de Vintervalle on a:

(12) \^(x)\<i6(2eYM,!~»M'n\

avec
M'n = max (Jfn, Mon\ à"71),

ô désignant la longueur de Vintervalle.

En particulier, si la fonction est définie sur un demi-axe^ on a

et, dans le cas où la fonction est définie sur tout l'axe, on a

(14) \f{k)(x)\< \6(2eYM*~«Mn*.

3I0 et Mn désignent respectivement, dans les deux dernières relations, les

bornes supérieures de \f{x)\ et de |ƒn )(^I•

1 Voir Gorny, Comptes rendus, 206, 1938, p. 124s et 1872 et H. Cartan, Comptes rendus 208,
1939, p. 416, l'énoncé donné ici est, à la valeur des coûtantes pres, celai de M. Cartan.
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CHAPITRE IL

Application des inégalités précédentes à l'étude des classes de fonctions
indéfiniment dérivables.

I. Considérons 1 ensemble de fonctions de la variable réelle x définies et
indéfiniment dérivables dans 1 intervalle fermé ta, b] et y satisfaisant aux limi-
tations

mn étant une suite de nombres positifs et c une constante indépendante de w.
Un tel ensemble de fonctions indéfiniment dérivables sera dit Classf {wn} de fonc-
tions. Comme exemples de telles classes citons la classe des fonctions analytiques
sur le segment fermé [a, b\ qu on obtiendra en posant mn= n\ ou bien les
classes de fonctions quasi anahtiques de MM Denjoy et Carleman, etc

Parmi les applications que les inégalités troméeb dans le chapitre précédent
sont susceptibles de fournir, il \ a d abord lieu de mentionner la réponse à la
question suivante

Quelle est la condition, nécessaire et suffisante, pour que deux classes de
fonctions indéfiniment dérivables {?»„} et \nin\ soient identiques, c est à dire pour
que toute fonction d une des classes appartienne également à 1 autre et inversement.

Dans ce qui soit nous répondons à cette question dans le cas le plus
simple, où 1 intervalle de définition de la classe comprend tout l'axe réel1.

Cette condition peut s énoncer de la manière suivante
La condition nécessaire et suffisante pour que les classes {mn} et {m'n} soient

n

identiques est qu'on ait o < a < | " < /? < oc, nin et inn étant les termes des

plus grandes suites dont le logarithme est convexe et qui sont inférieures aux
termes des suites mn et nin

Le fait que cette condition est nécessaire a été établi par M Mandelbrojt;

1 Signalons a ce propos que dans plusieurs Notes récentes aux C K Kt 208, 1939 Mil .
Mandelbrojt et H. Cartan, en se basant sur les inégalités développées au chapitre precedent, ont
réussi a donner une réponse complete a cette question dans le cas d u n intervalle fini, ouvert on
ferme Au lieu des suites dont le logarithme est convexe /Jtn et ?7i'n dtduites de la considération
du polvgone de Newton, dont il sera question plu-* tard, on fait ici întcrvinir d autres suites téc-
tijiies dont la définition est d ailleurs également due a M Mandelbrojt \ o i r par exemple 1 ouvrage
Series de Fomu) et clas<ns quast analytiques (h fondions p 95 et suiv ot La tequlatisaiton des
fondions Hermann, Paris 1938
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nous en donnons ici une nouvelle démonstration, qui présente, croyons nous,
un certain intérêt vu le nouveau lemme que nous employons à cet effet.

Nous rappelons dans ce qui suit la définition des suites mn et ni'n à l'aide
du polygone de Newton.

La suffisance de la condition précédente résulte sans difficulté des inégalités
du chapitre précédent, tandis que pour montrer que cette condition est également
nécessaire, nous nous servons du lemme suivant, qui constitue la réciproque de
ces inégalités *

Quelle que soit la suite An dont le logarithme est convexe, on peut déterminer une
fonction f(x) indéfiniment dérivable sur tout l'axe réel et satisfaisant aux limitations

An < mnx\fin<{x)\< cn+l An,

c étant une constante numérique indépendante de la suite An*
L'inégalité (14) du chapitre I et sa réciproque caractérisent ainsi, d'une

manière assez satisfaisante pour notre but, la suite des bornes supérieures des
modules des dérivées successives d'une fonction définie sur tout l'axe réel.

Une autre question qui est abordée dans ce chapitre est la suivante: le
produit de deux fonctions d'une classe \mn) appartient il encore à cette même
classe9 Tandis que la réponse est, comme nous le montrons, affirmative dans le
cas d'un intervalle infini, il n'en est plus de même, en général, dans le cas d'un
intervalle de longueur finie.

2. Rappelons d'abord la définition du polygone de Newton attaché à une
suite1. Soit //0, ux, . .., un, .. . une suite de termes, représentons graphiquement cette
suite dans le plan xOy, en faisant correspondre au terme un le point de
coordonnées (w, ?/n), et considérons une demi droite passant par le point AQ(o,u0)
et orientée suivant la direction négative de 0//, faisons ensuite tourner notre droite
dans le sens positif autour du point J o jusqu'à sa première rencontre avec un
autre point de la suite. Soit A{ le dernier point de la suite qui se trouve alors
sur la demi-droite; le segment A0Al formera le premier côté du polygone de
Newton. Faisons ensuite tourner la demi-droite dans le même sens autour de
Ax jusqu'à sa rencontre suivante avec les points de la suite, nous obtiendrons
ainsi le segment AtAt qui formera le deuxième côté du polygone, et ainsi de
suite . . . Nous obtenons ainsi le polygone de Newton de la suite

1 Voir Hadamard, Journal de Mathématiques 1893, p. 174.
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Désignons par un l'ordonnée, correspondant à l'abscisse M, de la ligne poly-
gonale obtenue; on a évidemment un ^ M*, les M4 formant la plus grande suite
convexe dont les termes sont inférieures aux termes de la suite un.

On voit d'ailleurs qu'on a

(kUn-l + lUn+k\
Un = borne I =-— I

dp,ns le cas où h et l sont nuls simultanément on remplacera — , .

par iinl •

II en résulte que si un et vn sont deux suites telles que un ^ vn, on a aussi
u!n ^ vn, et que la suite de Newton de la suite n a -f un> où a est une constante,
est égale à wo + un. On a en effet

( Ac 1 / / ( / Of ~r Un—1\ « ^ II™ ~r A'/ Cf ' « n + fcj I

= borne h ic +h
\

lUn+k\
II

K -r ( /

na + borne I - - -r — . - I = n a + il».
\ A: + / /

Soit maintenant {<dn} une suite de nombres positifs; considérons la suite
{log An} et la suite de Newton correspondante (log An)\ et soit Ân = éloeAJ\
nous appellerons {.ln} la suite rectifiée de la suite \An).

On a évidemment, d'après ce qui précède,

Ân = borne \AL
nl ^

[net cnAn = cnÂn} e ne dépendant pas de ?/, et si ^4n ̂  J5n, on a aussi Ân

II est maintenant facile de voir que la proposition (14) du chapitre I peut
s'énoncer de la manière suivante:

Soit f(x) une fonction indéfiniment dérivable sur tout Vaxe (—00 < x < + 00),
supposons quon ait pour la fonction et ses dérivées les inégalités | ƒ ^ (x) | ^ Mn

(n = o, 1, 2, . . .), on a alors nécessairement, pour tout k entier positif:

(1) \j \x)\ < é 31k

où Mk désigne la suite rectifiée de la suite Mn et on c est une constante numérique
(c < 100).

42—3932. Aeta mathematica. 71. Imprimé le 1 novembre 1939.
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3. Nous allons maintenant démontrer le théorème suivant:

Théorème. Une condition nécessaire et suffisante pour que deux classes {m*}

et {ntn} de fonctions, définies pour toutes les valeurs positives ou négatives de as,

( — 00 < a? < -f 00 ), soient équivalente* ebt que Von ait

(2) o < a < y -T7 < /? < 00.

Démonstration. La condition est suffisante. Soit, en effet, f(x) une fonction

appartenant à la classe {mn}j montrons que, sous l'hypothèse îhn<Pnfh'n, cette

fonction appartient également à la classe \mn\.

Mn désignant la borne supérieure de \f(n ] {J)\ pour (—00 <#<-hoc ) , on a,

d'après la relation (1), les propriétés signalés des suites rectifiées et en tenant

compte de la définition des classes {mn} et

| ƒ (») (x) | < Mn < cn 3In < cn a11

c, c et fi étant des constantes. La fonction ƒ (x) appartient donc aussi à la classe

{mi}, ce qui prouve que la condition est suffisante.

4. La condition est nécessaire. Démontrons la proposition suivante:

Soit An une suite de termes dont le logarithme est convexe, on peut construire

une fonction F(x) indéfiniment dérivahle pour toutes les valeurs de x et telle qvüon ait

(3) An < max | FW (x) \ ^ 10.471. An

quel que soit n ^ o.

La suite log An étant convexe, on a, pour tout h ^ 1,

Al ^ Ak

ce qui peut aussi s'écrire

c'est-à-dire que la suite *** est croissante. Nous supposons pour fixer les idées

que —A— est supérieur à un, ce qui est sans importance dans la démonstration

qui soit.
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La suite —-.— tend pour h augmentant indéfiniment vers une limite finie ou

infinie. Supposons d'abord que

*=*« jf±k

et considérons la suite

1, 2, 4, . . ., 2*, 2*+1, . . .

Envisageons les termes de la suite croissante —-.—, qui se trouvent dans un

des intervalles
[i, 2J, [2, 4J, . . ., [2*, 2n l ] , . . .

Soit [2**, 2*°+l] le premier de ces intervalles contenant les termes

Ai A% An%

Ao AI Ant—1

c'est-à-dire

Soit de même [2Wl, 2*|+1] l'intervalle suivant contenant les termes

:, 2**+i] le k-ième intervalle contenant les termes

-4fii. + l Anu + 2 Ant.^

et ainsi de suite.
On a finalement la disposition suivante:

AQ At Ant—i "

avec

Ank Ank+l-i
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Posons

JA Y**+I—**

on a
-te)'

k

(P
l=p

Comme on a, d'antre part,

on trouve:
A

donc:
2nk<:h

et si
fit ^ n

on a
2nk(n-nk) < Al

c'est-à-dire:

Considérons à présent la fonction périodique

/* ^ \ - A C O S ^ X

On a:
max |/5«t) W | = AH, max | ƒ ("*+0 [x) | -

Soit, pour rik ̂  w

on trouve

d'où l'on tire»

An " 2»*«—i>

- ~ <, 2n~-»k < 2\
An
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Considérons maintenant la fonction

f M - V f M - X ^ ^kCQBhx

Envisageons une dérivée d'ordre pair w, w*:< n< wt+i, pour fixer les idées, et
posons

/./ \ j COS Afc X . j COS Afr-f 13? . w-i . COS An ̂  , ^in 4 COSÂ,nX
7

Pour # = o tous les termes sont du même wgne et atteignent le maximum de
leur module, de même que leurs dérivées d ordre pair.

Comme on vient de voir, on a

An
d'autre part

(en tenant compte de la relation A* < 2n*+1

On trouve de même

max = 2 ^ 2 A"2 ^»P ̂  ^ 2 A"P
p=0 p—Q

= 2 ^ ^ ^""^ < * A. 2» < n 2» il*
p=o

Finalement

— N1 A
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et il résulte d'autre part des relations 2np < Xp ̂  2*p+1 que tous les rapports

sont inférieurs à -•
2

On en déduit

Finalement on tire de ce qui précède

An<m2ix\fM(x)\ < max| /r(*) | + max|/;(a?)| + max | ^ (ar) | + max | F% {x) |,

^ n < max | ƒ n> (x) | < 2nAn + n2nAn -f 2 . 2 n J w ^ ( 3 + w)2ni4„,

où w est nombre pair, l'inégalité à droite étant d'ailleurs vraie pour toutes les
valeurs de n.

On voit de la même manière que la fonction

/ \ _ V A S^n h X

k=0 ^k

satisfait pour les valeurs impaires de n aux mêmes inégalités.
Comme d'autre part, pour x = o, la dérivée d'ordre n d'une des fonctions

est toujours nulle, la dérivée du même ordre de l'autre atteignant alors son
maximum, on trouve facilement qu'en posant,

F(x)=f(x) + (p(x),
on aura

An ^ max | FW {x) \ < io.4n An,

et notre proposition est démontrée.

Examinons maintenant encore rapidement le cas où —-^ tend vers une

limite finie A.
Soient encore, comme précédemment,

les intervalles, en nombre fini, contenant des termes de la suite — ^ , le nombre
Ak

X faisant partie du dernier intervalle. On a
î

X = lim % ^ = Hm (A
A~)P 2BP < A ^
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Comme dans le raisonnement ci-dessus, on voit que la fonction

. , ^ cos lk x JL sin h x

*=0 Ak *=0 Ak '

où, comme précédemment,

pour o ^ h < p, et Xp = Xy satisfait aux conditions de l'énoncé. Ce qui démontre

notre proposition dans tous les cas;

H est maintenant facile de voir que la condition

T7" < fi < °°

est nécessaire pour que les deux classes {mn} et [tnn} soient identiques.

Le logarithme de la suite mn est, en effet, convexe, nous pouvons donc

construire une fonction w(x) satisfaisant aux inégalités

(4) ihn < raax | a>{n) (x) \ < io.4n m».

Cette fonction devant également appartenir à la classe {tn'n}, donc aussi à la

classe {m'n}, d'après (4). On aura donc

où fi est une constante, d'où l'on tire

et, d'une manière analogue, on voit qu'on a aussi

* «if-mn

La condition est donc bien nécessaire.

5. Une conséquence immédiate de la relation (1) est le théorème suivant:

Théorème. Le produit de deux fonctions f(x) et g (x), définies pour toutes les

valeurs réelles de x et appartenant à une classe {nin}, appartient également à cette

même classe.
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En effet, soit h{x)=*f(x)g(x), on a

d'où, à cause des relations

{e + c')w*w0m».
1 = 0

La fonction A(r) appartient donc effectivement à la classe {mn}.

On voit de la même manière comme conséquence des relations (13) Chap. I

que, plus généralement, le produit de deux fonctions f(x) et g{x) de la classe {mn)i

définie sur la demi droite (o, oc) appartient encoie à cette classe. On voit, en effet,

comme précédemment, que h(x) =• f{x) g(x) satisfait aux inégalités:

or

d'où
| /i(n> (a;) | < (2 e)n (c + c)n mQ mn,

ce qui démontre la proposition.

6. Signalons encore comme conséquence immédiate de l'inégalité (1) et de

la proposition réciproque (3) l'énoncé suivant:

Une condition nécessaire et suffisante pour que sur tout Taxe réel la dérivée de

toute fonction de la classe {mn} appartienne aussi à cette classe est que Von ait

--^ < a < oo .

La condition est suffisante. On a alors, en effet, pour la dérivée ƒ ' (x) d'une

fonction f(x) de la classe {mn}, d'après l'inégalité (i),

ce qui prouve que f'{x) appartient à la classe {mn\.
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La condition est nécessaire. Si Ton considère, en effet, la fonction w(x)

définie précédemment, on a, en appliquant encore l'inégalité (i), w (x) devant

appartenir à la classe {mn}y

anin+i < max|cii^+1)(a;)| < e*!**»,

ce qui prouve notre proposition.

7. Nous avons vu ci-dessus que le produit de deux fonctions d'une classe

{nin}, définie sur toute la droite ou même sur une demi-droite, appartient encore

à cette même classe Ceci n est plus vrai, en général, pour les classes de fonctions

définies sur un intervalle fermé fini quelconque

En effet, soit PH{r) un pohnonie de degré n Ce polynôme appartient sur

tout segment fini à la classe {mn\ définie de la manière suivante.

wu—i, pour o ^ k'^ n, mi = o, si h>h.

Or le polynôme de degré 2 n [Pn(j?)]a n'appartient évidemment pas à la classe {nik}.

On peut d'ailleurs déterminer également d autres classes moins triviales

repondant au même but, comme le montre 1 exemple suivant

Considérons la fonction f{x) définie, dans 1 intervalle [o, 1], par la série entière

Les coefficients étant positifs, la fonction f(r), ainsi que ses dérivées, atteignent

leurs maxima au point x — i. Cette fonction appartient à la classe {mn} définie

de la manière suivante* pour kK < n < (L + i)* + 1, posons mn =- (k + iJMi + D1"1"1,

sauf pour n =- 2 &\ où Ton posera mn = 1. On a, en effet, quel que soit w,

n]

p 1

43—3932. ^4rtó mathematica. 7!. Imprimé le 1 novembre 1939.
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Si n = (k + i)*"*"1, on a d'ailleurs

/(n) (o > ( f +
+

) ( f + "l; . > « - (*
d'autre part, pour w = 2 F', on voit facilement que

)

s i

La fonction f(x) appartient donc bien à la classe {mn}. Mais on constate
aisément que la fonction g (x) = [ƒ(x)}2 n'appartient pas à cette classe. On a,
en effet,

donc, pour n = A*, (A = 1, 2, . . .), on a

0(2w)(i) > e
d'où

Ce qui montre que la fonction g(x) n'appartient pas à la classe [mn\ précédemment
définie. Contrairement donc à ce qui a lieu pour les classes de fonctions définies
sur tout l'axe, ou sur un demi axe, le produit de deux fonctions d'une classe
définie sur un intervalle fermé n'appartient pas, en général, à cette classe.

8. Nous avons toutefois même dans le cas d'un intervalle fermé fini la
proposition suivante:

Théorème. Soit {mn} une classe de fonctions définie sur tin segment fermé fini,

désignons par {mn) le plus grand des deux quantités mn et w!, c'est-à-dire

m'n = max (wB, w!);

le produit de deux fonctions de la classe {mn) appartient à la classe {m'n\.

On en déduit, en particulier, le corolaire suivant:
Si la classe \mn} de fonctions', définies sur un segment fermé fini, est telle qu'elle

contient toutes les fondions analytiques sur ce .segment, le produit de deux fonctions

de la classe appartient encore à cette même classe.
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La démonstration résulte de l'inégalité (11) Chap. I

avec
M'n = max (Mn, 3/0 n ! d~n).

Si Ton pose M#) =ƒ(#)#(a?), les fonctions f(x) et (̂ar) appartenant à la classe {mn}:

d'où:
n

\nx '\x)\ ^ y^ o tJ |/
1 \xj11$r \xj|

en posant
mn = max (wn, w!), J. = max (i,

on a finalement, en tenant compte de

ce qui démontre la proposition énoncée.
Ou pourrait, d'une manière analogue1, énoncer une proposition concernant

le produit de deux fonctions dune classe \mn\ définie dans un intervalle ouvert,
en donnant une définition convenable dune telle classe et en utilisant les
inégalités valables pour le segment ouvert.

CHAPITRE III.

Sur les fonctions données par l'intégrale de Stieltjes:
se

r"'dV.f'
I. Nous allons dans ce chapitre énoncer quelques propositions sur une fa-

mille particulière de fonctions, définies sur tout l'axe réel, notamment celles qui

1 Voir H. Cartan, Comptes rendus 208, 1939» p. 416.
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+ 00

sont représentables par l'intégrale de Stieltjes convergente I éxidV{t), où V(t)

—ce

est une fonction croissante et bornée de la variable £(—oo< £< +00). Chemin

faisant nous énoncerons également quelques propriétés des fonctions données par

certaines séries de la forme ^anf'
tinx qui généralisent les séries de Fourier, les

1

On pouvant être quelconques. Nous démontrons notamment la proposition suivante:

Si f{x), représentai)}e sur tout Taxe par Vintégrale de Stieltjes convergente

1 elxtdV{t), où Y (t) est une fonction croissante et bornée, possède une dérivée d'ordre

n de module inférieur à J/n, on a, quelle que soit a > o,

où c = c(a) est une constante indépendante de n.

Démonstration. Soit ô une quantité réelle et posons

^nf(x) désignant la différence d'ordre n de la fonction f{x). Nous supposons

pour plus de généralité que V(t) est à variation bornée. On a:

^ » / ( * ) = 2 (- *y c»^x+(» - *) *]•
On a donc

(1) 9,n(x,ô)

Et comme, par hypothèse, on a

il en résulte, évidemment, qu'on a aussi

cette relation pouvant d'ailleurs s'écrire

| <pn (x, ô) | <: Mni

si la fonction ƒ (a;) est réelle.
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e—ixa—^

Multiplions par ———:—— les deux membres de (i) il vient, a étant un nombre
•—•* % QC

ixa

—

positif,

D'où Ton déduit, en intégrant par parties et en posant

*,^') = ƒ
+ 00

= ƒ«*"
II est facile de voir que Fj (/) est une fonction absolument intégrable, on a, en

.effet, V[t) désignant la variation totale de F,

" ƒ !'/F|

a)-v(t))dt

6 4-a

où la différence V{b + T) — F (a + Ï) tend uniformément vers o lorsque a et 6
augmentent indéfiniment.
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En multipliant une deuxième fois par : * on trouve, d'une manière

analogue,

(2) <pn (x, *) • ( ^ - ~ l J= ƒ è"1 W{t, «, ô) d *,

avec

(3) W(t,a,d)=j Vt&a.

t i

Comme pour la fonction Vx{t), on constate encore que l'intégrale

W(t9a, â)\dt
J

existe; on a, en effet,

b b t-ra a b + t

a a t 0 a+t

or, comme on vient de le voir, l'intégrale

5+tr

tend vers o si a et b augmentent indéfiniment; W(t) est d'ailleurs une fonction
continue de t.

Comme d'autre part, la fonction

est absolument integrable, car

1
/ i j _ a v 2 I O TLf

f *\ I v 1 1 I ^ o ifJLn

*•(*'*>• \--7x
on peut appliquer le théorème d'inversion de Fourier à la relation (2) et on
trouve
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D'où

(4)

la constante A pouvant être i ou V2 suivant que la fonction f(x) est réelle
ou non.

Faisons maintenant tendre ô vers o, en remarquant que

lim -— = i t
<j=o à

on tire de (3) et (4)
t+a $+a

(5) \fdsf%»dV(*)\<2MHa.
t î

2 Avant de poursuivre la démonstration du théorème, signalons quelques
conséquences qu'on peut tirer de la relation (5) sur la nature de la fonction V(t).

En intervertissant 1 ordre d intégration on trouve

t + a C+a t+a t + 2a

f dÇ i%ndV{%)= i {%-t)%ndV{x)+ i (*+ 2a-%)%ndV{%)y

t i t t+a

et en faisant le changement de variable u = l + c

il u+a

«—a u

la formule de la moyenne de Bonnet donne, d'autre part,

t* «,

a j %ndV + a \%ndV

t#0 et u1 satisfaisant aux inégalités

u — a < u0 < u < iij < u -b a
et d'après (5)
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<AMn

«O 11

si Ton fait tendre a vers o, on trouve finalement

Enonçons une conséquence de cette relation

Soit f {x) = 2 anexlnx avec
îi=—<x>

\h~h\> a> o, si

une fonction possédant une dérivée d'ordre n bornée,

On a l'évaluation suivante des coefficients

on a donc pour la fonction et ses n— 2 premières dérivées

f M (x) =-£\ilmy am e1**, (t - o, 1, 2, . . . n - 2).
Wit = — »

/Si, en particulier, cette fonction est indéfiniment dérivable on aura

où

et quelle que soit k ^ o

3. Supposons maintenant que V\t) est une fonction croissante de t, la rela-
tion (5) s'écrit alors

1 Pour les series de Fonrier on obtient ainsi 1 évaluation de M. Mandelbrojt.
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t+a

841*

\t < 2Mn<X

avec

et
#(%) = %— t + a, si t —

q>(t) = t + a — T, pour

la formule de la moyenne donne alors

et en intégrant par parties, on en déduit:

t+a

? ( £ ! .

Si Ton remplace ici t par t — a et en ajoutant la relation ainsi obtenue à la

précédente, on trouve
t+2a t+a

t+a
avec

et il en résulte finalement

C étant une constante, indépendante de n. C'est la relation énoncée au début

de ce chapitre.

CHAPITRE IV.

Sur la dérivabilité des fonctions d'une variable réelle limites de suites
de fonctions analytiques.

I. Dans ce chapitre nous démontrons d abord quelques propositions

qui constituent la généralisation, aux suites de fonctions analytiques quel-

conques, des théorèmes de MM. S. Bernstein et de la Vallée Poussin, sur la
44 — 3932. Acta mathematica 71. Imprimé le 2 novembre 1939.
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dérivabilité des fonctions limites des suites dé polynômes ou d'expressions tri-
gonométriques.

Bien que la démonstration de ces généralisations puisse se déduire, sans
grandes difficultés, des résultats de M. S. Bernstein sur la meilleure approxima-
tion des fonctions analytiques par des pohnomes, j'ai cependant préféré donner
une démonstration indépendante, qui pourrait présenter quelque utilité dans des
recherches analogues, la méthode suivie s'apparente d'ailleurs à celle dont s'est
servi M. Montel dans sa démonstration des formules de S. Bernstein et Markoff
sur les dérivées des polynômes.1

Les propositions de ce chapitre peuvent être considérablement précisées et
permettent, par exemple, de déterminer des limitations des dérivées successives
des fonctions limites. J'espère avoir un jour l'occasion d'y revenir.

Un autre théorème démontré dans ce chapitre établit une relation entre les
zéros des fonctions analytiques de la suite donnée et la dérivabilité de la fonc-
tion limite. L'approximation exigée, pour pouvoir affirmer l'existence des dérivées
de la fonction limite, est bien moindre lorsque les fonctions de la suite ne
s'annulent pas dans le voisinage du segment considéré, que dans le cas général.
La méthode suivie est ici inspirée de celle dont s'est servi M. Ostrowski, dans
un mémoire connu, pour des recherches d'une nature différente. Ces questions
ont été, à ma connaissance, peu étudiées.2 On pourrait encore ici donner des
limitations des dérivées successives de la fonction limite et dire, par exemple.,
dans quel cas cette fonction appartient à une classe donnée, disons, la classe des
fonctions analytiques. Je n'ai cependant pas développé ici ces questions d'une
manière systématique.

2. Soit f{z) une fonction analytique holomorpbe dans un domaine D con-
tenant dans son intérieur un segment de l'axe réel, que nous supposerons être
le segment (—i, i), par exemple. Supposons qu'on a dans ce domaine |/*(£)|<3/,
et sur le segment [—-i, i] \f(r)\<m. Cousidérons la fonction h(z) harmonique
régulière dans le domaine D et telle qu'on ait

1 Dans cet ordre d'idées il y a lieu de signaler encore un théorème de M. S. Bernstein coa-
cernant la derivabilite des fonctions limites des suites de fonctions entières de degré fini. Voir
S. Bernstein. Le(ons sur les proprutés eitremales . ., p. 105.

1 On peut cependant encore signaler des propositions d'une nature voisine de M. S. Bernstein,
Sur lu distribution des zoos des pohjnonu s tmdant vêts mie Jonction continue positive sur un segment
donné. Journal de Mathématiques pures et appliquées 9 ieme serie, 8, 1929, p. 327.
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h(z) = o sur le segment (— i, i), h(z) = i sur la frontière de D.
La fonction sousharmonique

log | ƒ(-*) | - (i - h (z)) log m-h (z) log M

étant négative ou nulle sur la frontière de D — d {d désignant le segment [—i, i])
est négative dans tout ce domaine, on a donc

pour tout z € D.
On en tire par l'application de la formule de Cauchy

2 T O J (s — #)*+1

r

y étant une cercle de rayon r autour du point x, entièrement contenue dans D,

(i) lyw^i <—!!__ <J . ! ! .

Lorsque z tend vers un point du segment [— i, i] la fonction h (z) tend vers O.
Nous allons donner une évaluation de l'ordre de cet infiniment petit.

Soit YJ une ellipse de foyers —i, i, dont la somme des demi-axes est égale
à (J et dont l'intérieur est entièrement contenu dans le domaine 1). Considérons
la fonction harmonique g(z)

log a

la détermination étant choisie de manière que le module de z -f 1 zt—i soit
supérieur à l'unité dans le domaine J doublement connexe dont la frontière
est constituée par l'ellipse E et par le segment [—i, i]. Dans ce domaine la
fonction g(z) est harmonique, et on a

g{z)— i sur l'ellipse Ef g(z) = o sur le segment d.

Comme dans J d ( ^ ) < i , on a donc sur la frontière de J

et cette relation est valable dans tout le domaine J.
Soit le cercle y de centre x entièrement contenu dans Fellipse E* ce qui
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lieu, par exemple, si r < î nous allons déterminer une borne supérieure

de g{z) pour z sur le cercle y.

3. Supposons d'abord que x est un point intérieur du segment. Soit, pour
fixer les idées o < x < 1, posons

1 — x= a, 1 + x = fi, o < a < i < / ? < 2 .

En remarquant que | z + Vz2 — 11 représente la demi-somme des axes 2 a et

2 b de l'ellipse de foyers —1,1 passant par le point d'affixe z, on trouve, q> dé-

signant l'angle arg (z — x) :

2a = \z — 1 | + | # + i | = Va2 + r2 — 2 a r cos y H- l^/?2 -f r2 + 2 /?r cos y

et, en supposant r < — > on a

| 2ra cos y — r*| < 3 rcr, |2 r ^ cos g) f r 2 | < $r(l
et

2 r a cos op — r2 2 r S cos œ + r2
 rt r2

2a<a+|î ——^ + —— -^ +18-2r 2 a 2/î a2
2 a

r
2 + 2O -=

az
r2

r2

a < 1 + 10-i»
a*

D'où finalement

On a d'autre part

donc

d'où l'inégalité

/x , \ logU + K^2 —il ^ 10(2) ^W = - ° ' -r- —' < — r .v 7 log a a log a

Donc, h(z) désignant la fonction harmonique égale à un sur la frontière du do*

maine D et à o sur le segment [—i, 1), supposé intérieur à ce domaine, on a

& = W - K / 2 o 4 + i o o 4 < 5 - ,
Of Of Of

a + 6 = U + Vz2 — 11 < 1 + 1 0 -
a
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sur le cercle y de rayon rlr < — 1 dont le centre x est un point intérieur du

segment (—i, i)

(3) k(B)^-£—r
a log a

a désignant la distance du point d'abscisse x aux extrémités du segment et a la

demi-somme des axes de la plus grande ellipse entièrement contenue dans le

domaine D.

4. On peut trouver, d'une manière analogue, une borne supérieure de la

fonction h (s) valable sur le segment fermé. Les notations étant les mêmes, on a,

en supposant r <
100

h = Vc^l = V~ÏVV? < 2 VT-,
donc

\z + Vàr~î | = a -f b < 1 + 2 Vr + r <£ 1 + 3 Vrf

log a ~~ log a

Donc sur tout cercle y de rayon r lr< — 1 dont le centre est un point du

segment fermé (—1,1), on a

(4) h{*)*\°V'.
log a

5. Nous allons maintenant appliquer ces préliminaires à l'étude de la déri-

vabilité d'une fonction d'une variable réelle donnée, sur le segment [—I, 1], par

une série absolument convergente de fonctions analytiques.

Considérons une série ^ /» (z) ^ e fonctions analytiques, holomorphes dans

un domaine ƒ>, contenant le segment [—1, 1 , supposons que la série converge

uniformément et absolument sur ce segment vers une fonction JP(^), et qu*en

outre, on a

\fn (z) | < 3Iny pour z € D et |/„ {x) | < mn si — 1 <* x <* 1,

avec mn < 1 et tendant vers o et Mn ^ 1. D'après (i), on aura



850 A. Gorny.

maïK-JWMîW)i!
L/WI< ^ ' -i^x<*x, \z-x\=>r.

Soit x un point intérieur de l'intervalle (-—i, i) on trouve, en tenant compte de

la relation (3),

, r<H£|.
20Un • r* (1 — |#|) loger 20

Posons dans cette relation, pour n assez grand

*__

A log

on en déduit

(5) 1 f® {x) I < (c l)k mn

II en résulte la conséquence suivante

Théorème I. La fonction F(x)= 2 fn{x), on les fonction? fn{x) et les quantités

m% et Mn sowf définies cmnme p)ê(êdemment, possédera en tout point intérieur du

segment (—1, 1) une dérivée continue d'ordre h si la série

converge.

Par une transformation facile nous en déduisons le théorème suivant:

Théorème I' Soit Fn(z) une suite de fonctions analytiques, holomorpes dans

un domaine I), contenant h seqment [—1, 1] Supposons que sur ce ̂ gment la suite

Fn{x) converge vers la fonction F(r), et qu'on ait

| F n ( r ) | < Mni si z€D et \Fn{ic)-F(x)\<nin si - K x < i f

mn et MZ tendant te?6 o en décroissant, u la serie

2»." ( 1 O g m. )
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converge la fonction F(x) possédera une dérivée continue d'ordre Je en tout point inté-
rieur du segment (—i, i).

Il suffirait, en effet, de considérer la série ^fn(x) avec fn(z) = Fn+i(z) —
n

— FH (z), on a alors

\F.+x(e)-F*(e)\<.Mn + Mn+i<2Mn+i,

| F n + l ( x ) - Fn(jc)\<\Fn+i(x) - F(x)| + |F.(x) - F{x)| < mn+i + m„ ^ 2m.,

il suffirait alors d'appliquer le théorème I.

6. Nous pouvons mettre cet énoncé sous une forme équivalente plus simple,
en exigeant seulement que la série

n

soit convergente.

A cet effet remarquons d'abord que si la série T; mn I log — I est conver-
^J \ ninf

n

gente, les deux séries

2J mn I log I et ^ , Mn (log J/fi+l)
n ' 7Hn ' n

convergent et divergent simultanément.

a) Si la série 2 ïiin \ ̂ °S " ) converge, la série 21 m* i^°S Mn+i)k con,-
n n

verge aussi, ses termes étant moindres que ceux de la première série.

( Mn+t\k

log —-— r

converge également. Considérons, en effet, d'abord ceux parmi les termes 3fp+i

qui sont plus grands que les termes i pour la même valeur de p. La contribu-
mp

tion des termes correspondants dans la série ^ wn ( log "^1 ï est moindre que

m, (îog jrP+iY <

l'accent sur le signe "V signifiant qu'on ne considère que la suite extraite corre-
spondante.
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Envisageons, d'autre part, les termes Jf^+i qui sont inférieures ou égaux aux

termes — correspondants. Leur contribution dans la série /^Wnllogl—-—II
mq

 F ^ L \ m» 11
est moindre que

La somme de la série ^! mn ( log n— I est donc inférieure àn ( log n— I
\ mn I

2* 2i' mu (log ^ )*

elle converge donc, en vertu de l'hypothèse faite au début.
Or, en supposant qu'une des séries

converge, il est toujours possible d'extraire une suite partielle d'indices {np} de
manière que les nouvelles séries respectives:

(( I log —3L

( I V*

log — j étant elle aussi con-

vergente, quel que soit d'ailleurs la valeur de k, et ceci suffit pour démontrer la

proposition énoncée. On peut donc, sans restreindre la généralité, supposer que
/ i U

>S»Nilog I converge. Voici, d'après une idée de M. Ostrowski1, comment on
\ '"«/

pourrait effectuer ce choix:
171

Soit mni le premier terme inférieur à — > m% le premier terme inférieur à

— , ••• mnp+l le premier terme inférieur à —-» etc. . . . , on a évidemment
1 A. Ostrowski, Über volUtândige Geblete gleichmassiger Konvergenz von Folgen analytischer

Funkiionen. Abhand. d. math. Seminars. Hamburg. T. I, p. 342.
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respectivement

mnp{log Jf„p+1)

et la série

respectivement

P

est aussi convergente. Or il est facile de voir que la série

-s
el que soit h, car

(log-lV=o(2?).
\ np! '

converge quel que soit Te, car d'après la définition des m» on a m* < 2~* et

d'autre part

7. Les considérations qui précèdent nous permettent d'énoncer le théorème
suivant

Théorème II. Soit Fn {2) une suite de fonctions analytiques holomorphes dans un
domaine D contenant un segment (a, b) de Vaxe réel. Supposons que sur ce segment
la suite F„(x) converge vers une fonction F(x) et qu'on ait

\Fn(z)\ <Mn si z€ll \Fn(x)-F(x)\<Zmn pour a<^x<>b,

où Mn tend en croissant vers Vin fi ni mn tendant en décroissant vers o. S'il est
possible d'extraire une suite partielle dJindices

H
nu

telle que la série

converge, la fonction F(x) possédera une dérivée continue d'ordre h en tout point
intérieur du segment (a, b).

8. On pourrait énoncer des propositions analogues, mais valables pour un
intervalle fermé, en partant des relations (4) au lieu de (3):

45 — 3932. Acta mathematica, 71. Imprimé le 2 ncnembre 1939.
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Théorème l u . F(x), fn {z\ m» et Mn ayant la même signification que dans le
théorème I Si la série

converge, la fonction F(x) possédera une dérivée continue d'ordre k dans Vintervalle
fermé [a, b).

Théorème III'. F{x), Fn{z), m» et Mn ayant la même signification que dans
le tliéoiime II. Si la série

converge, la fonction F(x) possédera une dérivée d'ordre k dans l'intervalle fermé

[a, b\.

Pour le prouver, il suffirait de remarquer qu'on a comme conséquence des
relations (i) et (4):

1 n ' r* log a 100

si dans cette relation on pose

on en déduit, pour des valeurs suffisemment grandes de n

On peut maintenant reprendre sans modifications notables les considérations ci-
dessus concernant l'intervalle ouvert et les propositions énoncées en résultent.

9 Ces théorèmes généraux contiennent, en particulier, comme on le constate
sans difficulté, les résultats bien connus de MM S Bernstein et De la Vallée
Poussin concernant 1 approximation des fonctions dune \ariable réelle par des
suites de polynômes ou d expressions trigononiétriques l

1 Voir par exemple Ch De la \ a lhe Poussin, Leçon* sur I apprortmatwn den fonctions d'une
variable uelh (hap IV et \ et S Bernstein Siu la malhiue apptonmntion (h s Jonctions conti-
nues (Mt moires publics par la clause des Sciences de 1 Academie ren aie de Belgique Collection in
- 4 . 2e {Serie t. IV, 1912,1.



Contribution à l'étude des fonctions dérivables d'une variable réelle. 355

Dans les cas d une suite de polvnomes Pn {x) de degré w, convergeant sur
un segment [a, h] vers une fonction F(x), on peut poser Mn = MAn, M et A
étant indépendants de n II résulte, en effet, d un théorème bien connu de
M S Bernstem1, qu'un polynôme Pn(-t) d< degte n injetteut à M sut un segment

( B\n

i sut une (llipse ayant ses foyers aux ex-

trémités du segment, et pout dont somme des ares B

Nous obtenons donc dans le cas des polynômes, et en nous bornant, par
exemple, au segment ouvert, la proposition suivante

Soit une suite d( polynômes 1\ t{i) dt degtis ooissants nî1nË . . , nPi . . tendant

teis une fonction F(r) siu un segment [a, h] de l axe teel Cette fonction possédera,

en tout point intetuut du segment, une de)nu continue d'otdte Jcr si la séné

oà mnn = max | F(x) — PnAx)\ tend vers o en décroissant, converge.

En posant, par exemple, np = 2P, on en tire, en particulier, la proposition
bien connue suivante

Si pou) toute lalein de n la fonction F(x) p<nt et) e apptochée pat des poly-

nômes d( deg)é n ai ce une apptoximation infitieute à J+a> où a > o, cette fonc-

tion possédera une dé) née continue d'otdte k en tout point intét lew au segment (a, b).

On obtient sans difficulté des propositions analogues pour 1 intervalle fermé.

io Examinons encore rapidement les cas de 1 approximation d une fonction
périodique par des expressions tnufonometriques Si nous considérons une suite
Tn\z) de pol>nomes trigonometiiques de degré // convergeant sur 1 axe réel vers
une fonction périodique, il est facile de voir que la croissance de la suite Mn

dans un domaine entourant 1 axe réel est encore comme dans le cas des poly-
nômes, de 1 ordre exponentiel pai rapport au degié du polynôme trigonométrique;
on aura donc les mômes théorèmes sauf que dans le cas d une fonction pério-
dique il n } a pas heu de considérer le cas d un mteivalle ferme On a la pro-
position suivante facile a démontrer et qui est analogue au théorème de Bern-
stein sur les polynômes

B . B e r n s t e i o L e ç o n s s u r l e s p r o p r t e t e ë e x t r e m a l e * . . . p . 1 1 2 .
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Tn{z) étant un polynôme trigonmnétrique d'ordre w, inférieur à M sur l'axe réel,

on a sur toute droite d'ordonnée %j, parallèle à Vaxe réel

En effet, considérons la transformation t = éz. Elle transforme le demi-plan
supérieur en l'extérieur du cercle unité et on a

t„
où l\n{t) est un polynôme de degré 2 H en f. Comme par hypothèse on a, sur
le cercle unité, |P2 n(<) |< M, on en déduit les relations

D'où comme dans le cas des polynômes, la proposition suivante:

Soit Tn{x) une suite d'expressions trigonométriques d'ordres croissants nunti

. . . , npy . . . tendant sur l'axe réel vers mie fonction périodique F{x). Cette fonc-

tion possédera en tout point une dérivée continue d'ordre k, si la série

où ninp = max \F(x) — Tnp(x)\ tend vers o en décroissant, converge.

11. Nous allons maintenant particulariser la nature des suites de fonctions
analytiques considérées, en supposant que les fonctions Fn (z), tendant vers la
fonction F(x) sur le segment fermé [<7, b], ne s'annulent pas dans un domaine J)
entourant ce segment, et que, d'autre part, la fonction continue F(x) est diffé-
rente de o sur ce même segment, cette fonction étant susceptible de prendre,
comme dans tout ce qui précède, des valeurs complexes. Considérons la fonc-
tion log F(x)y dont nous précisons la détermination de manière que log -F(o)1

ait sa partie imaginaire dans l'intervalle semi ouvert [o, 2 71) et on prolonge
log F(x) d'une manière continue le long du segment [a, b] à partir du point O.
Considérons, de même, la suite de fonctions log Fn {B) dont nous fixerons la dé-
termination de la manière suivante: Fn(o) tendant par hypothèse vers F(6), il
existera une détermination de log Fn (o) qui convergera vers log F(ó), qu'on

1 Nous supposons que o est an point intérieur du segment (a, b).
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trouvera en choisissant l'argument ®n de Fn(o) dans l'intervalle ((P--*, <P + «), 0>

désignant l'argument de F(o) et £ une quantité positive inférieure à TT. Ceci

est évidemment toujours possible pour n assez grand, à cause de la convergence

de la suite Fn(o). La fonction log Fn (z) sera prolongée d'une manière continue

dans tout le domaine J) à partir de la valeur initiale log Fn (o) = log | Fn (o) | +

+ i<Dn.

Envisageons maintenant la différence

D'après la détermination qui a été choisie pour les logarithmes, cette différence

est une fonction continue de x sur le segment #, b] et elle tend vers o au point

x = o. Ses différentes déterminations différant entre eux d'un multiple de 2 Tri,

elle tendra nécessairement vers o en tout point du segment fermé [a, 6], et

on aura

/*\ , Fw (rr) , / ^ Fn - F\ Fn - F i (Fn -

mn i _ i -j. . . . < , i S 1 3/ < — i,

2 \ m / m \ 2 /

où m désigne le minimum de F(x) dans (a, b).

On a, d'autre part, dans le domaine D:

5H log Fn (z) - log | Fn {z) | ^ log Mn.

Il en résulte, d'après une relation de Borel et Hadamard sur la limitation du

module d'une fonction holomorphe dans un cercle1, connaissant une borne supé-

rieure de sa partie réelle, qu'on a, dans tout domaine I)t intérieur au domaine

D, l'évaluation:

où A ne dépend pas de )t.

En considérant la suite log Fn (.r), et en tenant compte des relations (6) et

(7), on trouve comme conséquence du théorème II la proposition suivante:

Théorème IV. Sott Fn{z) une suite de fonctions analytique* holonwrphes dans

un domaine D et ne s'y annulant pas. Supposons que sur un segment [a, b] de

1 Voir, par exemple, G. Julia, Principes géométrique* d'analyse T. I. p. 70—72.
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Y axe réel contenu dans le domaine la suite Fn{x) tend vers une fonction F{x) diffé-
rente de o sur ce segment et qu'on ait

lF n (^) |< Mn *i zeD, \Fn{x)-F(x)\<ZmH pour a < x < 6,

où M~l et mn tendent vers o en décroissant. Si la série

converge, la fonction F(x) possédera une dérivée continue d'ordre k, en tout point

intérieur du segment [a, b).

On a évidemment une relation analogue dans le cas de l'intervalle fermé.


