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Préface.

Ce mémoire apporte une contribution a I'étude et a la classification des fonctions
d'une variable réelle. Une place relativement importante y est consacrée aux classes
de fonctions indéfiniment dérivables Ces recherches, qui n'ont été abordées d'une
maniére systématique que dépuis peu d’années, doivent leur origine a la théorie
des fonctions quasi analyvtiques out MM Denjoy. Carleman et Mandelbrojt, pour-
guivant des idées de MM Borel et Hadamard, ont obtenu des résultats dune
grande portée Cependant 1étude des fonctions quasianalvtiques ne fait pas
directement partie de ce travail, ¢ est plutot sur les classes générales de fone-

tions indéfiniment dérivables d une variable réelle, ainsi que sur la représentation
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des fonctions d'une variable réelle par des suites de fonctions analytiques que
portent nos efforts.

En partant de certaines inégalités entre les maxima des modules des dérivées
d'une fonction de variable réelle, qui sont démontrées au chapitre I, j'énonce
dans le chapitre II, quelques résultats concernant les classes de fonctions indé-
finiment dérivables Je donne notamment la condition, nécessaire et suffisante,
pour lidentité de deux classes de fonctions définies sur tout l'axe réel, la condi-
tion nécessaire étant d ailleurs celle de M Mandelbrojt, la démonstration du fait
que le produit de deux fonctions d une telle classe appartient également a cette
classe, ete

Le chapitre IIT est consacré a l'élaboration de quelques résultats concer-

nant une classe particuliére de fonctions définies sur tout 1axe réel, notamment

+

celles qui sont représentables par une intégrale de Stieltjes f e td V(t). J'étudie
~

les limitations de la fonction croissante J17(f) en fonction des bornes des dérivées

successives de f(7r). Ces résultats constituent une extension des évaluations con-

nues, par les travaux de MM de la Vallée Poussin et Mandelbrojt, des coeffi-

cients de Fourier d une fonction périodique

Enfin le chapitre IV est consacré a des généralisations, assez faciles, de
théorémes connus de MM S Bernstein et de la Vallée Poussin sur la dérivabilité
des fonctions d une variable réelle suivant la nature de leur meilleure approxima-
tion par des polinomes ou des expressions triconométriques J énonce dans ce
chapitre quelques théoremes sur la dérivabilité d une fonction d'une variable
réelle, limite d une suite de fonctions analyvtiques quelconques

La plupart des résultats obtenus dans ce travail, ont été communiqués a
I’Académie des Sciences?

Je suis heureux d'exprimer ici ma vive gratitude a M S Mandelbrojt, Pro-
fesseur au College de France, qui sest toujours intéressé & mes recherches et
dont les conseils et les encouragements me furent toujours trés précieux. Qu'il
me soit aussi permis de remercier MM Hadamard et Montel qui ont bien voulu
présenter mes Notes a 1 Academie des Sciences.

! Comptes rendus, T 206, 1938, p 733, 1245 et 1872 T. 208, 1939, p. 1864.
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CHAPITRE 1

Quelques inégalités entre les maxima des dérivées successives
d’une fonction.

1. Dans ce chapitre nous démontrons quelques inégalités entre les bornes
supérieures des dérivées d'une fonction, définie sur un segment fini ou infini.
La méthode suivie est celle que javais indiquée dans deux Notes aux Comptes
rendus?!, ou jai également donné quelques applications de ces inégalités A 'étude
des classes de fonctions indéfiniment dérivables d une variable réelle Ces rela-
tions furent dépuis retrouvées par M H Cartan? qui les démontre d une mani-
ére analogue. J'ai adopté dans ce qui suit la forme que leur avait donné M.
Cartan.

Des inégalités analogues furent établies par plusieurs auteurs, on pourrait
notamment citer des travaux de Landau® Hadamard*, Hardy et Littlewood® et
Neder® Cependant, ou bien, comme cest le cas des relations de Landau et M.
Hadamard, elles ne concernent que les maxima de trois dérivées successives, ou
bien, comme dans les travaux de Hardy et Littlewood et ceux de M. Neder, la
détermination des coefficients nest pas faite d une maniere assez avantageuse,
ce qui les rend inapplicables pour le but que nous poursuivons, notamment dans
I'étude des classes de fonctions indéfiniment dérivables D ailleurs méme sous
leur forme actuelle elles sont certainement susceptibles d étre améliorées, et, en
particulier, le facteur exponentiel en 1 qui fizure au second membre des inégalités
(11)—(14) peut certainement étre réduit, bien que ceci importe peun pour les appli-
cations (ue nous avons en vue En ce qui concerne notamment 1inégalité (14)

pour les fonctions définies sur tout l'axe réel, M Kolmogoroff a récemment?

L Sur les marima des modules d une fonction et de ses dernnees T 206, 1938, p 1245 Sur
les fonctions indefinement derirables T 206, 1938, p 1872

® H Cartan, Sw les wcgalites entie les maxima des derivees successives d'une fonction.
Comptes rendus T 208, 1939, p 414

® Landau, Ewmge Unglachungen fio  zueimal differentiierbare Funktionen Proceedings of
the London Mathematical Society, Ser 2 Vol. 13, 1913

4 Hadamard, Sy e module marvimum d une fonchion et de ses derivees Societe mathéma-
tique de France (omptes rendus des Scances de 1annce 1914

® Hardv et Iittlewood  Contribution to the arithmefic theory of series. Proceedings of the
London Mathematical Soctety, Ser 2, Vol 11, part 6, 1912

¢ Neder, Abschatzungen fur die Abledungen ewner 1eellen Funklion eines 1eellen Arguments.
Mathematicche Zeitschnft T 31, 1930

” Kolmogoroff, { ne gineralisation de lincgalite de M J Hadamard entre les bor nes supérieures
des derwvees successives d une fonction. Comptes rendus, T. 207, 1938, p 764.
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précisé notre résultat. Daus la relation définitive qu'il obtient le facteur expo-
nentiel 16(2e)* est remplacé par une constante inférieure i : pour toutes les

valeurs de » et k. Sa méthode parait étre essentiellement différente de celle que
nous avons suivie.

2. Soit f(x) une fonction de la variable réelle x, possédant une dérivée
n-idme bornée dans l'intervalle [0, 1]. Désignons par M,, MM, ..., M,, la suite

des maxima de la fonction et de ses dérivées dans l'intervalle considéré:
max | f(x)| = M,, max|f (x)]= M,, ..., max |f®(x)| = M,.

Soit Pu—i(x) le polynome de meilleure approximation! de degré n» — 1 de
f(x) dans notre intervalle, c’est-i-dire le polynome qui s'écarte le moins de f(x)
sur le segment fermé [0, 1!. On sait que la différence f(x) — Pu—i(z) atteint le
maximum de sa valeur absolue avec des signes alternés en n + 1 points de
I'intervalle et, par conséquent, cette différence s'annule n fois au moins dans ce
méme intervalle. En remarquant que le polynome indentiquement égal & zéro
g'écarte de MM, de la fonction f(r), on trouve

an—l(x)l = ZMO.
Posons
S (@) = Pny(x) + Bu (),

et dérivons % fois (k < n) les deux membres, on a

SU (@)= PR (z) + RY, (z),
IO @)| < PE, (@) + | REL, (=)].

D’aprés ce qu'on vient de voir P, (x) peut étre considéré comme polynome

d’interpolation de Lagrange de la fonction f(r) dans lintervalle [o,1]. On
en déduit, par suite d'une évaluation connue de la dérivée k-iéme du reste,

M,

1B @ < Zh

n—1

! Voir pour ce qui concerne les propriétés des polynomes de la meilleure approximation:
De la Vallée Poussin, Lecons sur U'approrimation des fonctions d'une variable réelle, p. 74 et suiv.
S. Bernstein, Lecons sur les propriétés extrémales et la meilleure approrimation des fonctions ana-
lytiques \Collection Borel).
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3. Pour avoir une borne supérieure de P (x) nous utiliserons les impor-
tantes relations de Markoff et Bernstein qui donnent le maximum de la dérivée
d'ordre % d'un polynome de dégré »n sur un segment.! Soit P,(x) un polynome
de dégré n. Si le module maximum de ce polynome sur un segment de longueur
2h est égal & M on a alors aux extrémités de cet intervalle (et aussi dans tout
I'intervalle)

En(n+k—1) k!
(1) | PY ()] =< ilk)(;"?; k)l “(1‘;,5; M,

tandis qu'au milieu de l'intervalle on a les inégalités

@ | P = 2T S,

22220 (n + p—1)!
2P (n — p)!

(2') | P3P ()| = M.

Observons ici qu'il résulte de ces relations que l'ordre du module de la
dérivée d'un polynome est plus grand aux extrémités de l'intervalle qu'en un
point intérieur, on trouve, en effet, qu'aux extrémités la croissance du module
de la dérivée K-iéme peut étre de l'ordre de »*%, tandis qu'au milien de Il'inter-
valle elle n'est que de l'ordre de »n*. Cette distinction entre l'intervalle ouvert

et l'intervalle fermé se retrouvera a plusieurs reprises dans la suite de ce travail.
4. Les inégalités (1) donnent

g 2n—1)(n+ k—2)! k!
IH:-](”/')'S (n—k—1)! (24)! 2 M,,

pour toute valeur de x dans l'intervalle fermé [o, 1], et finalement on trouve

(3) 1% @)] < 22+ (p—1)(n + k—2)! k! M+ M,

"""" (m—k—1)! (2k)! (n—R)

pour o=z <1, 0<k<mn.

1 Ces importantes incgalités ont éte déduites des recherches sur les polynomes extrémales par
des considerations assez delicates. Voir S. Bernstein Legons sur les proprictes extrémales ... p. 28
et suiv. Comme 1'a montré M. Montel on peut obtenir des inégalités analogues, qui, bien qu'étant
moins precises, suftisent cependant pour notre but, par des considerations plus simples de la théorie
des fonctions. Voir P. Montel Sur les polynomes d'approrimation, Bulletin de la société mathé-
matique de France t. 46, 1918.

41—3932. Acta mathematica. 71. Tmprimé le 1 novembre 1939.
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Simplifions I'expression des coefficients de M, et M, dans le second membre
de l'inégalité précédente.

On a
mM—1)n+Ek—2)<(n+k—1)!
(n+E—1) _ o
n—k—1)!
on a aussi
—k+ L
K<Vaomktt'he 12
(2k)! > Von (2 kprtthe2t
! n!
nin—r1)...n—k+1) ”,‘(I__}) (1~—k 1)
n n
Varn +§e’"”> i g—n
por:
et finalement la relation (3) devient
2k M n
(4) Mk<2%c—k—e"Mo+—n—n'%-

Considérons maintenant la fonction f|(x) = f(eax) ol a est compris entre o
et 1. Cette fonction est encore dérivable sur le segment [0, 1] et on a

SV (@) =atfP(ax), fI(x)=a"f"(azx),
et I'application de l'inégalité (4) a la fonction f;(x) donne

M,e"ar—*
hu—-k -

2k
(s) Mk<2%e"a“"Mo+

Cherchons le minimum du second membre pour les valeurs de @ comprises
entre o et 1.

On a évidemment

2k —k 2 on—k
M < 4 max (l«efa AIQ, léig_ .
K nnk

Or des deux fonctions de « qui figurent au second membre de l'inégalité précé-
dente, la premiére est décroissante et la seconde croissante et il est facile de voir,
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en représentant graphiquement ces deux fonctions, qu'on obtiendra la meilleure
expression pour le second membre en donnant a @ la valeur correspondant au
point d'intersection, dans le cas ou cette valeur appartient a lintervalle (o, 1],
ou bien, en posant a =1 dans la premiére fonction, si la valeur correspondante
au point d'intersection est en déhors de l'intervalle, on trouve ainsi

n2k
M, < 4 Ty M, a"‘",
ou

1

——m. [1 nn-‘rk}'!’o_ n .
a = min P\ Jk en—4 M,

(z’f)" >
k e

et comme le second membre est une fonction décroissante de a, on trouve

Comme, pour 1 <k <mn,

n2k
Mk < 4“’;k—ekMoa.—k,

avec
1

e¢=min | I (n" Mo);]
"\e" M, ’

ce qui peut également s'écrire

nt
avec
1
p=max 1 (252) ] -
§ = ma e d,) |
1 10
= Monn ¢ max [(n" Mye—")', M, ”]
1 1 1
< ll[onn ¢ max [(n! M), M, "],
car

n! >ute ",

D'ot l'on tire finalement
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k

n\k -5k
< 2) o2t 2,

M, designant la plus grande des deux quantités M, et M,n!.

Nous avons supposé que lintervalle de définition de la fonction avait la
longueur 1, il est facile d'obtenir une inégalité valable pour un intervalle de
longueur quelconque ¢ en considérant la fonction f(d.r) dans l'intervalle (o, 1);

on trouve
k

n\* o ,_EM n
M < (~) e*M, ™M,

© SRR
M’ = max (M., Myn!d—".

En particulier, si la fonction f(x) est définie sur un intervalle de longueur
infinie, on a

k kK
(7) M < 4e2* (Z) M} My,

M,, M,, M, désignant cette fois-ci les bornes supérieures de |f(x)], | /¥ (x)] et

™ ().

5. On obtient des inégalités analogues, valables pour le milieu du segment,
en partant des relations correspondantes pour les polynomes. Soit, en effet, f(x)
une fonction possédant une dérivée d'ordre » dans un intervalle de longueur 2.

Posons encore

f(x) = Pn(x) + Rn(x),

P,(x) étant le polynome de meilleure approximation de degré » de la fonction
f(x) dans l'intervalle considéré. On aura, en particulier, au milieu du segment

o7+ )| < | PR+ (@)]| + | R (2) |

or, en vertu des relations de Bernstein et Markoff, on a

222 (n+p)! (2n+1)
2 ) —
| PertD) (z)| < (n—p)! 2 M,
et comme
+ p)!
{Z——;}—)))!=(n+p)(” +p—1)...(n—p+1)

n—1 .2
=(n + p)n?r H(x - ;) < 2nlP

k=1
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on a finalement
|P(n2p+1) (-'”)I < 22p+4 241 Mo;
comme, d’autre part,
M, M, et
(n—2p)! ~av2p2

| RE#+ (2)] <

on trouve donc finalement, pour le milieu du segment

Mne”

|f(2p+l) (x)l < 2‘217-!-4 n?p-&-l MO + ,;n:ﬁ:i'

La méme inégalité a d'ailleurs aussi lieu pour la dérivée d'ordre 2p, comme on
le voit par un calcul analogue, done

M, e

| /% ()] < 2**39n* M, + A o<k<m)

d'ou l'on tire, comme dans le cas du segment fermsé,

1% k+3 ,k —k ne"a" <
z)| < 2¢*3n* Mya=* + = et 0o=a<1),

|/®(x)] < 2 max (2"*3 nt My a—*, e S

[0 @) < 2"k Mya—*,

1
— win [, (2“2?3" M, e~"\n
Q= N Mﬂ

ol

et finalement
k

(8) |/® (@)] < 16(z e M, » M™

avec
M, = max (M,, M, n!).

De méme, on trouvera, dans le cas d'un intervalle de longueur 24, au

milien de l'intervalle
k k

(9) If® ()] < 16 (2 e} M, ™M™
avec
M’ = max (M,, Myn! ™).

En particulier, si la fonction est définie sur tout I'axe réel, on en déduit, en
considérant un intervalle de longueur 2 d autour du point d'abscisse z, quon a
alors pour toute valeur de %
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k

k
If® @)| < 16(z e M, ™= Mm

et, en faisant tendre J vers l'infini, on trouve finalement

k k
(10) /B @) < 16(ef M, " Mm  (—oo <z <+ 00)

ou M; est maintenant la borne supérieure de |/ (z)|.

6. Résumons les résultats obtenus!

Théoréme. Soit f(x) une fonction n fois dérivable définie sur un intervalle
Jermé I de longueur 8, et soit

IS =M, [|f"(x)]<Ma;

on a pour toute valewr de x de Uintervalle I et lorsque o <k <mn

k _k K
(11) | /8 (x)] < 4€** (;:) DIOI " Mpt,
tandis qwau miliew de Uintervalle on a:
kK
(12) L/ @)] < 16(z ) 21, "= M7,

avec
M; = max (M., Myn! §—),

d désignant la longuewr de Uintervalle.

En particulier, si la fonction est définie sur un demi-axe, on a
n\F, 1-% k
(13) |ﬂ*>(x)|<4e2k(7c) M, "M,*, (0<z< + ),

et, dans le cas o la fonction est définie sur tout Vaxe, on a

k k
(14) | /% ()| < 16 (2} 3L, n DL,».

M, et M, désignent respectivement, dans les deux derniéres relations, les
bornes supérieures de |f(z)| et de |/ (x)].

! Voir Gorny, Comptes rendus, 206, 1938, p. 1245 et 1872 et H. Cartan, Comptes rendus 208,
1939, P. 416, I'énoncé donné ici est, & la valeur des costantes pres, celni de M. Cartan.
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CHAPITRE II.

Application des inégalités précédentes a I'étude des classes de fonctions
indéfiniment dérivables.

1. Considérons lensemble de fonctions de la variable réelle « définies et
indéfiniment dérivables dans lintervalle fermé a, b] et y satisfaisant aux limi-
tations

| f ™ (x)] < ¢"ma, mn=o0,1,2,..),

my étant une suite de nombres positifs et ¢ une constante indépendante de n.
Un tel ensemble de fonctions indéfiniment dérivables sera dit Classc {m,} de fone-
tions. Comme exemples de telles classes citons la classe des fonctions analytiques
sur le segment fermé [«, ', quon obtiendra en posant m, = n! ou bien les
classes de fonctions quasi analytiques de MM Denjoy et Carleman, etc

Parmi les applications que les inégalités trouvées dans le chapitre précédent
sont susceptibles de fournir, il 3 a dabord lieu de mentionner la réponse a la
question suivante

Quelle est la condition, nécessaire et suffisante, pour que deux classes de
fonctions indéfiniment dérivables {m,} et {m,} <oient identiques, c est a dire pour
que toute fonction d une des classes appartienne également a 1l autre et inversement.

Dans ce qui suit nous répondons a cette question dans le cas le plus
simple, ou lintervalle de définition de la classe comprend tout 'axe réel’.

Cette condition peut s énoncer de la maniére swuivante

La condition nécéssaire et suffisante pour que les classes {m,} et {m;} soient
n

. . , . m _ o
identiques est qu'on ait 0 < « <l “',' < B <%, m, et m, étant les termes des
’"

plus grandes suites dont le logarithme est convexe et qui sont inférieures aux
termes des suites mi, et mn

Le fait que cette condition est nécessaire a été établi par M Mandelbrojt;

! Signalons a ce propos que dans plusieurs Notes recentes aux ¢ R .t 208, 1939 MM.
Mandelbrojt et H. Cartan, en se basant sur les inegalites developpees au chapitre precedent, ont
réussi a donner une reponse complete a cette question dans le cas d un intervalle tin1, ouvert ou
ferme Au lieu des suites dont le logarithme est convexe 7, et 7, deduites de la consideration
du polygone de Newton, dont 1l sera question plu~ tard, on fait 1c1 intcrsemr d autres suites 1 ée-
tifices dont la dctfinition est d ailleurs (galement due a M Mandelbrojt Voir par exemple 1 ouvrage
Sertes de Fourio et classes quasi analyliques de fonctions p 95 et suiv et La reqularisafion des
Jonctions  Hermann, Paris 1938
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nous en donnons ici une nouvelle démonstration, qui présente, croyons nous,
un certain intérét vu le nouveau lemme que nous employons a cet effet.

Nous rappelons dans ce qui suit la définition des suites m, et i, 4 l'aide
du polygone de Newton.

La suffisance de la condition précédente résulte sans difficulté des inégalités
du chapitre précédent, tandis que pour montrer que cette condition est également
nécessaire, nous nous servons du lemme suivant, qui constitue la réciproque de
ces inégalités-

Quelle que soit la suite An dont le logarithme est convexe, on peut déterminer une
Jonction f(x) indéfiniment dérivable sur tout Uaxe réel et satisfaisant aux limitations

Ap < max | " (x)] < ** 4,

¢ étant une constante numérique indépendante de la suite A,

L'inégalité (14) du chapitre I et sa réciproque caractérisent ainsi, d'une
maniére assez satisfaisante pour notre but, la suite des bornes supérieures des
modules des dérivées successives d'une fonction définie sur tout l'axe réel.

Une autre question qui est abordée dans ce chapitre est la suivante: le
produit de deux fonctions d'une classe }m,} appartient il encore & cette méme
classe? Tandis que la réponse est, comme nous le montrons, affirmative dans le
cas d'un intervalle infini, il n'en est plus de méme, en général, dans le cas d'un

intervalle de longueur finie.

2. Rappelons d'abord la définition du polygone de Newton attaché a une
suite'. Soit wg, #y, ..., Uy, ... une suite de termes, représentons graphiquement cette
suite dans le plan x Oy, en faisant correspondre au terme u, le point de
coordonnées (n, 1), et considérons une demi droite passant par le point A, (0, u,)
et orientée suivant la direction négative de Oy, faisons ensuite tourner notre droite
dans le sens positif autour du point .1, jusqu'a sa premiére rencontre avec un
autre point de la suite. Soit A4, le dernier point de la suite qui se trouve alors
sur la demi-droite; le segment .1,.1, formera le premier c6té du polygone de
Newton. Faisons ensuite tourner la demi-droite dans le méme sens autour de
4, jusqu'a sa rencontre suivante avec les points de la suite, nous obtiendrons
ainsi le segment .1, .4, qui formera le deuxieme cOté du polygone, et ainsi de

suite ... Nous obtenons ainsi le polygone de Newton de la suite

Uy, Uy, sy oo oo Uny o oo

! Voir Hadamard, Journal de Mathematiques 1893, p. 174.
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Désignons par u, l'ordonnée, correspondant a l'abscisse », de la ligne poly-
gonale obtenue; on a évidemment u, =< un, les u, formant la plus grande suite
convere dont les termes sont inférieures aux termes de la suite un.

On voit d’ailleurs qu'on a

u, = borne
k=0, 1=0

I=<n)

(@ﬁzt_ilffz«ﬂ)
k+1

kun— + lungr

(dans le cas ou % et ! sont nuls simultanément on remplacera F Tl

par u,.) .

Il en résulte que si u, et t, sont deux suites telles que u, < v, on a aussi
4, < tn, et que la suite de Newton de la suite na + u; ou « est une constante,
est égale & na + u,. On a en effet

[k[n —Na+ un—y] +1Ujn+ ke + u,.+k]] _

(ne + uy) = borne
L=0,120

E+1

Fun—1 + l“ﬂ+k)
k+1

= borne (na +

=na + borne (’Y'ﬁ"—"i __-:— 5“”«") =na + Up.

Soit mainténant {A,} une suite de nombres positifs; considérons la suite
{log Ax} et la suite de Newton correspondante (log 4,), et soit A, = eloe 4a)';
nous appellerons {1,} la suite rectifiée de la suite {4,}.

On a évidemment, d'aprés ce qui préceéde,

! L3
A, = borne (Af‘ﬂ A"‘.i'l), k=0, 0<l=<n)
et " A"=c"A4,, ¢ ne dépendant pas de n, et si A, < B,, on a aussi A, < B,

Il est mainténant facile de voir que la proposition (14) du chapitre I peut
s'énoncer de la maniére suivante:

Soit f(x) une fonction indéfiniment dérivable sur tout Uare (—= < x < + »),
supposons qu’on ait powr la fonction et ses dérivées les inégalités | f™ (x)| < Ma

(n=0,1,2,...), on a alors nécessairement, pour tout k entier positif:
(1) /9 ()] < & My

ott. My désigne la suite rectifiée de la suite M, et ot ¢ est une constante numérique
(e < 100).
42—3932. Acta mathematica. 71. Imprimé le 1 novembre 1939,
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3. Nous allons mainténant démontrer le théoréme suivant:

Théoréme. Une condition nécessaire et suffisante pour que deux classes {ma}
et {m,} de fonctions, définies pour toutes les valeurs positives ou megatives de x,
(—oo <<+ =), soient équiralentes est que l'on ait

n
(2) o<a<l/@'<ﬂ<oo.

My

Démonstration. La condition est suffisante. Soit, en effet, f(x) une fonction
appartenant & la classe {m,.}, montrons que, sous I'hypothése s, < §"n, cette
fonction appartient également a la classe {m,}.

M, désignant la borne supérieure de |f™ («)] pour (— <z <+ ), on a,

d’'aprés la relation (1), les propriétés signalés des suites rectifiées et en tenant
compte de la définition des classes {m,} et {mn}

/™ (@) < My < ¢ My, < " a”ma
= (ca)*ma < (caf)*m, < (caf)® my,
¢, @ et B étant des constantes. La fonction f(x) appartient donc aussi a la classe
{mn}, ce qui prouve que la condition est suffisante.

4. La condition est nécessaire. Démontrons la proposition suivante:

Soit Ay, une suite de termes dont le logarithme est convexe, on peut construire
une fonction F'(x) indéfiviment dérivable pour toutes les valeurs de . et telle guw'on ait
(3) An < max | F™ (z)]| < 10.4". 4n
quel que soit n = o.

La suite log A, étant convexe, on a, pour tout ¥ =1,

Ap < Ay Apna,
ce qui peut aussi s'écrire

Arer A ,
Ar  Apa

s qe L A . .
c'est-a-dire que la suite ;1“ est croissante. Nous supposons pour fixer les idées
E

Arnr . R . . . .
que — est supérieur & un, ce qui est sans importance dans la démonstration
k

qui suit.
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La suite A{;” tend pour ¥ augmentant indéfiniment vers une limite finie ou
k

infinie. Supposons d’abord que

. Arr
li =
e Ap *

?

et considérons la suite
1, 2, 4, ..., 2% 2t

Envisageons les termes de la suite croissante %ﬂ, qui se trouvent dans un
k

des intervalles
(1,2, [2,4), ..., [2% 2", ...

Soit [2", 2™*!] le premier de ces intervalles contenant les termes

é ‘il_z e __A"_-
Ao Al Anl—l
¢'est-a-dire
A A A
gl g < ™ < omotl
2 Ao Ax An,-—] 2

Soit de méme [2™, 2™*!] l'intervalle suivant contenant les termes

An,-l-l . An,
An. An,-—l

-----------

[27k, 2™+1] le k-iéme intervalle contenant les termes

Ank+l Ank-m A”k+]
, 3 o b ey e

A'nk Ank+l Ank+ 1—1

et ainsi de suite.

On a finalement la disposition suivante:

lSz”‘SﬁSé—’S- _<_-—41‘—»Sz"°+‘52"ISA”'+IS--- A,., <
0 Al A'h—'l n, An,—-l
A A
Comtl <ol <... < oM < M M < mtl <...
Any Angyy—1

avec
I<p<m<- - <m<--
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Posons
1

Ay = (A"k +1)-k+l_”k
on a

13
— Bet1— Pk __ A Sk ]
A"k+1 - A"k 'lk A"p H )'l

l=p
Comme on a, d'autre part,
A"k+l _ A"k+1 A”I:+l —1 A”k“
= . ,
Ame  Amyy—1 Angyy—2 An,
on trouve:
A"k+1 < Hlng+1) (n —n)
2"k (nk+1—-nk) < T =2 k k+1 k ,
* N
done:
2"’: < lk < 21lk+l’
et si
N =N = Neyr, |
on a

o (n—mp) < 4n < 2(ng+1) (n—mny) ,
i3

c'est-a-dire:
Ank om (n—my) < A, =< A,.kz("k“””"‘k’.

Considérons a présent la fonction périodique

cos A x
fole) = An, T

k

On a:

max | f{¥ (2)| = 4a,, max |f£""+‘)(a:)| = Angyy-

Soit, pour 7 < n < ng4,

AW = max | f () |;
on trouve
AR = A 137,
d'ot l'on tire
Ang 2 (n—mnp) < Aﬁ::) < A“k 2(m+1) (n—nk),

- AL") - 2(ng+1) (n—np)
"‘I_‘ 2 (n—ny) ’ -
A(k)
n

IS —/—<2" "M 2"
Aq

(p<k).
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Considérons maintenant la fonction

@® o An l
f@) =D hil) =20

nE
k=0 k=0 llc

Envisageons une dérivée d'ordre pair =, nx <n <mpy;, pour fixer les idées, et
posons

_ 4. %08 Y 4. cos At | 4. °os b , < 4. cos Az
f (=) = "k Ak "E+1 Atk + Z pT gnp Z "p );zp
k k+1 p=0 P p=i+12

=f1@) + 1) + Fy(2) + Fy(2).

Pour x =0 tous les termes sont du méme signe et atteignent le maximum de
leur module, de méme que leurs dérivées d ordre pair.
Comme on vient de voir, on a

Ay < max | T (x)] < 2" 4,;

d’autre part '
n—n
max | f7 " (z)| = Anyp A ¥ =
Anb“ AT e+ (np+1) (npy—n) +np+1) (n—np )
=3 An A" M A’k‘l’l S Anz k k+1 1 3 k41 =A” .

(en tenant compte de la relation A < 2"+! < A;4,).
On trouve de méme

—1 =1
max | FM(x)| = ) 4n, 4 P < D) An, L1 pptaT ek T

et

p=0 p.—_o
A—1
=S4, A F<kd,2" <n2"A,.
k
p=0

Finalement

max | F{ (z)| = D) An, 4277
p=k+2

0
— N—Rg 2Mk41 ™" 9Bk 42 Rkt Ap—fp—i 2*Tp
= An b Ay ASY N .2 LT =
p=k+2

o — A\ 1T (A \ b2 et Ay \"p 1
. n—npy [~k it R i
= Z(Anklk )(lp) ( R ) ( lp) ’

p=k+3
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et il résulte d'autre part des relations 2"p < 1, < 2"*! que tous les rapports
b Aens Ap—

9 e sy

L' A& &

-y

sont inférieurs & --

N

On en déduit

| FP (@)| < 2 4n D)

p=k+2

I
» 4
2"p—1—" =2"Ad,.

Finalement on tire de ce qui précede
A < max | f (z)] < max | f? (2)| + max |f3 (x)| + max | F,(x)| + max | Fy(z)],
Ap < max|f"(x)] <24, + n2" 4, + 2.2" Ay < (3 + n) 2" 4,

ou n est nombre pair, l'inégalité & droite étant d’'ailleurs vraie pour toutes les
valeurs de n.

On voit de la méme maniére que la fonction

< sin Ay z
U4 (.’I?) = Z A"L Wﬁin:
k=0

k

satisfait pour les valeurs impaires de » aux mémes inégalités.

Comme d’'autre part, pour x =o0, la dérivée d'ordre n d'une des fonctions
est toujours nulle, la dérivée du méme ordre de l'autre atteignant alors son
maximum, on trouve facilement qu'en posant,

F(z) = f(x) + (),

Ap < max | F" (x)| < 10.4" A,

on aura

et notre proposition est démontrée.
Agsr

A

Examinons maintenant encore rapidement le cas ot tend vers une
limite finie A.

Soient encore, comme précédemment,

[2%) 2"0-“}3 [Zn‘a 2n1+1]’ LS } [an) 2"p+l}
les intervalles, en nombre fini, contenant des termes de la suite AZ"’ le nombre
k
A faisant partie du dernier intervalle. On a

1

m-—n,
A = lim Aver lim (A-"i) ? 2% < ) < 2mptl,

o Ag m=wo Anp ’
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Comme dans le raisonnement ci-dessus, on voit que la fonction

, L coshx & sin Ax
Fla)= 2 4n T 2, An, At
k=0 k k=0 { 2

ol, comme précédemment,
1

n
A"k+l k+17"k
11— -

A,

b

pour o =k < p, et A, = A, satisfait aux conditions de I'énoncé. Ce qui démontre
notre proposition dans tous les cas;

Il est maintenant facile de voir que la condition

n
5
o<a<l/f'?<ﬂ<oo

Mp

est nécessaire pour que les deux classes {m,} et {m,} soient identiques.
Le logarithme de la suite i, est, en effet, convexe, nous pouvons done
construire une fonction w(r) satisfaisant aux inégalités

(4) n < max | ™ (2)] < 10.4" n.

Cette fonction devant également appartenir & la classe {mn}, donc aussi & la
classe {m,}, d’aprés (4). On aura donc
M < B" i,

ou B est une constante, d'ou l'on tire

et, d'une maniére analogue, on voit qu'on a aussi
n
tin 1
—<-<o,
me @

La condition est donc bien mnécessaire.

5. Une conséquence immédiate de la relation (1) est le théoréme suivant:

Théoréme. Le produit de deux fonctions f(x) et g(x), définies pour toutes les
valeurs réelles de x et appartenant @ une classe {mn}, appartient également a cette
méme classe.
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En effet, soit h(x)=f(x)g(x), on a

A (x) = ﬁ\‘ Ck £ (x) g(n—i) (),

d’oll, & cause des relations

|f(k) (x)l < ko, 'g(n—k) (x)l < ¢t ,
S l"E 5 E 1_.k_ ,
| @) < S\ Chctme ™ mi e’ m—*mimn ™ <(c+ ) mgma.
k=0

La fonction & (z) appartient donc effectivement & la classe {ma}.

On voit de la méme maniére comme conséquence des relations (13) Chap. I
que, plus généralement, le product de deux fonctions f(x) et g(z) de la classe {ma},
définie sur la dem: drotte (0, =) appartient encare @ cette classe. On voit, en effet,
comme précédemment, que h(x) = f(x)g(x) satisfait aux inégalités:

) AL N Y B Sl
n —_ al n n n n n
|2 ()| < kz‘oo"(k) Emg ™ mp (“ — k) crmimn "<

n k
< (c + C’)” ”10 mp Z CL" (?’%) (n i k) y

or k=0
n\* . n \~*
> i <e
(k)<"’ ! (n—k) ’

| k™ (z)| < (2 )" (c + ¢)* mg Mma,

d’ou
ce qui démontre la proposition.

6. Signalons encore comme conséquence immédiate de l'inégalité (1) et de
la proposition réciproque (3) 1'énoncé suivant:

Une condition nécessaire et suffisante powr que sur tout Uaxe réel la dérivée de
toute fonction de la classe {m,} appartienne aussi @ cette classe est que Uon ait

La condition est suffisante. On a alors, en effet, pour la dérivée f'(x) d'une
fonction f(x) de la classe {ma.}, d'aprés l'inégalité (1),

d"f"(z)

dz*

< A iy < at g < A mg,

ce qui prouve que f (x) appartient & la classe {ma}.
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La condition est nécessaire. Si l'on considére, en effet, la fonction w(x)
définie précédemment, on a, en appliquant encore l'inégalité (1), w’(r) devant
appartenir a la classe {ma},

aitns < max |0t (z)| < ¢ titn,

ce qui prouve notre proposition.

7. Nous avons vu ci-dessus que le produit de deux fonctions d'une classe
{m,}, définie sur toute la droite ou méme sur une demi-droite, appartient encore
4 cette méme classe Ceci nest plus vrai, en général, pour les classes de fonctions
définies sur un intervalle fermé fini quelconque

En effet, soit P,(r) un polinome de degré n Ce polynome appartient sur
tout segment fini a la classe {n,} définie de la maniére suivante.

M= 1, pour O=hk=mn, m=o0, si k>h

Or le polynome de degré 2 n [P, (x)]* n'appartient évidemment pas i la classe {ny}.
On peut d'ailleurs déterminer également dautres classes moins triviales
repondant au méme but, comme le montre I exemple suivant

Considérons la fonction f{x} définie, dans 1 intervalle [0, 1], par la série entidre

m
xm

S(z) -m§‘ o
Les coefficients étant positifs, la fonction f(r), ainsi que ses dérivées, atteignent
leurs maxima au point x =1. Cette fonction appartient a la classe {m.} définie
de la maniére suivante: pour A < n =< (& + 1)'*! posons m, = (k + )th+DM*L
sauf pour n= 24' ol l'on posera m,=1. On a, en effet, quel que soit n,
F<n={kh+ )}

foige) = 3, WP ) (k] G (e plen et

k4 p)rtptte . ik + p)k TP
pt ] =1 (kb + p)

® (L (k+p) R+1)p+1
- E(k+1/E+ (+p)tto o™
& +1) + (& + pyeeoEe

r-2

< (k+ p)pteenttiy drr<z(k+ ) LA ah
p 1

433932, Acta mathematica. 71. Imprimé le 1 novembre 1939,
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Si n=(k + 1}**), on a d'ailleurs

(& + 1)E+1]1

(n) o S S
f@ () > (k + 1)+ 0FFT

— E+1
> o (k + ety

d’autre part, pour » = 2 k*, on voit facilement que

. R+p) 24k ©
(k + p)ter Z(k + p)k+p) [2&F — (E+R)k+P—1]

(L +p)([+1)0kT§:

__174-]
(p+1) *<10 s8i k>1.
1

S <

WL

1

I

» p=1

<

M s

il

4

La fonction f(x) appartient donc bien & la classe {m.}. Mais on constate
aisément que la fonction g¢(x) =[f(x)]®* n'appartient pas a cette classe. On a,

en effet,
27

y(-z,.)(l) — Z (‘ﬁ,,f‘”(l)f(?"—”(l) > {f(n)([)]z;
k=0

done, pour n =%, (k=1,2,...), on a

g™ (1) > ¢—2n g2 k-1,
d'ot
2n

Lim Vg™ (1) =0, n=F, k=1,2,...)

k=wo
Ce qui montre que la fonction g (x) n’appartient pas a la classe {.} précédemment
définie. Contrairement donc & ce qui a lieu pour les classes de fonctions définies
sur tout l'axe, ou sur un demiaxe, le produit de deux fonctions d'une classe

définie sur un intervalle fermé n'appartient pas, en général, a cette classe.

8. Nous avons toutefois méme dans le cas d'un intervalle fermé fini la
proposition suivante:

Théoréme. Soit {m.} une classe de fonctions définie sur un segment fermé fing,
désignons par {my} le plus grand des deux quantités m, et n\, c'est-a-dire
mp = max (my,, n!);

le produit de deux fonctions de la classe {m,} appartient a la classe {my}.

On en déduit, en particulier, le corolaire suivant:

St la classe {ma} de fonctions, définies sur un segment fermé fini, est telle qu’elle
contient toutes les fonctions analytiques sur ce segment, le produit de deux fonctions
de la classe appartient encore i cette méme classe.
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La démonstration résulte de l'inégalité (11) Chap. I

IS,
|f‘k (‘l')l < 4(,M (2’) J[; n JI;,n

avec
M, = max (M,, Myn'd—").

8i I'on pose h(z)=f(x)g(x), les fonctions f(x) et g (z) appartenant i la classe {ma}:

I/ @) = etma, |9 ()] = o™ ma,

d'ou:
1 @) = 3 L @) g (o)
k=0
i k n—k
Yo2n w " - ” ’n—
< 4Amymye ,;,(" (lc) (" —k) vt
en posant
my, = max (mn, n!), A = max (1, myd™"),

on a finalement, en tenant compte de

n k —t n n—k
(Ir) <€ (11—1‘) <

| (z)] < 4 A ™ (c + ¢) mgmi,

ce qui démontre la proposition énoncée.

Ou pourrait, d'une maniére analogue', énoncer une proposition concernant
le produit de deux fonctions d'une classe {m,} définie dans un intervalle ouvert,
en donnant une définition convenable d'une telle classe et en utilisant les
inégalités valables pour le segment ouvert.

CHAPITRE IIL

Sur les fonctions données par l'intégrale de Stieltjés:

+ o
(,z:th

—

1. Nous allons dans ce chapitre énoncer quelques propositions sur une fa-
mille particuliére de fonctions, définies sur tout I'axe réel, notamment celles qui

! Voir H. Cartan, Comptes rendus 208, 1939, p. 416.
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+®
sont représentables par l'intégrale de Stieltjés convergente f éxtd v(t), ou V(¢
est une fonction croissante et bornée de la variable f{(—o < t < + ). Chemin
faisant nous énoncerons également quelques propriétés des fonctions données par

@
certaines séries de la forme D «ue'/nc qui généralisent les séries de Fourier, les
1

an pouvant étre quelconques. Nous démontrons notamment la proposition suivante:
St f(x), représentable swr tout Uaxe par Uintégrale de Stieltjes convergente

f e*td ¥V (t), ot V(8) est une fonetion croissante et bornée, posséde une dérivée d'ordre

n de module infériewr a M, on a. quelle que soit @ > 0,

cM,

ot ¢ = c(a) est une constante indépendante de n.
Démonstration. Soit ¢ une quantité réelle et posons

Pn (3'/', 6) = ﬁ‘_-sf':(,_x_)’

dnf(x) désignant la différence d'ordre » de la fonction f(z). Nous supposons
pour plus de généralité que V(f) est A variation bornée. Omn a:

n

A fla) = 3 (= ¥ Ca Sl + (= B8]

On a done

(1) @n (i, 0) = J efm(f""a“ ‘)"d V(1).

Et comme, par hypothése, on a
[/ ()] < M,
il en résulte, évidemment, qu'on a aussi
| @n(x, 8)| < M. V2,
cette relation pouvant d'ailleurs s'écrire

|¢n($: J)I = Mﬁ)
si la fonction f(x) est réelle.
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-—t'za__‘

Multiplions par i les deux membres de (1) il vient, « étant un nombre

positif,

—-xza_l . :!z ltd____l —~1:a___l
@an(z, 8) ———— f - av

> i (t+a)d n
='—'I— eill(_(’_‘_—d_l) dV(t+a)

D’ot I'on déduit, en intégrant par parties et en posant

Vi(t) = r a("'wd_—!)" avie,

t

+ o

A ,6)(6:-;15—')=fem V,(t)dt

—

Il est facile de voir que V,(f) est une fonction absolument intégrable, on a, en

.effet, V(f) désignant la variation totale de V,

t+ta

()]hﬂﬂ—( (Pt +a)— P (8)

fnumws@wau+@—mmu

[f dt—fl/(tdt] )f(?(b+z) P(a+)ds,

ata

ou la différence V(b + 7)— V(a + 7) tend uniformément vers o lorsque a et &

augmentent indéfiniment.
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e—iax —1

En multipliant une deuxiéme fois par ——z ' " trouve, d'une maniére
analogue,
+ o
e—i:ra —_1 2 .
(2) Wn(.’t,d)'( —2:’1; ) :fe”'t W(t1a)d)dt)
avec B
+ o
(3 Witad= [ V&8
t+a E+a

Jsf e yere

Comme pour la fonction V,(f), on constate encore que l'intégrale
+ o
f|wu, o, )| dt

existe; on a, en effet,

le(t.a,a)ldt<fb(ﬁmg)ldg)dt=f(bf+;vfl<§)ld§)dz,

a t 0 a+v

or, comme on vient de le voir, l'intégrale

b+t
fl vi(©)]dE

tend vers O si a et b augmentent indéfiniment; W (f) est d'ailleurs une fonction
continue de t.

Comme d'autre part, la fonction

on peut appliquer le théoréme d’inversion de Fourier i la relation (2) et on
trouve
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+ o

W (¢, a,d)———fcp..(.r 6)( —m!—_l) dz.

tr

—

D’oit

@) | Wt ad) “’j l(“’““.‘) ldx<AM,.a,

la constante A pouvant &tre 1 ou V2 suivant que la fonction f(z) est réelle
ou non.

Faisons maintenant tendre J vers o, en remarquant que

. edt—gp
m g =t
on tire de (3) et (4)
t+a Eta
(5) |fd§f't"dV(t) <2M,a.
¢ 3

2 Avant de poursuivre la démonstration du théoreme, signalons quelques
conséquences qu'on peut tirer de la relation (5) sur la nature de la fonction V (¢).
En intervertissant 1 ordre d intégration on trouve

t+a sta t+a t+2a
fdgj'z"dl’(z)=J (c—t)ed V(r)+j(t+ za—n)ed V()
t H t t+a

et en faisant le changement de variable =17+ «
u u+a
f('t —u+a)d V() + f(u +a—1)1"d V(2
la formule de la moyenne de Bonnet donne, d'autre part,

u [

aft”dV+afz"dV

uy "
u, et u, satisfaisant aux inégalités

u—a<yy<u<u,<u-ta
et d'aprés (5)
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“ uy
|ft”dV+f't"dV|<AM,.
Uy u

si I'on fait tendre a vers o, on trouve finalément

|V (% + 0)—V(u—o0)| < :‘;%e,

Enongons une conséquence de cette relation

n=-+o
Soit flz) = | ane'™n® avee
n=-—m

|4 — 2] >a>o0, s i¥k
une fonction possédant une dérivée d'ordre n bornée,

[/ (@)| < M.
On a Uévaluation suivante des coefficients

2 M,
< k=o0,1,2...
|ak| llkln ( )

on a donc pour la fonction et ses n — 2 premiéres dérivées

SO (@)= D ({An)* ame'*n®, k=o0,1,2,...8—2).

m=-—aw

Si, en particulier, cette fonction est indéfiniment dérivable on aura

Jae| < =
T (|

o
n

T (x) = max %

1

et quelle que soit k= o

+ o
SO@)=— 3 au(i b}t efn=.
n=-—w
3. Supposons maintenant que V' (f) est une fonction croissante de t, la rela-
tion (5) s'écrit alors

! Pour les series de Fourier on obtient ainsi 1'évaluation de M. Mandelbrojt.
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t+a
|f¢p(1)1,.dV <2M,«a
i—a
avec
pr)=r—t+a, si t—a=<z=<l{,
et
g(r)=t+a—z,  pour t<r<t+a,
la formule de la moyenne donne alors
t+a
Itol"fq>(1)dV<2M,.a, t—e<t,<t+a,
t—a

et en intégrant par parties, on en déduit:

t+a

f(V(z)-—-V(r—-—a))d'r< gI%fTE

t

Si l'on remplace ici ¢ par ¢t — a et en ajoutant la relation ainsi obtenue a la
précédente, on trouve

t+2a t+a M
V(r)dt—-fV(r—a)dz <4—|~l‘n3,
"1|
t+a t
avec
t—ae=7,<t+2a,
et il en résulte finalement
4CM,

Vit+a)— V()<

I

tﬂ

C étant une constante, indépendante de n. C'est la relation énoncée au début
de ce chapitre.

CHAPITRE 1V.

Sur la dérivabilité des fonctions d’'une variable réelle limites de suites
de fonctions analytiques.

1. Dans ce chapitre nous démontrons dabord quelques propositions
qui constituent la généralisation. aux suites de fonctions analytiques quel-

conques, des théorémes de MM. S. Bernstein et de la Vallée Poussin, sur la
44—3932. Acta mathematica 71. Imprnmé le 2 novembre 1939.
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dérivabilité des fonctions limites des suites dé polynomes ou d'expressions tri-
gonométriques.

Bien que la démonstration de ces généralisations puisse se déduire, sans
grandes difficultés, des résultats de M. S. Bernstein sur la meilleure approxima-
tion des fonctions analytiques par des polinomes, j'ai cependant préféré donner
une démonstration indépendante, qui pourrait présenter quelque utilité dans des
recherches analogues, la méthode suivie s'apparente d'ailleurs a celle dont s'eat
servi M. Montel dans sa démonstration des formules de S. Bernstein et Markoff
sur les dérivées des polynomes.!

Les propositions de ce chapitre peuvent étre considérablement précisées et
permettent, par exemple, de déterminer des limitations des dérivées successives
des fonctions limites. J'espere avoir un jour l'occasion d'y revenir.

Un autre théoreme démontré dans ce chapitre établit une relation entre les
zéros des fonctions analyvtiques de la suite donnée et la dérivabilité de la fone-
tion limite. L'approximation exigée, pour pouvoir affirmer l'existence des dérivées
de la fonction limite, est bien moindre lorsque les fonctions de la suite ne
s'annulent pas dans le voisinage du segment considéré, que dans le cas général.
La méthode suivie est ici inspirée de celle dont s’est servi M. Ostrowski, dans
un mémoire connu, pour des recherches d'une nature différente. (‘es questions
ont été, 4 ma connaissance, peu étudiées.®* On pourrait encore ici donner des
limitations des dérivées successives de la fonction limite et dire, par exemple,
dans quel cas cette fonction appartient a une classe donnée, disons, la classe des
fonctions analytiques. Je n'ai cependant pas développé ici ces questions d'uné
maniére systématique. '

2. Soit f(2) une fonction analytique holomorphe dans un domaine D con-
tenant dans son intérieur un segment de l'axe réel, que nous supposerons étre
le segment (—1, 1), par exemple. Supposons qu'on a dans ce domaine | f(2)|< M,
et sur le segment [—1, 1] |/ (r)] <m. Cousidérons la fonction /(z) harmonique
réguliére dans le domaine D et telle qu'on ait

! Dans cet ordre d'idées il y a lieu de signaler encore un théoréme de M. 8. Bernstein con-
cernant la derivabilite des fonctions limites des suites de fonctions entieres de degré fini. Voir
S. Bernstein. Lecons swr les proprictés extremales . ., p. 105.

? On peut cependant encore signaler des propositions d'une nature voisine de M. S. Bernstein,
Sur la distribution des zoyos des polynonus tendant vers une fonction continue positive sur un segment
donné. Journal de Mathematiques pures et appliquees g ieme serie, 8, 1929, p. 327.



Contribution A l'étude des fonctions dérivables d'une variable réelle. 347

h(z) = o0 sur le segment (—1, 1), h(2) =1 sur la frontiére de D.
La fonction sousharmonique

log | f(2)] — (1 — h(2) log m — h(z) log M

étant négative ou nulle sur la frontiére de D —d (d désignant le segment [—1, 1])
est négative dans tout ce domaine, on a done

|£(2)] < m'—r@ M
pour tout z€D.

On en tire par l'application de la formule de Cauchy

27l

y étant une cercle de rayon » autour du point x, entiérement contenue dans D,

max |f(2)] &! 1—h(z) Jfh(2)) Je1
(1) FATE] ERRE max (m - M) kL
Lorsque z tend vers un point du segment [— 1, 1] la fonction /i (7) tend vers o.
Nous allons donner une évaluation de l'ordre de cet infiniment petit.
Soit I/ une ellipse de foyers —1, 1, dont la somme des demi-axes est égale
& o et dont l'intérieur est entiérement contenu dans le domaine I). Considérons
la fonction harmonique ¢ (z)

__log Iz + V;’_:}I
- log o '

g(e)

” . . ’ . . . L .
la détermination étant choisie de maniére que le module de z + ) 22— 1 soit
supérieur a l'unité dans le domaine ./ doublement connexe dont la frontiére

est constituée par lellipse I et par le segment [—1, 1]. Dans ce domaine la
fonction g(z) est harmonique, et on a

g(z) =1 sur l'ellipse E, g(z) = o0 sur le segment d.
Comme dans 4 h(z) <1, on a donc sur la frontiére de o
h(z) <g(2)

et cette relation est valable dans tout le domaine 4.
Soit le cercle y de centre x entiérement contenu dans l'ellipse¢ E, ce quia
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lieu, par exemple, 8i rr <

2
g—1)?. , . .
(——-2—6——)—, nous allons déterminer une borne supérieure

de g(2) pour z sur le cercle y.

3. Supposons d'abord que z est un point intérieur du segment. Soit, pour
fixer les idées 0 =< x < 1, posons

1—z=ea, 1+x=8 o<es=s1=fg<2.

2b de lellipse de foyers — 1, 1 passant par le point d'affixe z, on trouve, ¢ dé-
signant l'angle arg (z — z):

2a=|z—1|+|z+1|=Va®+1*—2arcosp+ VE +1*+ 28rcos ¢
zal/l_zf;?w&(;s;(—p::r” +13V‘+ 28r co;sq) +r"

[+4
et, en supposant r < 2o’ ona

l2recosp—r?|<3re, |2rBcosg +rt|<3r8
et

2ra coscp—r’+ 278 cos«p+r’+ xSﬁ
2a 28 o?
2
<2+ 205
«

z2a<ea+f—

D’ou finalement
,J
a<1+ 10—

a

On a d’autre part

S
b=Va'—1< 205 + 100L<5r,
a® at a
done

at+b=|z+VL—-1|<1+ IO£
d’'ol l'inégalité
=
(2) (@ =losletVi—r]__10
log o alog ¢

Done, h(z) désignant la fonction harmonique égale & un sur la frontiére du do-
maine D et & o sur le segment [—1, 1], supposé intérieur & ce domaine, on a



Contribution 4 I'étude des fonctions dérivables d’une variable réelle. 349

sur le cercle y de rayon r(r < %) dont le centre x est un point intérieur du

segment (—1, 1)

(3) hig) < —=

" a log r

e désignant la distance du point d'abscisse z aux extrémités du segment et o la

demi-somme des axes de la plus grande ellipse entiérement contenue dans le
domaine D.

4. On peut trouver, d'une maniére analogue, une borne supérieure de la
fonction h(s) valable sur le segment fermé. Les notations étant les mémes, on a,

1
en supposant r < Py
2a=|z—1|+|z+1|<2+ 27,

b=Va—1=Vzr+rt<2Vy,
done

loglz+ V2 —1| _3Vr.
log o "~ logo

Donc sur tout cercle y de rayon » (r < iéa) dont le centre est un point du

segment fermé (—1, 1), on a

woVr
(1) hiz) < log o

5. Nous allons maintenant appliquer ces préliminaires & 1'étude de la déri-
vabilité d'une fonction d'une variable réelle donnée, sur le segment [—1, 1], par

une série absolument convergente de fonctions analytiques.
Considérons une série Zf,, (2) de fonctions analytiques, holomorphes dans

un domaine 1), contenant le segment [—1, 1. supposons que la série converge
uniformément et absolument sur ce segment vers une fonction F(x), et qu'en
outre, on a

|fu(2)] < M,, pour z€D et |fu(@)|<masi —1 =<1,

avec m, < 1 et tendant vers o et M, = 1. D'aprés (1), on aura
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max (m!—* MrE) 1
/8 ()] < ("rk - y —1<zx=<1, |lz—z|=r

Soit  un point intérieur de l'intervalle (—1, 1) on trouve, en tenant compte de
la relation (3),

,m:‘—lerr 10 1— le

1) N, A -,
1l < r* L (1 =]z logo "< "%

Posons dans cette relation, pour n assez grand

= _k
= T
l 10g ;r't:
on en déduit
i
(s) 7@ < (e 1m0 2]
n

Il en résulte la conséquence suivante

Théoréme I. La fonction F(r)= ), fu(x), ot les fonctions fu(x) et les quantités

ma et M, <ont defimes comme piécédemment, possédera en tout point wntériewr du
segment (—1, 1) une déivvée continue d'ordie k s la série

(o )
2 my | log
m

n

converge.

Par une transformation facile nous en déduisons le théoréme suivant:

Théoreme I'  Soit I, (2) une suite de fonctions analytiques, holomo pes dans
un domaine D, contenant le seqment [—1, 1]  Supposons que sur ce <cgment la surte
F,(x) converge vers la fonction F(r), et quw'on art

|Fo(2)| <D, st 2€D of |Iu(r) —F)|<mp si —1<z<1,

1
my et B, tendant 1ers 0 en deciovssant, si la serce

an (10 J[n+1)k
n g i



Contribution A 1'étude des fonctions dérivables d'une variable réelle. 351

converge la fonction F(x) possédera une dérivée continue d'ordre k en tout point inté-
rieur du segment (—1, 1).

Il suffirait, en effet, de considérer la série Z Ja(x) avee fu(2) = Fai:1(2) —

— F,(2), on a alors

ll"n-H(Z) - l"n(g)l =M, + Mn+1 < 2Mn+17
[ Fuir(e)— Fal)| = | Fusi(x) = F@)| + [ Falx) = F(@)] < mass + ma < 2ma,
il suffirait alors d’appliquer le théoréme T.

6. Nous pouvons mettre cet énoncé sous une forme équivalente plus simple,
en exigeant seulement que la série

Z my (log Myir)t
n

soit convergente.

k
A cet effet remarquons d'abord que si la série Z My (log L) est conver-

in
n

gente, les deux séries

]’[111\1

M

D (log

k
) et 2’ ma (log Musr)*
n

convergent et divergent simultanément.

. s, . ]'In+1 k s,
a) Si la série D m,,(log o converge, la série ) mn (log M)t con-
n n n
T ussi, ses termes étant moindres que ceux de la premiére série.

verge aussi, termes étant dres que de la

b I . r . QU i3 e Mﬂ+1 ‘k

) Inversement, si la série D\ m. (log M1 converge, la série Z My log——;n——
n
n n

converge également. C('onsidérons, en effet, d’'abord ceux parmi les termes Mpyy

. 1 N .
qui sont plus grands que les termes . bour la méme valeur de p. La contriba-

P
J[ n’i 1

tion des termes correspondants dans la série Z My (log
In

n

Z’ my (log My, q)F < 2* 2' my (log My41)t,

v »

k
) est moindre que

’
l'accent sur le signe 2 signifiant qu'on ne considére que la suite extraite corre-
spondante.
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Envisageons, d'autre part, les termes M,;; qui sont inférieures ou égaux aux

M k
termes — correspondants. Leur contribution dans la série Zm,. [log (ﬂl)]
mq n

est moindre que

" 1 1 k < k ’” 1 I )k
my {log — 2 my {log —} -
2 2|08 m qu \'°% m,

q

- My o e
La somme de la série D)\ my (log ">] est donc inférieure &
m

n
n

, . N 1\F
2k Z my (log M,41)F + 2% Z my (log mq)
» q

elle converge donc, en vertu de 'hypothése faite au début.
Or, en supposant qu'une des séries

-Z'In+1
; M (log m[) ) ; my (log My 41 )

converge, il est toujours possible d'extraire une suite partielle d'indices {np} de
maniére que les nouvelles séries respectives:

Mn k
>, (log W’Lﬂ) , D\ 1y, (log M, f
p "p P

E
. . . . I .
ainsi obtenues soient convergentes, la série _;_ Mn,, (log ~——) étant elle aussi con-

my
p p

vergente, quel que soit d’ailleurs la valeur de £, et ceci suffit pour démontrer la

proposition énoncée. On peut done, sans restreindre la généralité, supposer que

k
1 c e i1, .
Z M (log ) ) converge. Voici, d'aprés une idée de M. Ostrowski', comment on
Ma
n

pourrait effectuer ce choix:
Soit s, le premier terme inférieur a 0 M le premier terme inférieur a

My, . . .  Mn ‘o
T Mgy le premier terme inférieur a,—zi’, ete. ..., on a évidemment

! A. Ostrowski, Uber vollstindige Gebiete gleichmiissiger Konvergenz von Folgen analytischer
Funkiionen. Abhand. d. math. Seminars. Hamburg. T. I, p. 342.
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k E
ma | log B{ 1) - 2m loo B;[."!’ii
AR om, = ST ’

P p+17L
respectivement
m"p (log M"p-{-l) =2 m’"p-H"l (log M"p-l-l)k
et la série
M, . \*
M (log p+ 1)
B o)
respectivement

Zm’"p (log M”p+1)k
P
est aussi convergente. Or il est facile de voir que la série
1 \k
; "y (log m"p)

converge quel que soit %, car d'aprés la définition des ma, on a mg, < 277 et

-t |

7. Les considérations qui précédent nous permettent d’énoncer le théoréme
suivant

d’autre part (log ?«NL
n
P

Théoréme II. Soit F,(2) une suite de fonctions analytiques holomorphes dans un
domaine D contenant un segment (a, b) de Uace réel. Supposons que sur ce segment
la suite I, (x) converge rers une fonction I'(x) et qu'on ait

|Fa@)|< M, st 2€D, |Fn(x)—F(2)| <mn powr a<zx<hb,

ot M, tend en croissant vers Uinfing my tendant en décroissant vers o. Sil est
possible d’extraire une suite partielle d’indices

Ny, Ng, .-y Np, ..

|
D, mn, (log L,,H)"

P

telle que la sérve

converge, la fonction F'(x) possédera ume dérivée continue dordre k en tout point
intérieur du segment (a, b).

8. On pourrait énoncer des propositions analogues, mais valables pour un
intervalle fermé, en partant des relations (4) au lieu de (3):
45—3932. Acta mathematica. 71. Imprimé le 2 novembre 1939.
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Théoréme III. F(x), fu(2), mn et M, ayant la méme signification que dans le
théoiéme I St la série

DM, \%*
Z m, {log oo
n

p

converge, la fonction F(x) possédera une dérivée continue d’ordre k dans Uintervalle
Jermé [a, b).

Théoreme III'. F(x), Fu(z), ma et M, ayant la méme sigmfication que dans
le théorcme 1I. Si la série
Z mn (log Mp4q)?®

n

converge, la fonction F(x) possédera wune dérivée d’ordre k dans Uintervalle fermé
[a, B].

Pour le prouver, il suffirait de remarquer qu'on a comme conséquence des
relations (1) et (4):
1—1Vy v s
mpy M:

1) < " = 3 , I;
|7 @) = rk kL, 4 log o r<IOO

si dans cette relation on pose
k!

e
25 (log J—;{—:)

on en déduit, pour des valeurs suffisemment grandes de =

o\ b 2k
| ()| < (5(2() Ny (log ]:1[1‘) .

in

r =

On peut maintenant reprendre sans modifications notables les considérations ci-

dessus concernant l'intervalle ouvert et les propositions énoncées en résultent.

9 Ces théorémes généraux contiennent, en particulier, comme on le constate
sans difficulté, les résultats bien connus de MM S Bernstein et De la Vallée
Poussin concernant lapproximation des fonctions d une variable réelle par des

suites de polynomes ou d expressions trigonométriques *

' Voir par exemple Ch De la Vallce Pousan, Lecons sur [ approrimation des fonctions d'une
varwable reellc Chap IV et V et S Bernstemn Sw la mallawe approrimation des fonctions conte-
nues (Memoires publies par la classe des Sciences de 1 Academie royale de Belgique Collection in
— 4. 2¢ Serne t. 1V, 1912,
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Dans les cas dune suite de polvnomes P,(x) de degré », convergeant sur
un segment [a, b] vers une fonction F(x), on peut poser M, = MA" M et A
étant indépendants de »n Il résulte, en effet, d un théoréme bien connu de
M S Bernstem!, qu'un polynome P, (1) de degre n inferiewr a M s un segment

. R\*
de longueur 26, 1este inferien a M ( 5] sw une cllipse ayant ses foyers aux ex-

trémutés du segment, et powr demi somne des ares R

Nous obtenons donc dans le cas des polynomes, et en nous bornant, par
exemple, au segment ouvert, la proposition suivante

Soit une swite dc polynomes Py (1) de deqics covssants ny,ny. . ,mp, .. tendant
ters une fonction F(r) «wr un seqment [a, b de l axe 1eel Cette fonction possédera,

en tout point intericur du scgment, une deriree contenue d’ordie k, st la série
k
p

ot m, = max | F(x) — P, (x)| tend vers o en décroissant, converge.
e asr=b »

En posant, par exemple, np, = 2P, on en tire, en particulier, la proposition
bien connue suivante

St powr toute ralemr de n la fonction F(x) pcut étie approchée par des poly-

nomes de degié n arce une appioximation infaewe @ geta’ 00 @ > o, cette fone-

tion possedera une dérivée continue d'ordie k en tout point intériewr au segment (a, b).

On obtient sans difficulté des propositions analogues pour lintervalle fermé.

10 Examinons encore rapidement les cas de lapproximation d une fonction
périodique par des expressions trigonometriques  S1 nous considerons une suite
T, (z) de polynomes triconometiiques de degré » convergeant sur laxe réel vers
une fonction periodique, 1l est facile de voir que la croissance de la smite M,
dans un domaine entourant laxe reel est encore comme dans le cas des poly-
nomes, de lordre exponentiel par rapport au degié du polynome trigonométrique;
on aura donc les mémes theoremes sauf que dans le cas d une fonction pério-
dique il ny a pas lieu de conaiderer le cas d un inteivalle ferme On a la pro-
position suivante facile a demontrer et qui est analogue au théoreme de Bern-
stein sur les polynomes

! 8. Bernstein  Legons sur les proprietes extremales ... p. 112.
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T.(2) étant un polynome trigonométrique d’ordre m, inférieur & M sur Uaxe réel,
on a sur toute drozte d’ordonnée y, paralléle a Uaxe réel

| Tw ()] < Merint,

En effet, considérons la transformation ¢=¢*. Elle transforme le demi-plan
supérieur en l'extérieur du cercle unité et on a

(¢
To(e) — ’t—)
ol Pp,(t) est un polynome de degré 2 en t. Comme par hypothése on a, sur
le cercle unité, | Py, ()] < B, on en déduit les relations

Py

| T (e)] = l tn(‘)l < M|t = Mev.

D’ot comme dans le cas des polynomes, la proposition suivante:
Sozt T,,p (x) une suite d’expressions trigonométriques d’ordres croissants ny, ny,

ceey Mp, ... tendant sur Uaxe réel vers une fonction périodique F(x). Cette fone-
tion possédera en tout point une dérivée continue d'ordre k, si la série

Zm"p ”:H'
)
0 mn, = max | F'(x) — T, (x)| tend vers o en décroissant, converge.

11. Nous allons maintenant particulariser la nature des suites de fonctions
analytiques considérées, en supposant que les fonctions F),(z), tendant vers la
fonetion F(x) sur le segment fermé [a. b], ne s’annulent pas dans un domaine D
entourant ce segment, et que, d'autre part. la fonction continue /I'(x) est diffé-
rente de o sur ce méme segment, cette fonction étant susceptible de prendre,
comme dans tout ce qui préccde, des valeurs complexes. Considérons la fone-
tion log F'(x), dont nous précisons la détermination de maniére que log F(o)!
ait sa partie imaginaire dans l'intervalle semiouvert [0, 271) et on prolonge
log F(x) d'une maniére continue le long du segment [a, ] a partir du point o.
Considérons, de méme. la suite de fonctions log F,(z) dont nous fixerons la dé-
termination de la maniére suivante: I, (o) tendant par hypothése vers F'(o), il
existera une détermination de log F.(0) qui convergera vers log ¥(0), qu'on

! Nous supposons que o est un point intérieur du segment (a, b).
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trouvera en choisissant I'argument @, de F, (o) dans l'intervalle (@ —¢, @ + &), @
désignant l'argument de F'(0) et & une quantité positive inférieure a 7. Ceci
est évidemment toujours possible pour n assez grand, a cause de la convergence
de la suite I',(0). La fonction log I, (z) sera prolongée d'une maniére continue
dans tout le domaine 1) & partir de la valeur initiale log I (0) = log | Fa(0)] +
+1@,.

Envisageons maintenant la différence

log F, (r) — log F (x) = log %'(g%) .
D’aprés la détermination qui a été choisie pour les logarithmes, cette différence
est une fonction continue de x sur le segment ‘a, U] et elle tend vers o au point
x=o0. Ses différentes déterminations différant entre eux d'un multiple de 2 =,
elle tendra nécessairement vers o en tout point du segment fermé [a, b], et
on aura

Fo(x) F,—F\ F,—F 1(F,—F)\?
(6) log 'i'v (-T) - loh (I + :v ) - l'v - 5 ( ]'v —-) + ’

o 2
log 1n (@ L v (ma)E 2 (si M. <™),
F(x) 2

m

ot m désigne le minimum de F(x) dans (a, b).

On a, d'autre part, dans le domaine D:

RN log I, (2) = log | F (2)| < log Mp.

Il en résulte, d'aprés une relation de Borel et Hadamard sur la limitation du
module d'une fonction holomorphe dans un cercle!, conuaissant une borne supé-
rieure de sa partie réelle, qu'on a, dans tout domaine I); intérieur au domaine
D, l'évaluation:
(7) llog Fa(2)| < A log M,,
ol 4 ne dépend pas de n.

En considérant la suite log F,(x), et en tenant compte des relations (6) et
(7), on trouve comme conséquence du théoréme Il la proposition suivante:

Théoreme IV. Soit F,(2) une suite de fonctions analytugues holomorphes dans
un domaine D et ne s’y annulant pas. Supposons que sur un segment [a, b] de

! Voir, par exemple, G. Julia, Principes géométriques d'analyse T. 1. p. 70—72.
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Paxe réel contenu dans le domaine la suite Fa(x) tend vers ume fonction F(x) diffé-
rente de o sur ce segment et qu'on ait

|Fr(2)| < M, i z€D, | Fa(x) — F(x)| < mn pour a<zx <9,

o M et mn tendent vers o en décroissant. Si la série
Z mn (log log Myiq)*
n

converge, la fonction F(x) possédera une dérivée continue d'ordre k, en tout point
intérieur du segment (a, b).

On a évidemment une relation analogue dans le cas de l'intervalle fermé.



