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PREMIERE THESE

SUR LA

THEORIE ANALYTIQUE DES GROUPES

CONTINUS FINIS

INTRODUCTION.

La théorie des groupes continus finis a été fondée par S. Lie, et
depuis de nombreux géométres en ont développé les bases et les appli-
cations. Dans toutes ces recherches, on définit un groupe continu G
par des transformations infinitésimales

le:ZEkl(x)gI: (i:l,z,...,r),
k=1

dont on suppose les coefficients &;; holomorphes dans le voisinage d’un
point; on définit les transformations de G dans le voisinage de ce point
en se boronant a I’étude des transformations voisines de la transforma-
tion identique. Lorsqu’on étudie la similitude entre deux groupes g
et (&, on se contente d’établir qu’il existe une transformation f holo-
morphe, ainsi que /~', dans le voisinage du point considéré et telle
MINEUR. 1



2 HENRI MINEUR.

que ,
fe&f=6G.

Dans ce travail, nous nous sommes proposé d'étudier les groupes
continus G, sans nous restreindre ni a la considération des transfor-
mations de G voisines de la transformation identique, ni 4 I'étude des
transformations de G et de la transformation / dans le voisinage d’un
point. Ce travail se compose de trois Parties :

Dans la premiére Partie, nous supposons les £, algébriques et le
groupe g birationnel; nous faisons en outre-une hypothése sur la
structure de g. Au groupe G correspond un groupe (g') birationnel,
comprenant une infinité discontinue de transformations. Si (g') est
discontinu au sens de H. Poincaré, la transformation f est nniforme,
ainsi que les transformations de G qui correspondent biuniformément
a celles de g. Dans le cas contraire, G contient un sous-groupe singu-
lier (G) composé d'une infinité discontinue de transformations.

Dans la deuxiéme Partie, nous étudions une structure particuliére
de groupe qui nous condnit & considérer des transcendantes uniformes
appelées «ultrakleinéennes ». Nous étudions également G sur sa multi-
plicité invariante ; cette derniére théorie, qui compléte dans un autre
sens celle de la similitude des groupes, peut s’étendre a des structures
plus générales que celles que nous avons envisagées.

Dans la derniére Partie, en partant de fonctions kleinéennes, nous
avons défini des fonctions ultrakleinéennes et des groupes G pour les-
quels les £, sont algébriques. L'étude de ces groupes, dont on ne peut
former les équations finies et qui se rameéne & 'étude d’un groupe klei-
néen, termine ce travail.

PRELIMINAIRES.

I. — Propriétés des solutions de certaines équations
fonctionnelles algébrigues.

1. Exposons d’abord quelques résultats qui servent de guide dans
nos recherches.
Soient f(«) une fonction méromorphe et x une valeur particuliére
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quelconque de la variable, en général I’équation
S(2")y=f(=2),

ou 2 est 'inconnue, a une infinité de racines qui sonut des fonctions
analytiques de x. Cette équation définit donc une infinité de transfor-
mations qui constituent ce que nous appellerons le groupe de la fonc-
tion f. Cette définition s’étend sans difficulté & un systéme de n fonc-
tions de 7n variables.

Nous dirons qu’une relation entre deux variables y,, y, est alge-
broide, si 4 une valeur de y, correspondent au plus un nombre fini N
de valeurs de y, et réciproquement. N est dit le degré de la relation
considérée par rapport a y,.

Taroreme 1. — Sideux fonctions méromorphes f(x) et g(x) sont
lies par une relation algébroide, f(x) ne prend qu'un nombre fini
de valeurs lorsqu’on y effectue toutes les substitutions du groupe
de g. Ce nombre est au plus égal au degré de la relation considérée
par rapport a f.

Tueorime 1I. — Soient f(x) une fonction méromorphe et
' = Y(x, a) les équations d’un groupe continu g de transforma-
tions birationnelles a un paramétre. S’il existe, quel que soit x, une
relation algébroide de degré mazimum N entre f(z) et f[{|x, a]]
et st U'on considére N +1 transformations h,, h,, ..., hy,, du
g}*oupe de f, deux de ces N + 1 transformations h, et h, sont telles
que h,h' est permutable avec loules les transformations de g.

Les fonctions

fl@) et fl[u[x, al]

étant liées par une relation algébroide de degré N par rapport & f(}),
en vertu du théoréme I, deux au moins des N + 1 quantités

f[t‘g[/z,,,(x), a]] (m=1,2,...,N41)
FL4ap(2), al] = f{¥[Aq(x), al],
ou, en posant A(x) = k[ 1) (x)],

SY[h(2), al) =F[¥ (=, @)1

sont égales :
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1! existe donc une substitution A’ (x) du groupe de f telle que

b[A(2), a]= K [}[2, a]].

Les substitutions 4 et 2’ dépendent de @ ; mais comme les substitu-
tions A’ forment un ensemble dénombrable, pour une infinité de
valeurs de a voisines d’une valeur quelconque «, A et A’sont les
mémes. Prenons pour « la valeur du parameétre a qui correspond & la
transformation identique, et choisissons pour z une valeur telle que 2
et 2’ soient holomorphes dans son voisinage; la fonction

YlA(x), al— /L'[(.!/[.’L‘, a]J

Y

holomorphe par rapport & et & a, est nulle pour une infinité de
valeurs de a voisines de a; elle est donc identiquement nulle et pour a
voisin de «, on a

UL h(2), a] = k'[Y[@, a]].
Faisons dans cette équation a = «, il reste

h(x) = h'(x);
par suite,
yli(z), a]l= h[";’[xv a-]]’

quel que soit a; A(x)=h, k"' est donc permutable avec toutes les
transformations de g.

Une conséquence de ce théoréme est la proposition suivante déja
connue : Une fonction méromorphe qui admet un théoréme d’addi-
tion algébrique est soit une fonction rationnelle, soit une fonction
rationnelle de e, soit une fonction elliptique.

Ces deux théorémes s’étendent sans difficulté & un systéme de
n fonctions de n variables.

II. — Indication d’un procédé de définition
de certaines transcendantes.

2. Soient f,(x) et f,(x) deux fonctions méromorphes liées par
une relation algébrique

F[fi(=), fo(z)]=0.
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Nous appellerons groupe du systéme ( f,, f,) 'ensemble des trans-
formations communes aux groupes de f, et de f,. Soient de méme
n ~+ 1 fonctions f,, f,, ..., fur, de n variables z,, z,, ..., x, liées par
une relation algébrique

Flfilz, ..., x0), falxyy o oy )y ooy frma (&g, -0y Zp)]=0

Le groupe de ce systéme est formé des transformations (x, x')
définies par

fi(xh Loy v ooy xn):ft(x,n x,gy ceey xln) (i:‘) 2, c. oy n+l>'
Nous dirons que deux systémes

(fufa, "-afn+l) el (g1 &2 -y &n+1)

sont liés par une relation algébroide si chacune des fonctions de I'un
des systémes est une fonction algébroide des fonctions de I'autre. Par
extension, nous appellerons degré de cette relation par rapport a ( f)
le nombre des systémes (/) qui correspondent a un systéme (g)
donné.

Symboliquement, on peut écrire un tel systéme sous la forme
v = f(x); fest en définitive le symbole d’une correspondance entre
les systémes x,, ,, ..., , et les points de la surface algébrique

F[.}’uy:»; CREY _}’n+1]:O.

Grace a I'’emploi de cette forme symbolique, il est facile de voir que
les démonstrations des théorémes I et II s’étendent aux systémes de
n + 1 fonctions de n variables. En particulier, considérons le cas ou
dans I'énoncé du théoréme II, N égale 1. Les relations algébroides
considérées sont alors uniformes. Soit 4 une substitution du groupe
de f; si nous lui associons la transformation identique qui fait aussi
partie de ce groupe,’nous avons ainsi N + 1 substitutions du groupe
de f et, en appliquant le théoréme II, nous voyons que 4 est permu-
table avec toutes les transformations de g.

3. Il existe, comme on sait, trois procédés principaux de définition
communs & |’exponentielle et aux fonctions elliptiques; seuls deux
d’entre eux permettent de définir les fonctions fuschiennes et klei-
néennes comme le montre le Tableau ci-dessous :
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EXPONENTIELLE, FONCTIONS ELLIPTIQUES. FONCTIONS KLEINEENNES.

Série e, Séries p(u), {(u). Séries thétakleinéennes.

Inversion de lintégrale|Inversion du quotient de
, elliptique de premiére| deux intégrales d’une
y :y. \ . - LR

espéce. équation linéaire

Equa tion différentielle

Equation fonctionnelle | Théoréme d’addition algé-

J(z+y)=f(=) f(y)- | brique.

Nous nous proposons dans ce travail de combler le vide que présente
ce Tableau; d'une facon plus précise, au moyen d’équations fonction-
nelles agalogues & celles du théoréme d’addition des fonctions ellip-
tiques, nous définirons des systémes de transcendantes dont le groupe
est formé de transformations birationnelles d'une nature donnée a
I’avance. A titre d’exemple, cherchons les systémes de quatre fonctions
de trois variables x,, ,, 2, dont le groupe est formé de transforma-

tions de la forme

, , ozt B, , _axy+f

<. o = , =Tt B Y&+ 0%
! v+ 0 P oy + 6

1 —

S,

Il suffit pour cela de remarquer que ces transformations sont per-
mutables avec celles du groupe

azx,+ bxr, ,  cxy + dz, ,  axzs+ b
—_— X, = ——————— > Xy = - ¢
cxy,+d cx;+d cx,+d

N —
g x| =

Si donc on connait un systéme de quatre fonctions f,, f,, fs, f, de
trois variables liées par une relation algébrique et telles que les
quantités

ax,+bxy, cx,+dx, ax;+ b>
S ’ ,
cxy,+d cxy+d  cxy+d

soient des fonctions uniformes des f,(x,, x,, x;), ce systéme se répé-
tera par des transformations du groupe g’. Si dans f,(z,, z,, x,) par
exemple, on fait #, = x, = o, on obtient une fonction kleinéenne de z,,
car pour x,=x,= 0 une substitution du groupe g’ se réduit a

az,+ 3

.’L‘lﬁ‘:_‘“ n®
Y&+ G
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4. Considérons pour simplifier un systéme de deux fonctions d’une
variable f,, f, liées par la relation algébrique F(f,, f,) =o0 et un
groupe g continu a un paramétre : ' = {(x, a). Supposons que f,(z)
et f,(«) soient des fonctions uniformes de f,(x) et fy(x) :

Si(xY =Ri[ fi(=z), fr(2)],
fo(2') =Ry[ f1(®), fo(2z)]

Les transformations ainsi définies

Xi=Ri[Xy, Xo],
X, =Ry[X,, X, ]

forment un groupe G, conservent la courbe algébrique F(X,,X,) =0
et sont uniformes sur cette courbe. Les groupes g et G sont donc sem-
blables et les fonctions y, = f,(x), y, = f.(x) peuvent étre consi-
dérées comme définissant une transformation f telle que

(1) J8f=G.

D’aprés la théorie de Lie, réciproquement, si g et G sont deux
groupes continus semblables, il existe une infinité de transformations f
vérifiant 'équation (1). Dans ce travail nous ferons donc I’étude de la
similitude des groupes continus de transformations et des transforma-
tions f correspondantes. Nous montrerons dans quels cas les fonc-
tions ainsi définies sont uniformes et nous retrouverons sous une
forme plus précise le groupe de ces fonctions.

PREMIERE PARTIE.

THEORIE GENERALE DE L’'EQUATION FONCTIONNELLE -t =G.
8.

1. — Simplification du probléme.

I. Soient g et G deux groupes continus finis et semblables. Dans
’étude des transformations f définies par I’équation fonctionnelle

(1) fef'=G,
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nous nous limiterons au cas ou la solution f de (1) dépend de cons-
tantes arbitraires. D’apres S. Lie (Theorie der Transformations-
gruppen, t. I, Chap. XIX), il fautet il suffit pour cela queles groupes
g et G soient transitifs. Soit g’ le groupe continu fini des transforma-
tions permutables avec toutes celles de g. Ainsi que nous l'avons
démontré dans les préliminaires, le groupe d’une solution de I'équa-
tion (1) est un sous-groupe de g’. Le nombre de paramétres dont
dépend g’ est maximum lorsque g et G sont simplement- transitifs.
C'est ce cas que nous considérerons désormais.

Supposons donc g et G simplement transitifs et isomorphes; il en
résulte qu’ils sont semblables. Précisons la signification de 1'équa-
tion (1). Solent : s le nombre de parameétres de g, X,, X,, ..., X,
s transformations infinitésimales indépendantes de g et Y,, Y,, ...,
Y,. s transformations de G liées par les mémes relations de structure
que les transformations correspondantes de g. L'équation symbo-
lique (1) signifie que la transformation f fait correspondre X, a Y,. 11
pourrait arriver que G admette s autres transformations infinite-
simales Y, Y}, ..., Y, liées par les mémes relations de structure que
X,, X,, ..., X;; on ne considérera pas comme solution de (1) une
transformation qui fait correspondre les X; et les Y.

2. Relation entre les solutions de deux équations fonctionnelles.
— Soit g, un groupe semblable a g; considérons les équations ana-
logues a (1),

(2) gt l=g,
(3) g 1=0G.

Soient T, 7 et <’ des solutions particuliéres respectives de (1), (2)
et (3). De ces équations, on déduit

Tt [T =T i g

La transformation f'=1~* f~'1’ est donc permutable avec toutes les
transformations de g,; f” est donc une solution de

(4) Se =g
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Réciproquement si /", © et 1’ sont des solutions respectives de (4),
(2)et(3), f=rf =" estsolution de (1).

L’étude des solutions de (1), o g et G sont des groupes de structure
donnée, est donc ramenée a celle des équations de la forme

g1t =G,

ol g, est un groupe possédant la structure donnée, choisi une fois pour
toutes et G un groupe quelconque isomorphe & g,.

On peut tirer des considérations précédentes une autre conséquence
intéressante : si f est une solution particuliére de I'équation (1), toute
autre solution f” de cette méme équation sera de la forme

S'=7r

< étant une transformation permutable avec toutes les transforma-
tions de g. Il suffit donc d’étudier une seule solution de I’équa-
tion (1).

3. Nature des transformations de g. — Nous prendrons pour g
un groupe de transformations birationnelles; les transcendantes solu-
tions de I’équation (1) admettront pour groupe un sous-groupe de 2.
Comme notre but est de former des transcendantes dont le groupe se
compose de transformations birationnelles, il faut chercher dans quel

cas il en est ainsi pour g'.

Tarorime. — La condition nécessaire et suffisante pour qu'un
groupe snnplenzenz lranszlz/ g et son groupe permulable g se com-
posent de transformations birationnelles est que g dépende bira-
tionnellement de ses paramétres par un choixz convenable de

ceux-ci.

1° La condition est suffisante. — Soient en effet 2" = {(x. a) les
équations de g, =, un point fixe et x, = Twx, son transformé par T ;
on a, quel que soit a,

T (21, @)] =4[ T(x), a]l =Y (@, a).

Soit z' un point quelconque, comme g est simplement transitif et
dépend birationnellement de ses paramétres a, il existe en général un

MINEUR. 2
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systéme a et un seul tel que 2’ = {(x,, a). Le transformé =" de =’ par

T sera
' =Ta'=T[{(z,, a)] =1(x,, a).

On obtient 'équation z” = Tz’ d’une transformation de g’ en élimi-
nant a entre les équations z” = {(x,, @), @' = ¢(z, @). T est donc
birationnelle.

2° Réciproquement, supposons g et g’ birationnels. Prenons pour

paramétres définissant une transformation T de g les coordonnées du
point A transformé d’un point fixe O par T ; soient M un point quel-
conque, M’ son transformé par T, je dis que M’ est une fonction bira-
tionnelle de A et de M. Soit v une transformation de g, telle que
M = v O (¥ existe puisque g’ est simplement transitif) et soit

M| =rxA,
on a

A=TO;
donc

M/ =:tTO=T:O=TM =M,

donc M'=rA, r étant birationnel. La proposition énoncée est démon-
trée. Nous prendrons désormais pour g un groupe birationnel dépen-
dant birationnellement de ses paramétres.

1. — Réduction d’un groupe continu
de transformations birationnelles.

A. Le théoréme de M. Enrigues. — Avant d’aborder I’étude de
’équation (1), cherchons les singularités d’un groupe continu de trans-
formations birationnelles. Reprenons la démonstration d’'un théoréme
de M. Enriques (') qui doit nous étre utile parlasuite et d’aprés lequel
un groupe de transformations birationnelles g & s variables se raméne
stmplement & un groupe continu de transformations homographiques.

Considérons une famille G de multiplicités algébriques a s — 1 dimen-
sions : G(@y, Ty, ooy gy 0y Ly, ouny L) = O.

(1) Sui gruppi continui di transformasioni cremoniane nel piano (At
della reale Accademia dei Lincei, 1893, p. 468).
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Transformons-les par toutes les transformations de g, nous obtenons
une nouvelle famille F qui dépend de paramétres arbitraires. Soit F'
le plus petit systéme linéaire de multiplicité a s — 1 dimensions qui
contient I, je dis que F' est invariant par g :

Si cela n’était pas, le systéme linéaire I transformé de F’ par g
contiendrait F' et serait différent de F’; le systéme commun a F/ et F”
serait linéaire, contiendrait I et serait plus petit que I’ et F”, c’est-
a-dire dépendrait d’'un nombre plus petit de parametres, ce qui est
contraire a ’hypothése. Soit donc

Ma( @y, oy ooy T) + hagaly, Tay oo, Tg) oo+ Apgp( @y, 22y o, X)==0

le systéme E” invariant par g. Posons

=gy (xy, 22, ..., Xg),
Uy == 8y (X1, Ty, ..., Xs),
R e ,
Up=Gp(X\, Zg, ..., Ts).
Considérons u,, u,, ..., 4, comme les coordonnées homogénes d'un

point de I’espace E, a p — 1 dimensions. Nous obtenons dans I'espace E,
une multiplicité P & s dimensions dont les coordonnées s’expriment
rationnellement au moyen des paramétres x,, x,, ..., ;. Le groupe g
définit sur P un groupe de transformations birationnelles qui conserve
la famille des sections planes de P d’équation

Ity dglig~+.. +d,up=o.

Les équations de g sont donc celles d’'un ensemble de transforma-
tions linéaires homogénes si 'on prend comme variables u,, u,, ..., u,.
Considérons ces transformations comme appliquées a I'espace E, tout
eatier; elles forment un groupe surla multiplicité P, mais comme elles
sont linéaires homogénes, et comme s + 1 quelconques des variables
u,, Uy, ..., U, sont linéairement indépendantes sur P, les identités
entre les coefficients de ces transformations qui expriment qu’elles
forment un groupe sur P expriment aussi qu’elles forment un groupe
dans tout 'espace E,. Elles constituent donc un groupe continu g, de
transformations homographiques de E,, laissant P invariant et se
réduisant sur P au groupe g a condition de prendre comme variables
Xyy Loy oony Lo
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En résumé : Etant donné un groupe continu g de transformations

birationnelles de Uespace L(x,, x,, ..., ;) tl exisie un groupe
B . g - u u
continu de transformations homographiques de lespace —, ==, .-
u,, lll,
U, . . . .
—%—' conservant une multiplicité rationnelle P+
’l
U, = 8i(Xy, Ly, ...\ Ty) (i=1,2, ...,p)

et se réduisant & g sur P a condition de prendre pour variables x,,

Ly vovy L (‘)

8. Singularités d’un groupe de transformations birationnelles.
— La correspondance entre les points de I'espace E(x,, z,, ..., z,) et
de P ainsi définie n’est pas nécessairement biuniforme. Considérons,
par exemple, le groupe de ’espace a trois dimensions :

, __cy—+dsx

X =
¢+ dz

, _ay—+bszsz

~ Ta-+ bz
~/_§c+dz
T a+ bz

L’équation de la famille F’ sera de la forme
F(y, s, sx, a1, 0t3, o vy &) =0,
F étant un polynome entier, et les «; seront de la forme
u,=g:i(y, 2, sx),

les g; étant des polynomes. On peut supposer que les g, ne s’annulent
pas tous lorsque z est nul; si cette circonstance se présentait, on
pourrait mettre en facteur commun dans tous les g; une certaine puis-

(1) Cette démonstration ne peut pas s'étendre aux groupes continus de trans-
formations birationnelles d’une multiplicité algébrique I en elle-méme, si les
transformations cessent d’étre birationnelles hors de la nuitiplicité I ; on ne
peut affirmer en effet qu’une famille de multiplicités algébriques tracées sur I
soit contenue dans un systéme linéaire. On, peut, du reste, en utilisant cette
remarque, établir que les surfaces hyperelliptiques sont irréguliéres.
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sance de z et supprimer partout ce facteur puisque ceux-cireprésentent
des coordonnées homogénes. Quelle que soit la famille initiale G
choisie, & la multiplicité & deux dimensions z = o de l'espace z, y, 5
correspond sur P la courbe a une dimension ;= g,(y, o, o). La cor-
respondance entre P et 'espace z, y, z ne peut donc étre biuniforme
pour z = o.

Les variables z,, x,, ..., z; sont des fonctions rationnelles de «,,
Uy, ..., U, ces variables représentant les coordonnées homogeénes d’un
point de P. Les points singuliers pour le groupe g seront les points
d’indétermination des fonctions u(.r) et ceux des fonctions z(u).

6. Application a Uéquation (1). — Dans I'étude de Iéquation
fonctionnelle

(1) fef =G

au lieu de considérer la transformation f comme appliquée au point
Xy Ty, ..., s de I'espace E, nous la considérerons comme appliquée
au point correspondant de P. Soit A un point de P, deux cas peuvent
se présenter : 1° dans le voisinage de A les coordonnées d'un point

de P sont des fonctions de s paramétres xz,, x,, ..., x, holomorphes
pour r, =0, £,=o, ... , T, = 0, et telles que la corresponddnce entre
les points de P et les points de 'espace z,, ,, ..., Z, soit biuniforme

dans le voisinage de A et de z; = o. Désignons respectivement par g
et fle groupe g et la transformation f exprimés au moyen des w,
f vérifie

() S8f"=G,

H suffit donc d’étudier les solutions de (1') dans le voisinage de
£, =0,%,=0, ..., Z,= o0, (1') a la méme forme que (1), mais il est
facile de voir que les coefficients des transformations infinitésimales
de ¢ sont holomorphes dans le voisinage de x; = o. En effet, une trans-

formatxon infinitésimale de g est de la forme

/7

Xf= 27\,(){ A \ Z,u,ku,-&— —LZv,u,Eukduk

=1 1_.1 k=1 1=1
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Or les u; sont des fonctions holomorphes des z; il en est donc de
méme des coefficients de la transformation X f exprimée au moyen
des z.

2° A est un point singulier de P : soient u;= o les coordonnées de
ce point et

.
Fy=o0, F,=o, ... F,=o0, F,,1=o, ., Fn=o,

Fm. =0

les équations de P dans le voisinage de ce point; supposons que les
développements de F, ., F, _,, ..., F, . commencent par des termes
de degré i enu,, u,, ..., u, et que le systéme obtenu en égalant 4 zéro
les termes de moindre degré de F,, F,, ..., F, ne se réduit pas a un
systeme de moins de p — 5 équations. Les entiers 7,, 7, ..., 77, carac-
térisent la singularité de P en A. Soit A’ le transformé de A par une
transformation quelconque ¢ de g; en prenant en A’ des coordonnées
convenables ¢, v,, ..., v,, on peut faire en sorte que ¢ ait pour équa-
tion ¢; = u; et, comme ¢ est homographique, ce changement de coor-
données est biuniforme. Les entiers n,, n,, ..., n,sont donc les mémes
en Aet A’

Si A est un point singulier isolé des points singuliers de méme espéce,
A est invatiant par Z.

Si A fait partie d’une ligne I. deux points singuliers de méme
espéce, cette ligne L est invariante par . Ainsi les points singuliers
de P font partie de multiplicités tracées sur P invariantes par g; ces
multiplicités seront, dans chaque cas, I’objet d’une étude spéciale.

En résumé : dansl’étude des solutions £ de 'équation (1), on peut tou-
jours supposer que dans le voisinage de tout point de P qui ne fait partie
d’aucune mulAtiplicité de P invariante par g, les coefficients des trans-
formations infinitésimales de g sont.des fonctions holomorphes des
parametres qui fixent la position d'un point de P, quitte & multiplier
ensuite f par une transformation z = U(z) dans laquelle les z se
comportent comme des fonctions rationnelles des x.

Nous avons supposé implicitement que le point considéré de P était
a distance finie; dans le cas contraire, on le raméne & distance finie par
une homographie.
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IlI. — Ktude d’une solution de l’équation (1).

7. Enoncé des hypothéses. — Faisons sur les groupes g et G les
hypothéses suivantes :

I. g est un groupe continu de transformations birationnelles de
Vespace E(x,, @, ..., z,), défini par s transformations infinitésimales
indépendantes

Xzf:ZEM% (i=1,2, ..., 8).

A=1

g dépend birationnellement de ses paramétres par un choix con-
venable de ceux-ci. Soit & le déterminant des coefficients &;;, ¢ n’est
pas identiquement nul. Enfin les X; sont liés par les relations de
structure

s

(Xn Xk) :2 CunXp

h=1

et les ¢, sont tels que le groupe g n'admet pas de transformation infi-
nitésimale distinguée.

Définition. — Nous appellerons transformation distinguée d’'un
groupe une transformation finie permutable avec toutes les transfor-
mations de ce groupe. Nous supposerons que g ne contient pas de

transformation distinguée autre que la transformation identique.
II. Soient

s+1

_ af .
Y,f—Z'ﬂk,a}j—,; (t=1,2,...,58)

k=1

s transformations infinitésimales dont les coefficients v,; sont des
fonctions rationnelles des variables y,, y,, ..., v, , liées par la
relation algébrique

(5) F()’u}’% cety Ys41)=oO.

Cette relation (5) définit dans l'espace a4 s+ 1 dimensions nune
multiplicité algébrique on.
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Les relations
Y.F=o (i=1,2, ...,5)
et

s
(Y[, Yk).‘zz cileYh (i, /{':I,2, ...,S)

A==t

sont des conséquences de la relation ( 5).
Il en résulte que les Y définissent un groupe continu G formé de
transformations de la variété on en elle-méme.

. . . . oF
Soit M, un point de 91U ; si en ce point 3 n’est pas nul, nous
S+1 :
prendrons comme coordonnées d'un point M voisin de M, ses s
premieres coordonnées y,, ¥,. ..., ¥,; la relation (5) défimit y,,
sans ambiguité dans le voisinage de M,.

s
- g
Yif:,;nkl(yhyzv --vvysays-}-l[yh "~1)IS])5‘7{:
o - of
ZZﬂki(.Vls Y- ~~-1,)’s) - M
k=1 d)k

on vérifie sans peine que

(?i, ?k,) :2 Cikh—Y—Iv

h=1

Ces relations s'écrivent, en effet :

s —_ — s
~ Ong = Oniy, \ -
Z [nie d))m — Nke d)’l : :Z CikhMNhm
3 e

(=1 =

mais
Okm _ Ok Ok Y ss
ayi oy, Y51 Oy

et la relation & vérifier devient

25 [dn/cm — dﬂiln:)
0}’1 kt ()),[

=1

R

- s
N\ . a‘ys-)-i dnkm _ d.ys-H dﬂi»z > . | ) .
+Z <7]z[ dyl dy_ 1 Nkt 0—)’1- d,ys-l—l Z CikhNpom = O-

=1 h=1
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D’aprés la relation Y, F = o, on a

s
J
Nis41 :2 N ;,;/_:1

-1

et, en tenant compte de (5) les relations considérées se réduisent aux,
conditions

(Yn Yk) :2 CtknYlu

h=1

qui sont vérifiées par hypothése. Les Y, définissent donc dans le
voisinage de M, un groupe continu G sur la multiplicité ow.

. oF . ,
Si en M, tous les 3, sont nuls, on exprime les coordonnées d’un

13
points M de o1 voisin de M, au moyen de s paramétres ¢,, ¢,, ..., ¥,
et I'on fait le méme raisonnement que précédemment. Pour abréger

I’écriture, nous supposerons que < > n’est pas nul.
0

()_7s+1

Si en un point M, les v, sont des fonctions holomorphes de
Y1y <oy Vs, et si le déterminant A =] v,|| n’est pas nul, nous dirons
que M, est un point régulier. Si les v, sont holomorphes et si A est

nul, nous dirons que M, appartient a la multiplicité A. Si les vy, ne
sont pas holomorphes, nous dirons que M, est un point singulier.

III. Enfin, nous ferons sur les Y, 'hypothése suivante : en certains
points irréguliers M, (3} ) il existe une transformation algébtique :

Y= U (5, 8oy - ve Zs) (i=1,2,. ,59)

telle que ¥! = u, (0, 0, ..., o) et telle quesi I'on exprime les Y, au
moyen des variables z :

_ ol
V= X (s) 5L

A=1

Les coefficients n,, des Y sont des fonctions holomorphes des z dans le

‘voisinage de z, =0, 3, =0, ..., 3,=o0; en un tel point M, nous
désignerons par A le déterminant |7,
M, appartient & A.

MINEUR. 3

|. s'il est nul nous dirons que
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Les raisonnements que nous ferons s’appliquent du reste au cas
1

plus général ot les y, sont des fonctions algébriques des z; et des e*.
Pour abréger le langage, nous nous bornerons au cas ou la transfor-
mation y == u(z) est algébrique. Si, en outre, les fonctions u (z) sont
rationnelles, M, sera dit point singulier rationnel ; si elles sont
birationnelles, M, sera dit point singulier birationnel.

Si en un point irrégulier, il n’est pas possible de trouver une
transformation y = u (z) vérifiant les conditions précédentes, nous
dirons que ce point appartient & la multiplicité A,.

Remarquons, pour terminer, que la vérification de ces hypothéses
n’exige que des opérations rationnelles.

8. Définition d’une solution dans le voisinage d’un point. —
Soit M, (¥}, ¥e, --., ¥t,,) un point régulier de 9% n’appartenant pas
aAetm,(x,..., £") un point de E n’appartenant pas & 8. D’aprés
la théorie de Lie on obtient une solution y = f(x) de 'équation (1)
fgf~' = G en égalant a zéro s intégrales indépendantes du systéme

(6) X®+Y®d=0 (i=1,2 ...,5)

Ce systéme admet une solation et une seule ®,(x, y) holomorphe
dans le voisinage des points m, et M, et se réduisant a y, — y, pour
x, =z} (i=1,2,...,s). Le systtme

(I Cu(z,y)=o0 (h=1,2,....5),  F(p,y .. ysm)=0

définit pour y,, y., ..., ¥, des fonctions y, = f,(z,, £y, ..., &)
holomorphes dans un domaine d, entourant m,. Il définit de méme
pour x,, x,, ..., x; des fonctions d’un point de o :

2o =7V Yas - ooy Ysw1)

holomorphes dans ua domaine D, de M entourant M,.
Exprimons les équations de G dans le voisinage de M, au moyen de
ses parameétres canoniques @,, @,, ..., @ :

Ye=b(y,a) ou y=Tyy.
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Pour obtenir les §; on forme I'intégrale du systéme

dy! - .
%:Exk"lki()") (=21, 2, ..y 5),
1

vérifiant les conditions initiales ¢ =o0, y, =y, ; cette intégrale
¥; =¥;(¥; a) ne dépend que de a, = A1, a, = A, ..., a, = A;
si I'on y considére les y comme des variables, elle définit les
transformations de G.

Soit D; le domaine homothétique de D, par rapport & M, dans le

rapporti; les ¢, sont holomorphes lorsque y est dans D) et lorsque

la;|<<p (i=1, 2, ..., s). Nous appellerons transformation infi-
niment petite de G dans Dj, ou pour abréger en M, une
transformation T, correspondant & des valeurs des paramétres a
vérifiant ces inégalités.

Soient de méme z,=1¢,(x; a) les équations de g exprimées au
moyen des mémes paramétres canoniques. ¢ n’étant pas nul en m,, &
une transformation infiniment petite de g correspond un seul systéme
de valeurs des paramétres canoniques et de méme pour G. Faisons
correspondre entre elles les transformations de g et de G définies par
les mémes valeurs des paramétres canoniques. Il résulte de ce que
nous venons de dire que la correspondance entre les transformations
infiniment petites de g et G est biunivogue. Il est nécessaire de
remarquer que p dépend du point'M, considéré; la transformation f~*
est définie dans le domaine D,; nous allons étudier maintenant son
prolongement analytique sur la multiplicité o1 tout entiére.

Nous poserons dorénavant

I L] ot LU
X=X+ LZy, }’h—)’h"' LY ks

" "
9

nous désignerons par E’ espace & 25 dimensions ), x|, x,, =, ...,

’ " ) N R I . . ' " ' ”
x,, ., et par ' la'multiplicité & 25 dimensionsy,, ¥, ...y Yiirr Viorrs
les y étant liés par la relation (5).

9. Etude du prolongement analytiqgue de f~' le long d’un
cheminne rencontrant pasAou A,. — Soit C un chemin partantde M,
tracé sur 9’ ; cherchons le prolongement analytique de x,, x,, ..., z,
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lorsque M suit C. Soit M, (»{", »\", ..., ') un point de D; situé
sur C; appliquons 4 M, toutes les transformations de G infiniment
petites en M, ; nous obtenons ainsi un domaine D,. Recommencgons
cette opération en remplacant M, par un point M, de D, situé sur C
¢t ainsi de suite; nous obtiendrons au bout de n opérations un
domaine D, ; D;, D,, ..., D, forment un domaine tubulaire entourant
un arc de C.

Tutorime. — Si C n’a aucun point commun avec les multiplicités
Aet A, un point arbitrairement donné de C finira par se trouver
dans le domaine D, pourvu que n soit suffisamment grand.

Sapposons d’abord que M soit a distance finie ainsi que la
portion M, M de C et que C ne passe par aucun point singulier de G.

A tout point My} de C correspond un nombre positif o (M) fel
que les inégalités |a,| <o (M) définissent les transformations de G
infiniment petifes en M. 1.’ensemble des valeurs o (M) correspondant
a tous les points de C a un minimum g, non nul, sans quoi en un
certain point M de C, (M) serait nul. Imaginons que dans la
construction des domaines successifs, D, D,, ..., D, nous ne
considérions comme infiniment petites que les transformations pour
lesquelles [a,| <<p,; nous aurons une autre succession de domaines

D,,D,, ..., D,, D, seraintérieur & D}, D, sera intérieur 4 D, D,, et
ainsi de suite; si donc un point de C se trouve dans un domaine D,
il sera a foritor: dans un domaine D,. Grice a cette nouvelle
convention, si une transformation T, de G est infiniment petite en un
point de C, elle l'est également en tout point de C ainsi que
la transformation inverse T,' qui correspond aux valeurs — a,,
— Qy,..., — a; des paramétres canoniques.

Soit donc M un point de C; si quelque grand que soit n, D, ne
contenait pas M, il y aurait un point P sur I'arc M,M possédant la
méme propriété, et tel que, quel que soit le point P’ choisi sur
l'arc M,P, D, finirait par contenir P’ pour n assez grand. En ce
point P, A n’est pas nul; en appliquant a P une transformation
infiniment petite convenablement choisie de G, nous aurions pour
transformé de P un point P/ de P’arc M, et P étant contenu dans D,

serait certainement dans D, ,.
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Supposons maintenant que M soit & I'infini, il suffit de faire une
transformation birationnelle convenable © ramenant 'arc MM a
distance finie, en appliquant la démonstration précédente a I'arc
transformé de M,M et au groupe ©G7~', on démontre la proposition
énoncée.

Admettons maintenant que C passe par un point singulier M,
soit D un petit domaine enlourant ce point, nous remplacerons

dans D y,, y,, ..., ¥, par les variables z,, z,, ..., z, définies au
paragraphe 7 dans lespace 2}, 3}, ..., 3, z,, C a pour homologue
une courbe C’ passant par le point O(z,=o0,7i=1, 2, ..., s). Les

coefficients des transformations infinitésimales de G exprimées au
moyen des variables z sont holomorphes en ce point et leur
déterminant n’est pas nul, on peut donc appliquer & une portion de C’
comprenant le point O le raisonnement précédent.

TreoreMe. — Les a; sont des fonctions birationnelles des y;
dans le domaine D, si D, ne contient pas de point singulier de G.

Nous dirons que des fonctions sont birationnelles, ou se comportent
comme des fonctions birationnelles dans un domaine lorsque, en
effectuant sur ces fonctions une transformation birationnelle conve-
nable, on obtient des fonctions holomorphes en tout point du domaine
considéré. Les seules singularités de ces fonctions sont des péles ou
des points d’indétermination. Lorsque le point

! ” ' "
MY Y o Vi Yon

décrit la courbe C, le point homologue m (x|, x7, ..., x,, z}) décrit
dans l'espace E’' une courbe ¢, soit m,(z{", ..., z{") ’homologue
de M;, d;le domaine homologue de D,.

Par hypothése, C ne rencontre pas de point singulier de G,
supposons le théoréme démontré pour le domaine D, , et démon-
trons-le pour D, :

Le point M, est situé a l'intérieur de D,_,, il lui correspond donc
par la transformation f~' un point déterminé m, de d,_,. Soient
la;|<p,i=1,2, ..., sles inégalités quidéfinissent les transformations
de G infiniment petites le long de C; lorsque les a; varient d’une
facon quelconque en vérifiant ces inégalités, le pointy = ¢ [y =", a]
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transformé de M,,_, par T, décrit le domaine D,. La transformation
x = f~'y est donc définie dans D, par I’équation

y=sry=rly"", al) =¢(z*", a).

Or l'équation y = { (™", @) définit les @ comme des fonctions
holomorphes des y dans D, et il est facile de voir que ¢ (x"", a) est
une fonction rationnelle des a; dans le domaine | ;| <p:

Ainsi que nous I'avons vu au paragraphe II, le groupe g peut étre
considéré comme un groupe de transformations homographiques

Zanll; + %y

upy = =

h zﬁ,-u,-—i—ﬁ
d’une multiplicité rationnelle P de, 'espace u,, u,, ..., u, en elle-
méme ; les coefficients « el B soul des fonctions de a,, ..., a,

holomorphes dans un domaine |a;| <R, R étant une constante. Il
peut arriver pour certaines valeurs des u; et pour |a;|<<R que
ZB,u,+ B s'annule; dans le voisinage d'un tel point de P, on
effectuera sur les « un changement de variables tel que cette circons-
tance ne se présente plus avec les nouvelles variables. En revenant
aux variables x, on en déduit que les «; sont des fonctions rationnelles
des a pour | a;| < R.

Comme R est une constante, on peut, ainsi que nous l'avons <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>