@article{TAN_1984-1985__1__A11_0,
author = {Haight, John A.},
title = {An $F_\sigma $ semigroup of zero measure which contains a translate of every countable set},
journal = {Th\'eorie analytique des nombres},
note = {talk:29},
pages = {1--9},
year = {1984-1985},
publisher = {Secr\'etariat math\'ematique},
volume = {1},
language = {en},
url = {https://www.numdam.org/item/TAN_1984-1985__1__A11_0/}
}
TY - JOUR AU - Haight, John A. TI - An $F_\sigma $ semigroup of zero measure which contains a translate of every countable set JO - Théorie analytique des nombres N1 - talk:29 PY - 1984-1985 SP - 1 EP - 9 VL - 1 PB - Secrétariat mathématique UR - https://www.numdam.org/item/TAN_1984-1985__1__A11_0/ LA - en ID - TAN_1984-1985__1__A11_0 ER -
%0 Journal Article %A Haight, John A. %T An $F_\sigma $ semigroup of zero measure which contains a translate of every countable set %J Théorie analytique des nombres %Z talk:29 %D 1984-1985 %P 1-9 %V 1 %I Secrétariat mathématique %U https://www.numdam.org/item/TAN_1984-1985__1__A11_0/ %G en %F TAN_1984-1985__1__A11_0
Haight, John A. An $F_\sigma $ semigroup of zero measure which contains a translate of every countable set. Théorie analytique des nombres, Tome 1 (1984-1985), Exposé no. 29, 9 p.. https://www.numdam.org/item/TAN_1984-1985__1__A11_0/
[1] and . - Raikov systems and radicals in convolution measure algebras, J. of London math. Soc., Series 2, t. 28, 1983, p. 531-542. | Zbl | MR
[2] . - On a method of Marshall Hall, Mathematika, London, t. 31, 1956, p. 109-110. | Zbl | MR
[3] and . - Bifference-covers that are not ksum covers II, Proc. Cambridge, phil. Soc., t. 75, 1974, p. 63-73. | Zbl | MR
[4] . - A note on diophantine approximation, Studies in mathematical analysis and related topics, p. 77-81. - Stanford, Stanford university.Press, 1962. | Zbl | MR
[5] , and . - Commutative normed rings. - New York, Chelsea publishing Company, 1964. | MR
[6] . - Difference covers which have small k-sums for any k, Mathematika, London, t. 20, 1973, p. 109-118. | Zbl | MR
[7] ). - On the sum and product of continued fractions, Annals of Math., Series 2, t. 48, 1947, p. 966-993. | Zbl | MR
[8] . - Results on sums of continued fractions, Trans. Amer. math. Soc., t. 211, 1975, p. 123-134. | Zbl | MR
[9] . - Asymmetric sets of residues, Mathematika, London, t. 19, 1972, p. 191-199. | Zbl | MR
[10] . - Sur des ensembles parfaits, Mémoires de l'Université de Neuchâtel, Neuchâtel, t. 16, Secrétariat de l'Université de Neuchâtel, 1942. | MR | JFM
[11] . - On badly approximable numbers, Mathematika, London, t. 12, 1965, p. 10-20. | Zbl | MR





