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Abstract. The aim of this note is to connect a reversed form of the Gross logarithmic
Sobolev inequality with the Gaussian maximum of Shannon’s entropy power. There is
thus a complete parallel with the well-known link between logarithmic Sobolev inequal-
ities and their information theoretic counterparts. We moreover provide an elementary
proof of the reversed Gross inequality via a two-point inequality and the Central Limit
Theorem.

1 Shannon’s entropy power and Gross’ inequality

In the sequel, we denote by Ent,(f) the entropy of a non-negative integrable
function f with respect to a positive measure y, defined by

Bnt,(f) = [flog fdu~ [fau 1og Jtan.

The Shannon entropy [15] of an n-variate random vector X with probability
density function (pdf) f is given by

H(X) := —Ent,_(f) = —/flogfdx,

where both A, and dz denote the n-dimensional Lebesgue measure on R”. The
Shannon entropy power [15] of X is then given by

N(X) := %e-exp (% H(X)).

It is well-known (cf. [15,8]) that Gaussian saturates this entropy at fixed covari-
ance. Namely, for any n-variate random vector X with covariance matrix K(X),
one have

N(X) < |K(X)|'/, (1)

and |K|1/ " is the entropy power of the n-dimensional Gaussian with covariance
K.

The logarithmic Sobolev inequality of Gross [11] expresses that for any non-
negative smooth function f : R* - R+

2Ent,, (f) < B, ('V—fﬁ) , @)
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where E,  denotes the expectation with respect to vy, |-| the Euclidean norm
and v, the n-dimensional standard Gaussian given by

2

dya(z) == (21r)'%e']f5L dz.

Inequality (2) is sharp and the equality is achieved for f of the form exp(a-).

By performing a change of function and an optimization, Beckner showed
[4] (see also [7]) that (2) is equivalent to the following “Euclidean” logarithmic
Sobolev inequality, for any pdf g

n 1 |Vgl?
Ent,, (g9) < 3 log [21ren/ . dz|, (3)

where A, is the n-dimensional Lebesgue measure on R". Therefore, for any
n-variate random vector X (with pdf g), we have

N(X)J(X) > n. (4)

This inequality can be obtained by many methods. The most classical ones
are via Shannon’s entropy power inequality together with DeBruijn identity, or
via Stam’s super-additivity of the Fisher information (cf. [16,7,10,1]). Moreover,
Dembo showed in (9] that (4) is equivalent to

N(X) [3(X)[M" > 1, (5)

where J(X) is the Fisher information matrix of X defined by
J(X) := /Vlogg -Vliegg” gdz,

and we have J(X) = TrJ(X). To deduce (5) from (4), apply (4) to the ran-

dom vector X = K(Y)"I/ Y. Conversely, use the arithmetic-geometric means
inequality
a+---+ap

1
n <
(a1---an)™ < n

(6)

on the spectrum of the non-negative symmetric matrix J(X).

2 Reversed Gross’: logarithmic Sobolev inequality

The Gross logarithmic Sobolev inequality (2) admits a reversed form which states
that for any positive smooth function f : R* — R*

B, (V)

E“/,. (,f) _<_ 2 Ent‘Y» (f) . . (7)
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Here again, the 2 constant is optimal and the equality is achieved for f of the form
exp(a-). Alike for (2), one can show by a change of function and an optimization
that the reverse form (7) is equivalent to the following inequality, for any pdf ¢

—Ent), (9) < = log [27re n(g)] (8)
where K(g) is the covariance matrix of the pdf g. Hence, we have for any n-

variate random vector X with pdf

N(x) < TEX) ©)

n

where K(X) denotes the covariance matrix of X. This inequality is optimal
and is achieved by Gaussian X. Moreover, as we will show, inequality (9) is
equivalent to (1).

Summarizing, we obtain the following statement

Theorem 1 The following assertions are true and equivalent
(i) For any smooth f : R® — R,
|Eq. (VA)I* < 2Enty, () By, (f).

(ii) For any smooth g : R® - R*,
2me
—Ent, (9) < 3 log [-——TrK(g)]

(iii) For any n-variate random vector X with smooth pdf,
nN(X) < TrK(X).

(iv) For any n-variate random vector X with smooth pdf,
N(X) < KO

Therefore, there is a complete parallel between the equivalence between (2), (3),
(4), (5) in one hand and the equivalence between (7), (8), (9), (1) in the other
hand.

3 Sketches of proofs

In this section, we present first two proofs of (7), then we explain how to de-
duce (8) from (7) and (1) from (9) and vice versa.

The most natural way to establish (7) is to start from a two-point. inequality,
just like Gross does for the logarithmic Sobolev inequality (2) in [11]. Namely,
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if we denote by 3 the symmetric Bernoulli measure on {—1,+1}, one can show
easily that for any non-negative function f : {-1,+1} = R¥,

(F(+1) = F(-1))? < 5 Bnts(7) Es(1) (10)

This inequality is nothing else but the Csiszar-Kullback inequality for 3 (see
[14]). Actually, the optimal constant for the Bernoulli measure of parameter
p = 1—qis p?q*(logq — logp)/(g — p), which resembles the optimal constant
for the logarithmic Sobolev inequality (see for example [1]), but here again, only
the symmetric case gives the optimal constant of (7).

The next step is to establish the following chain rule formula for Ent, which
generalizes the classical chain rule formula (cf. [15,8]) for H

Proposition 2 For any positive measures p; and their product p on the product
space, and for any bounded real valued measurable function f on the product
space, we have

Ent,(f) > Z Ent,, (Ell\.‘ (f)) ) (11)
i=1

where p\; denotes the product of the measures p; with j # i.

Finally, inequality (7) can then be recovered by the use of the Central Limit
Theorem and integration by parts (in both discrete and Gaussian forms). This
concludes the first proof of (7).

Actually, inequality (7) can be recovered by a simple semi-group argument,
just like for the logarithmic Sobolev inequality (2) (cf. [13]). Namely, consider
the heat semi-group (P¢),5, on R”, acting on a bounded continuous function
f:R™ = R as follows

P (@)= [ fe+VEs) dra(o)
Notice that for any smooth function f, VP;(f) = P;(Vf) and
BP.(f) = 3 AP(S) = 5 PAS)
Now, for any smooth positive bounded function f : R® — R*, any ¢ > 0 and

any z, we can write, by performing an integration by parts and omitting the
variable

t
P;(flog f) — P (f) log P+(f) =/03:[P3(Pt—s(f)logPt—a(f))]ds

_ L [ (VR (DR
'2/0P’( Poa(f) )d'

But by Cauchy-Schwarz inequality we get

WP, (D12 _ o [IP=s (VAP o PP s (VH)
P’( Pt—-a(f) )—P’( Pt—:(f) )Z Pa(Pt—s(f)) '
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which gives
t |P(VS)I’
P:(f1 =-P(f)logPi(f) > - ——=-.
t(f ng) t(f) Og t(f)_ 2 Pt(f)
Finally, inequality (7) follows by taking (,z) = (1,0). Notice that this method
gives also the logarithmic Sobolev inequality (2). Namely, by Cauchy-Schwarz
inequality

[P s (VA < Piey(IV£1)* < Pee(f) Prcsy (‘VJ{ |2) :

therefore, we obtain

P;(flog f) — Py(f) log P:(f) =

|
DO =
c\“
be
/N
g}
3T
| )
ﬁ —
|
==
)
N—
I

To deduce (8) from (7), just apply (7) to

f(@) = h(z) (2m)* 5"
where h is a compactly supported smooth pdf. One then gets

/:chdx-i-/Vhdz

But we have [Vhdz = 0. Therefore, by denoting K(h) the covariance matrix
associated with the pdf h, one gets

2
< 2/hlogh dz + /|x|2hdz + nlog(2r).

—Ent), (k) < -;—Tr K(h) + glog(27r),

which remains true for any smooth pdf h. Finally, by performing the change of
function h = ag(a-) and optimizing in a, one obtains

TrK(h)]

—Ent, (k) < glog [21re

which is nothing else than (9). Conversely, it is easy to see that we can recover (7)
for any pdf f by approximating f by compactly supported probability density
functions. .

The equivalence between (9) and (1) is obtained as for the equivalence be-
tween (4) and (5). Namely, to deduce (1) from (9), apply (9) to the random vector
X= K(Y)—l/ Y. Conversely, use the arithmetic-geometric means inequality (6)
on the spectrum of the non-negative symmetric matrix K(X).
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4 Remarks

It is well-know that the logarithmic Sobolev inequality (2) is a consequence of
the Gaussian isoperimetric inequality [13]. In contrast, it is shown in [3] that
the reversed form (7) is equivalent to a translation property [6]. Namely, for any
smooth function f : R"® — [0,1]

By, (VI < H(Ey, (£)), (12)

where I is the Gaussian isoperimetric function given by I := &' o =1, where
& is the Gaussian distribution function given by &(-) := v((—o0,‘]). Bobkov’s
inequality (12) expresses that among all measurable sets with fixed Gaussian
measure, half spaces have minimum barycenter [3].

Acknowledgments The author would like to thank Michel Ledoux and Cécile
Ané for their encouragements and helpful comments.

References

1. C. Ané, S. Blachére, D. Chafai, P. Fougéres, 1. Gentil, F. Malrieu, C. Roberto,
and G. Scheffer. Sur les inégalités de Sobolev logarithmiques. with an introduc-
tion by D. Bakry and M. Ledoux, to appear in “Panoramas et Synthéses, Société
Mathématique de France, 2000.

2. D. Bakry, D. Concordet, and M. Ledoux. Optimal heat kernel bounds under
logarithmic Sobolev inequalities. ESAIM Probab. Statist., 1:391-407 (electronic),
1997.

3. F. Barthe, D. Cordero-Erausquin, and M. Fradelizi. Shift inequalities of gaussian
type and norms of barycenters. preprint, september 1999.

4. W. Beckner. Geometric asymptotics and the logarithmic Sobolev inequality. Forum
Math., 11(1):105-137, 1999.

5. N. Blachman. The convolution inequality for entropy powers. IEEE Trans. Infor-
mation Theory, IT-11:267-271, 1965.

6. S. Bobkov. The size of singular component and shift inequalities. Ann. Probab.,
27:416-431, 1999.

7. E. Carlen. Super-additivity of Fisher’s information and logarithmic Sobolev in-
equalities. J. Funct. Anal., 101(1):194-211, 1991.

8. T. Cover and J. Thomas. Elements of information theory. John Wiley & Sons
Inc., New York, 1991. A Wiley-Interscience Publication.

9. A. Dembo. Information inequalities and uncertainty principles. In Tech. Rep.,
Dept. of Statist. Stanford Univ., 1990.

10. A. Dembo, T. Cover, and J. Thomas. Information-theoretic inequalities. IEEE
Trans. Inform. Theory, 37(6):1501-1518, 1991.

11. L. Gross. Logarithmic Sobolev inequalities. Amer. J. Math., 97(4):1061-1083,
1975.

12. M. Ledoux. Concentration of measure and logarithmic Sobolev inequalities.
In Séminaire de Probabilités, XXXIII, Lecture Notes in Math., pages 120-216.
Springer, Berlin, 1999.



13.

14.

15.

16.

200

M. Ledoux. The geometry of Markov Diffusion Generators. Ann. Fac. Sci. Toulouse
Math., 1X(2):305-366, 2000.

M. S. Pinsker. Information and information stability of random variables and
processes. Holden-Day Inc., San Francisco, Calif., 1964. Translated by Amiel
Feinstein.

C. Shannon. A mathematical theory of communication. Bell System Tech. J.,
27:379-423, 623-656, 1948.

A. Stam. Some inequalities satisfied by the quantities of information of Fisher and
Shannon. Information and Control, 2:101-112, 1959.



