@article{SPS_2001__35__334_0,
author = {Chaumont, Lo{\"\i}c and Hobson, David G. and Yor, Marc},
title = {Some consequences of the cyclic exchangeability property for exponential functionals of {L\'evy} processes},
journal = {S\'eminaire de probabilit\'es},
pages = {334--347},
year = {2001},
publisher = {Springer - Lecture Notes in Mathematics},
volume = {35},
mrnumber = {1837296},
zbl = {0982.60020},
language = {en},
url = {https://www.numdam.org/item/SPS_2001__35__334_0/}
}
TY - JOUR AU - Chaumont, Loïc AU - Hobson, David G. AU - Yor, Marc TI - Some consequences of the cyclic exchangeability property for exponential functionals of Lévy processes JO - Séminaire de probabilités PY - 2001 SP - 334 EP - 347 VL - 35 PB - Springer - Lecture Notes in Mathematics UR - https://www.numdam.org/item/SPS_2001__35__334_0/ LA - en ID - SPS_2001__35__334_0 ER -
%0 Journal Article %A Chaumont, Loïc %A Hobson, David G. %A Yor, Marc %T Some consequences of the cyclic exchangeability property for exponential functionals of Lévy processes %J Séminaire de probabilités %D 2001 %P 334-347 %V 35 %I Springer - Lecture Notes in Mathematics %U https://www.numdam.org/item/SPS_2001__35__334_0/ %G en %F SPS_2001__35__334_0
Chaumont, Loïc; Hobson, David G.; Yor, Marc. Some consequences of the cyclic exchangeability property for exponential functionals of Lévy processes. Séminaire de probabilités, Tome 35 (2001), pp. 334-347. https://www.numdam.org/item/SPS_2001__35__334_0/
[1] : Exchangeability and related topics. Lecture notes in Math., Springer, vol. 1117 École d'été de Probabilité de Saint-Flour XIII, 1983. | Zbl | MR
[2] : Lévy Processes. Cambridge University Press 1996. | Zbl | MR
[3] : Some elements on Lévy Processes Handbook of statistics, Stochastic processes. Theory and methods. D.N.S. Shanbhag, North Holland, to appear (2000). | Zbl | MR
[4] , and : Two chain-transformations and their applications to quantiles. J. Appl. Prob. 34, (1997), 882-897. | Zbl | MR
[5] : Relations entre pont brownien et excursion renormalisée du mouvement brownien. Ann. Inst. Henri Poincaré 22 (1986), 1-7. | Zbl | MR | Numdam
[6] , , : Some extensions of the arc sine law as partial consequences of the scaling property of Brownian motion. Prob. Th. Rel. Fields 100 (1994), no. 1, 1-29. | Zbl | MR
[7] : An extension of Vervaat's transformation and its consequences. J. Theor. Prob., vol. 13, n° 1, p. 259-278 (2000). | Zbl | MR
[8] : Sample quantiles of stochastic processes with stationary and independent increments and of sums of exchangeable random variables. Ann. App. Probab. vol. 6, No. 3, (1996), 1041-1043. | Zbl | MR
[9] , : A pointwise ergodic theorem for the group of rational rotations. Trans. Amer. Math. Soc. 251, 299-308, 1980. | Zbl | MR
[10] , , : The law of geometric Brownian motion and its integral, revisited; application to conditional moments. Preprint (2000). | MR
[11] , , : On a striking identity about the exponential functional of the Brownian bridge. To appear in Periodica Math. Hung., (2001). | Zbl
[12] and : Occupation time distributions for Lévy bridges and excursions. Stoch. Proc. Appl. 58, (1995), 73-89. | Zbl | MR
[13] , and : Markovian bridges: construction, Palm interpretation, and splicing. Seminar on Stochastic Processes, 1992 (Seattle, WA, 1992), 101-134, Progr. Probab., 33, Birkhäuser Boston, Boston, MA, 1993. | Zbl | MR
[14] : Canonical representation and convergence criteria for processes with interchangeable increments. Zeit. Whahr. verw. Geb. 27, 23-36, 1973. | Zbl | MR
[15] : The uniform law for exchangeable and Lévy process bridges. Hommage a P. A. Meyer et J. Neveu, Astérisque, (1996), 171-188. | Zbl | MR | Numdam
[16] : On local times for functions and stochastic processes I. Theory Probab. Appl. Vol. 40, No. 4, (1995), 702-713. | Zbl | MR
[17] and : Continuous martingales and Brownian motion, Springer, Berlin, Third edition, (1999). | Zbl | MR
[18] : A relation between Brownian bridge and Brownian excursion. Ann. Probab. 7 (1979), 141-149. | Zbl | MR
[19] : The distribution of Brownian quantiles. J. Appl. Prob. 32, (1995),405-416. | Zbl | MR






