@article{SPS_1999__33__334_0,
author = {Pratelli, Maurizio},
title = {An alternative proof of a theorem of {Aldous} concerning convergence in distribution for martingales},
journal = {S\'eminaire de probabilit\'es},
pages = {334--338},
year = {1999},
publisher = {Springer - Lecture Notes in Mathematics},
volume = {33},
mrnumber = {1768006},
zbl = {0954.60037},
language = {en},
url = {https://www.numdam.org/item/SPS_1999__33__334_0/}
}
TY - JOUR AU - Pratelli, Maurizio TI - An alternative proof of a theorem of Aldous concerning convergence in distribution for martingales JO - Séminaire de probabilités PY - 1999 SP - 334 EP - 338 VL - 33 PB - Springer - Lecture Notes in Mathematics UR - https://www.numdam.org/item/SPS_1999__33__334_0/ LA - en ID - SPS_1999__33__334_0 ER -
%0 Journal Article %A Pratelli, Maurizio %T An alternative proof of a theorem of Aldous concerning convergence in distribution for martingales %J Séminaire de probabilités %D 1999 %P 334-338 %V 33 %I Springer - Lecture Notes in Mathematics %U https://www.numdam.org/item/SPS_1999__33__334_0/ %G en %F SPS_1999__33__334_0
Pratelli, Maurizio. An alternative proof of a theorem of Aldous concerning convergence in distribution for martingales. Séminaire de probabilités, Tome 33 (1999), pp. 334-338. https://www.numdam.org/item/SPS_1999__33__334_0/
[1] : Stopping Times and Tightness. Ann. Prob. 6, 335-340 (1979) | Zbl | MR
[2] : Stopping Times and Tightness II. Ann. Prob. 17, 586-595 (1989) | Zbl | MR
[3] : Distances of Probability measures and Random Variables. Ann. of Math. Stat. 39, 1563-1572 (1968) | Zbl | MR
[4] , : Limit theorems for stochastic processes. Berlin, Heidelberg, New York: Springer 1987. | Zbl | MR
[5] : Random time changes and convergence in distribution under the Meyer-Zheng conditions Ann. Prob. 19, 1010-1034 (1991) | Zbl | MR
[6] , : Tigthness criteria for laws of semimartingales. Ann. Inst. Henri Poincaré Vol. 20 No. 4, 353-372 (1984) | Zbl | MR | Numdam
[7] , : Functional convergence of Snell envelopes: Applications to American options approximations. Finance Stochast. 2, 311-327 (1998) | Zbl | MR






