@article{SPS_1999__33__315_0,
author = {Kallsen, Jan},
title = {A stochastic differential equation with a unique (up to indistinguishability) but not strong solution},
journal = {S\'eminaire de probabilit\'es},
pages = {315--326},
year = {1999},
publisher = {Springer - Lecture Notes in Mathematics},
volume = {33},
mrnumber = {1768004},
zbl = {0954.60046},
language = {en},
url = {https://www.numdam.org/item/SPS_1999__33__315_0/}
}
TY - JOUR AU - Kallsen, Jan TI - A stochastic differential equation with a unique (up to indistinguishability) but not strong solution JO - Séminaire de probabilités PY - 1999 SP - 315 EP - 326 VL - 33 PB - Springer - Lecture Notes in Mathematics UR - https://www.numdam.org/item/SPS_1999__33__315_0/ LA - en ID - SPS_1999__33__315_0 ER -
%0 Journal Article %A Kallsen, Jan %T A stochastic differential equation with a unique (up to indistinguishability) but not strong solution %J Séminaire de probabilités %D 1999 %P 315-326 %V 33 %I Springer - Lecture Notes in Mathematics %U https://www.numdam.org/item/SPS_1999__33__315_0/ %G en %F SPS_1999__33__315_0
Kallsen, Jan. A stochastic differential equation with a unique (up to indistinguishability) but not strong solution. Séminaire de probabilités, Tome 33 (1999), pp. 315-326. https://www.numdam.org/item/SPS_1999__33__315_0/
, (1991). Wahrscheinlichkeitstheorie, 4th edn. De Gruyter, Berlin. | Zbl | MR
, (1979). Calcul Stochastique et Problèmes de Martingales, Lecture Notes in Mathematics, vol. 714. Springer, Berlin. | Zbl | MR
and , (1991). Brownian Motion and Stochatic Calculus, 2nd edn. Springer, New York. | Zbl | MR
and , (1985). Probabilistic Properties of Deterministic Systems. Cambridge University Press, Cambridge. | Zbl | MR
, (1992). Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin.
and , (1994). Continuous Martingales and Brownian Motion, 2nd edn. Springer, Berlin. | Zbl | MR
, (1975). An Example of a Stochastic Differential Equation Having No Strong Solution. Theory of Probability and Applications 20, 416-418. | Zbl | MR





