@article{SPS_1998__32__128_0,
author = {Amghibech, S.},
title = {Criteria of regularity at the end of a tree},
journal = {S\'eminaire de probabilit\'es},
pages = {128--136},
year = {1998},
publisher = {Springer - Lecture Notes in Mathematics},
volume = {32},
mrnumber = {1655148},
zbl = {0917.60070},
language = {en},
url = {https://www.numdam.org/item/SPS_1998__32__128_0/}
}
Amghibech, S. Criteria of regularity at the end of a tree. Séminaire de probabilités, Tome 32 (1998), pp. 128-136. https://www.numdam.org/item/SPS_1998__32__128_0/
[1] , AND Random Walk on Tree and Capacity in the Interval. Ann. Inst. H. Poincaré sect B. 28, 4 (1992), 557-592. | Zbl | MR | Numdam
[2] , , AND . Martin capacity for Markov chains. Ann. Probability. 23, 3 (1995), 1332-1346. | Zbl | MR
[3] Fonctions harmoniques sur un arbre. Symposia. Math. Acadi 3 (1972), 203-270. | Zbl | MR
[4] Fonctions of One Complex Variable II. Springer-Verlag, 1995. | Zbl | MR
[5] Classical Potential Theory. Springer-Verlag, 1984. | Zbl | MR
[6] , AND The Dirichlet problem at infinity for random walks on graphs with a strong isoperimetric inequality. Probab. Theory Relat. Fields 91, 3-4 (1992), 445-466. | Zbl | MR
[7] Wiener's Test and Markov Chains. J. Math. Anal. Appl. 6 (1963), 58-66. | Zbl | MR
[8] Random Walk and Percolation on Trees. Ann. Probability. 18, 3 (1990), 931-958. | Zbl | MR
[9] Markov Chains. North Holland, 1975. | Zbl | MR
[10] Potential Theory on Infinite Networks. Springer-Verlag, 1994. | Zbl | MR
[11] Potential Theory in Modern Function Theory. Maruzen Co. LTD, Tokyo,1959. | Zbl | MR
[12] Behaviour at infinity and harmonic functions of random walks on graphs. Probability Mesures on Groups X. ed. H. HEYER Plenum Press, New York,1991. | Zbl | MR





