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ANTICIPATIVE CALCULUS FOR THE POISSON PROCESS
BASED ON THE FOCK SPACE

DAVID NUALART &#x26; JOSEP VIVES

1. Introduction.
The stochastic anticipative calculus for the Brownian motion has been developed

recently by several authors [6],[7]. This stochastic calculus is based on the Skorohod
integral b, which is known to be the adjoint operator of the derivative operator D
on the Wiener space [3]. There are some basic properties of the Skorohod integral
and of the derivative operator which can be expressed in terms of the Wiener chaos
expansion. This fact leads in a natural way, to study the behaviour of those operators
on a different context like the Poisson case. More generally, these operators can be
defined on an arbitrary Fock space associated with a Hilbert space H.
The aim of this note is to present some properties of these operators D and 03B4 on a

general Fock space, and to analyze their behaviour when the Fock space is interpreted
as a Poisson space.

Sections 2 to 4 are devoted to the study of the operators D and 03B4 on a general
Fock space. The particular case of the Poisson process is considered in sections 5 to
7. The main results are the interpretation of the derivative operator as a translation
given in section 6, and the representation of the operator 6 as a Stieltjes integral on the
predictable processes, obtained in sections 4 and 7.

For related works see the papers [11] by L.Wu and [2] by A.Dermoune and al.

2. The Fock Space.
Let H be a real separable Hilbert space. Consider the n-th tensorial product 

Let Sn be the set of permutations of {l, 2, ... , n}. Any permutation a E Sn induces an
automorphism over given by

U03C3(x1 ~ ... ~ xn) = x03C3(1) ~ ... ~ x03C3(n).

We denote by H0n the Hilbert space of symmetric tensors, that means, which are
invariant under any automorphism !7~.
In H0n we consider the modified norm,

II f n! II f °

DEFINITION 2.1. . The Fock space associated to H is the Hilbert space

cx>

~(H) _ >

n=O

equipped with the inner product
00

~h~ 9~~(H) _ 9nl ~

n=0

if h = and g = gn. . Here we take H~° = Rand H01 = H.
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The most interesting case is H = L2(T), where (T, ~i, ~) is a separable, a-finite and
atomless measure space. In this case is isometric to L2(T n). Moreover, H0n
is the space of square-integrable symmetric functions with the modified norm
!! - 

’

There are different representations of the Fock space (L2(T)) as an L2-space, which
produce several useful interpretations of the elements of the Fock space. For example:

a) Let W = ~W (B), B E B, a(B)  +oo} be a Brownian measure on (T, ~i, .1),
that means a zero-mean Gaussian process with covariance given by =

A(Bi fl B2 ), defined in some probability space (S~, .~’, P), and assume that .~’ is generated
by W. In this case, is the L2-space of the Wiener functionals via the Wiener-
chaos decomposition: .

cx>

F e LZ(~~ ~~ P) ~ F = ~ fn E 
n=0

b) Similar representations can be obtained using a Poisson process.

3. The Derivative Operator on the Fock Space.
Let H = L2(T, ~i, a) be as in the previous section, and consider the associated Fock

space For every F E F = fn, we define the derivative of F, DF as
the element of @ H ^-_’ L2(T; given by

00

DtF = ~ t), for a.e. t.
n=l

provided that sum converges in L2(T; That means DF exists if

~ DF~2L2(T;03A6(H)) = T ~ DtF ~203A6(H) 03BB(dt)

= n2(n - 1)! T ~ fn(., t) ~2L2(Tn-1) 03BB(dt)

~

II f n IIL2 ( Tn )  +oo.
n=l

It is easy to check that D is an unbounded and closed operator on We will denote
the domain of D by 7), which is a dense subspace of 

For any hE L2 (T ), we can also define a closed and unbounded operator Dh from
to by

n=1 T

provided that this series converges in (H).
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The domain Th of Dh is the set of elements F = such that

T n2 ~ fn(.,t)h(t) ~2L2(Tn-1) (n - 1)! 03BB(dt)  +~.

n=0

By the Schwarz inequality, it is clear that Dh D D for all h.
Although in a general Fock space we don’t have a sample space or 7-fields, we can
introduce a generalized notion of adaptability, and also, a generalized conditional ex-
pectation. These notions are intrinsic in the sense that they do not depend on the

particular representation of the Fock space.

DEFINITION 3.1. Let F E a)) be given by F = f n, and consider a
subset of T, A E B. We will say that F is FA-measurable if for any n > 1 we have

... t n) = 0, 03BBn - a.e. unless ti ~ A , Vi = 1, ... ,12.

Note that in the above definition 7A is not defined as a 7-field because we don’t have

a sample space H.
In the particular case of a Brownian measure WeB) on (T, B, a) this definition means
that F is measurable w.r.t. the u-field 7A = C C A, C E B}.
As in the case of Brownian measure we have the following result

LEMMA 3.1. Let F E D be 7A-measurable. Then DtF = 0, for a.e. t E A~.

This lemma will help us to generalize the notion of conditional expectation.

DEFINITION 3.2. . For any F E (H) and A E B, we define

00

f n(tl, ... , tn) .

n=0

LEMMA 3.2. . For any F E D, and A E B we have

= lA(t), for a.e. t.

4. The operator 6.
Consider the Hilbert space L2(T ) ® This Hilbert space can

be decomposed into the orthogonal sum n! . L2(Tn+1), where is the

subspace of L2 (T n+1 ) formed by all square integrable functions on which are

symmetric in the first n variables.
Let u E L2(T; be given by

= un~ ~n E 

n>0

We will denote by un the symmetrization of un with respect to its n + 1 variables .
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We can define the Skorohod integral of u as the element of (H) given by,

~(u) _ ~ un~
n>0

assuming that

+ 1)~ II un IILz ( Tn+1 )  +oo.
n>0

We denote by Dom ~ the set of elements u E L2(T; ~(H)) verifying the above property.
The notion of predictability can also be defined in the general context of the Fock space.
This fact has been pointed out to us by P.A. Meyer.

DEFINITION 4.1. An element u E L2(T; is called an elementary predictable
process if

(1) u(t) = F 

where F E is FA-measurable, and A E B.

PROPOSITION 4.1. If u is an elementary predictable process of the form (I), and
03BB(Ac)  +00 then u E Dom03B4 and

(2) 03B4(u) = fn1Ac,
n=0

where F = fn, and ® denotes the symmetric tensor product.
PROOF: The above series converge because

03A3(n + 1)! ~ fn1Ac ~2L2(Tn+1) = 03A3 n! ~ fn ~ 1Ac ~2L2(Tn+1)
n~O

=II ~’ II~(H) a(A~)  +~. 1
The right hand side of (2) could be used as an intrinsic definition of the product of

F by which coincides with the usual product in the Brownian and the Poisson
case. This follows from the product formulas for the multiple stochastic integrals. See~4~ for the Poisson process. In that sense the Skorohod integral is equal to the ordinarystochastic integral on elementary predictable processes. We will continue this discussion
in section 7.
The following results provide the duality relation between the operators D and ~.
PROPOSITION 4.2. . Let u E Dom 8, and F E D, then,

1u’ ’- 
.
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PROOF: Suppose that u = and F = Then

(u, = / u(., t), .

=~! .

~>o ~

=~+1)! / ~ 
and using the fact that is a symmetric function,

= / t

Consequently, 6 is the dual operator of D and it is clear that Dom 6 is dense in

L~(T; and 6 is a closed operator.
We are going to introduce some subsets of Dom6: We denote by jC~ the class of

elements u e such that ~ ~ P, for a.e. t. and Dsut C ~(T~~(R)). In

terms of the Fock expansion this is equivalent to

~(~+i)! 
T~l

It is clear that this implies jC~ G Dom 6.

THEOREM 4.1. Let u,v be elements . Then we have

03B4(u),03B4(v)03A6(H) = u,vL2(T;03A6(H)) + T2Dsut,Dtvs03A6(H)03BB(dt)03BB(ds).
PROOF: We have

(~(~), ~))~) == + 1)! / n.(.~) ~(., ~) A(~i)... 
n>o 

On the other hand 

u,vL2(T;03A6(H)) = Tut,vt03A6(H)03BB(dt)
= Tn+1n!un(.,t)vn(.,t)03BB(dt1)...03BB(dtn)03BB(dt).

The difference between these two terms is

/ + 1)! ~(’~) t) - n! ~(’~ ~ ~i)"’ 
’

= (n + 1)! Tn+1 [n(.,t)n(.,t) - un(.,t)vn(.,t n+1]03BB(dt1)...03BB(dtn)03BB(dt)
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= (n + 1)! Tn+1 un(.,t)[n.,t) - vn(.,t) n+1]03BB(dt)1...03BB(dtn)03BB(dt)

= 

n! Tn+1 vn(., ti) un(.,t)03BB(dt1) ...03BB(dtn)03BB(dt),

then using the symmetry of Vn with respect to the first n variables and putting s = tn
we obtain

~ n vn(’, t, s) un(~, s, t) a(dtl ) ... 
n>1 

= T2Dsut,Dtvs03A6(H)03BB(ds)03BB(dt).

THEOREM 4.2. Let u E ,C2, Dtu E Dom 6 and 6(Dtu) E L2(T;03A6(H)). Then 6(u) E D
and

Dt6(u) = Ut + 6(Dtu).
PROOF: Suppose that u = un. Then 6(u) = un, and

Dt8(u)= ~(n + = un(~.; t) + . I
n>0 n>0 n>1

The notions and properties we have introduced so far, depend only on the underlying
Hilbert space H. There are other concepts which are related to the particular represen-
tation of the Fock space, like the product of two elements, the composition of a function
with an element of the Fock space or the notion of positivity [9]. In the papers ~6~,
and [7] these notions are developed for the case of the Gaussian representation. In this
paper we are going to investigate the behaviour of this notions in the Poisson case.

5. The Poisson space.
Let (T, B, A), be a measure space such that T is a locally compact space with a

countable basis and A is a Radon-measure that charges all the open sets, and that is
diffuse over the 03C3-field B.

Following [11], and [5] we can define the Poisson space over this measure space by
taking

n

,

j=0 

Fo = : pa(W) = W(A)~ A E f3}.
and P the probability measure defined over (S~, in such a way that

ii) VA, B E B with An B = 0, pA and pB are P-independent.
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Finally we denote by .~’ the completion of with respect to P.
Note that:

P( {w w is a Radon-measure} ) =1,

and

P({w E SI : ~t E T : w({t}) > 1}) = 0.

It is well-known that we can define a multiple stochastic integral with respect to a

compensated Poisson measure. If f E > 1 we denote the multiple stochastic

integral of f by

In(f) = Tn* f(t1, ... ,tn)(03C9 - 03BB)(dt1) ... (03C9 - 03BB)(dtn),

where 03C9 - A is the compensated Poisson measure, and

j’* =l(tl,... 

This integral has the following properties:

1. In( f ) = In(f) , where f is the symmetrization of f .

2. In( f ) E L2(~, ~, p)

3.(,~n( f ), Im(9)~L2(~) = 121 ~ 1f ~ 9l LZ(T") ’ 1{n=m}.

It is also possible to define this integral via the Charlier polynomials [8]

Consider the Hilbert space H = L2 (T ). Then we have

II In(f) f 

where II n~ ~~ f I) LZ(Tn) is the modified norm of H~n introduced in section 1 .
We also set Io(c) = c, Vc E R. Then we have the orthogonal decomposition

n>0

with

~%n = {In(f), f E 

which provides an isometry between L2(5~,.~’, P) and the Fock space ~(L2(T )). We
have therefore an interpretation of the Fock space as a space of L2-functionals over the

Poisson space. This interpretation is different from that obtained in the Wiener case.
We will study in this setting, the operators D and b.



161

6. A Translation Operator.
Consider the following application on the set H of point measures over (T, B, a)

Wt(w) = w + ~t. .

This application is well-defined from n to S~, and if no = {~ : w( t)  l, Vt E T } , it is
clear that C S2o a.s. for every fixed t, because P{w : w(t) == 1} = 0. Therefore
the mapping W induces a transformation of the Poisson functionals defined by

= + bt) - 

The next result gives a product formula for the translation operator Wt, and it will
be useful later:

LEMMA 6.1. Let F, G be functionals over S~. Then

wt(F. G) = F + G + 

PROOF:

G) = F(w + bt) G(w + bt) - F(w) G(w)

= + 6t) G(W + 6t) - + ~t ) + +. bt ) G(w ) - F(W ) G(w)

= F(w + bt) + G(w)

= (F(w + ~t) - F(w)) Wt(G) + Wt(F) G + F 

= F + G + i

The next result shows that the operators Wt and Dt coincide.

THEOREM 6.2. For every F = DtF a.s., for a.e. t.

PROOF: We will do the proof by induction, using a formula of Yu. M. Kabanov [4]
a) Suppose first that F is an element of the first chaos, that means

F = h (f ) = f (t)(~ - À)(dt) = f (t) T i T

where f e Then

03A8t(F) =  f(ti) + f(t) - T f(t)03BB(dt) - f(ti) + T f(t)03BB(dt)

= f(t) = DtF.
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b) We recall the following formula proved by Yu. M. Kabanov in [4], which is the
Poisson version of the product formula for the multiple stochastic integrals

k k

(3) ® g) = ’ jl(9) - *(j) 9) - X (j) g)?
j=l j=l

where cp E L2 (T k ), g E L2(T) and

(~P ~ 9)(ti, ... tk~ t) = ... , , tk) g(t)

(~ *(j) g)(tl, ... tk ) _ ~(t1 ... ~ t j ~ ... tk) 
and

(03C6 (j) g)(t1, ..., j,...,tk) = T03C6(t1, ... , tk) g(tj)03BB(dtj ).

By induction on k we will show that

(4) DtIk(f1 ~ ... ~ fk) = 03A8tIk(f1 ~ ... ~ fk), ~k ~ 1,

assuming that /i,/2?"’ , f k are orthogonal elements of L~(T). By (a) this formula is
true if k = 1. Suppose that it holds up to k, and let us compute, using the orthogonality
of the f k, Lemma 6.1, formula (3) and the induction hypothesis

® fk+1) - ® 

k

- L ® ... ® fk] *(j) fk+1 ))
j=l

= Ik(f1 ~ ... ~ fk)fk+1(t) + DtIk(f1 ~ ... ~ fk)I1(fk+1) + DtIk(f1 ~ ... ~ fk)fk+1(t)

k

- 03A3 DtIk([f1 ~ ... ~ fk] *(j) fk+1)
j=1

k

=Ik(f1 ~ ... ~ fk)fk+1 + I1(fk+1) 03A3fj(t)Ik-1(f1 ~ ... ~ j ~ ... ~ fk)
jL.=Jl

k k 
_

- ~ ~ fl(t). ® ... ® f~ ® ... ® ( fj fk+1 ) ® ... ® fk .

On the other hand,

k+1 
_

~ ... ® fk+1) _ ~ ~ ... ® fj ~ ... ~ fk+1),
j=l



163

Then it suffices to show that

k

~ 0 "’ 0 ~- 0’" 0 A+i)
j=i

k

= 0 - " 0 /y 0 ’ .. 0 A)
~=1

k k

"~ ~ ~)~-i(A0’"0~0"’0(~A+i)0"’0A),
and this follows from

0 " . 0 ~- 0 ... 0 = 0 ... 0 ~- 0 ... 0 
" Z~ ~-i(~~’"0~~"-0(~A+i)0’"0A+i).

c) Formula (4) holds for every k and for every function fk C by a continuous
argument.
d) Finally if F is an L2-limit of a sequence of Fn and every Fn is a sum of stochastic
integrals, then F is the limit almost surely of a partial subsequence Consequently

is the limit almost surely of for a.e. t. On the other hand DtFnj convergesweakly to DtF because D is a closed operator. Then DtF = 03A8tF (a.s.). t

As an application we will compute the derivative of the discontinuity times of a Poisson
process. Let T = [0,1], and let ~ ... , Sn, be the jump times of the standard Poisson
process over T. We are going to calculate the transformation = + ~) - 
Then we have = 0 if t > ~ = t - if  ~  c. and

Therefore, = and for example for
z=l, 
Note that this expression is completely different from the results of [1]. Rememberthat in [1] the operator D is introduced as a real derivative operator with respect to

some scale parameter, and this gives the possibility to stablish a Malliavin calculus on
this Poisson space. Note also that this operator ~ is not local as it follows from the
following example. Suppose that F and G are functionals that coincide and are equalto zero over the subset {7V(1/2) = ~V(l)} and take the values 1 and 2 respectively onthe complementary subset. For all t > 1/2 we have DF = 1 and DtG = 2.

7.The Skorohod integral over the Poisson space.
Let u be a process of L2(T;L2(03A9)), i.e. taking values in the Poisson space. Clearly,by the Poisson-Wiener expansion we have 

’

M>0

for a.e. t. where fn(.;t) is a function of ~(T).
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We define

n>0

provided that

(n + 1)~ ~~ ... , tn, +oo

n~O

where

n(t1,...,tn,t) = 1 n+1{ fn(t1,...,t,...tn,ti) + fn(t1...,tn,t)}.
In order to compute the Skorohod integral of elementary processes, we will use the next
result.

THEOREM 7.1. . Let u E L2(T;L2(03A9)) ~ L2(T x H) , u E Dom 03B4 andF E D C L2(03A9).
Suppose also that DF . u E Dom 03B4. Then,

Fui 6 Dom ~,

and 

03B4(Fut) = F03B4(u) - T ut DtF03BB(dt) - 03B4(DFu).

PROOF: If G E D, is a test variable, and using that D is dense in L2(03A9),

ET FutDtG03BB(dt) = E Tut{Dt(FG) - GDtF - DtFDtG}03BB(dt)
= E[FG03B4(u)] - E[G TutDtF03BB(dt)] - E[G03B4(uDF)]

= E[G{F03B4(u) - T utDtF03BB(dt) - 03B4(uDF)}]

= E[G03B4(Fu)].

As a consequence of Proposition 4.1, if T = [0, l~, every square-integrable predictable
process u is in the Dom03B4, and 03B4(u) is equal to the Poisson-Wiener integral.

In fact, every square-integrable predictable process can be approximated in 

by finite linear combinations of elementary predictable processes like F . 
with

F, ,~’~4~~~-measurable.
Then, from Theorem 7.1, or directly from Proposition 4.1 and Kabanov formula, 

we

have
b(F . = F ~~1(9~t1).

Finally the isometry of the Poisson-Wiener integral implies the equivalence 
between

the integrals.
For a non-predictable process we can interpret 6 as the Poisson- Wiener integral

minus a corrective term. This corrective term can be expressed in terms of the whole

derivatives of u on the jump times of the Poisson process. This interpretation coincides

with the results of [2].
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We have the following theorem.

THEOREM 7.2. If u is a process over [0,1] such that ut ~ D2,~, &#x26;r then there
exists a process As which depends on us such that

~ . ~
03B4(u) = 0 usdÑs - 0 AsdNs .

PROOF: The proof can be done in two steps. First of all for simple processes like
0 ’" 0 we can show by induction on &#x26; that the theorem holds with

~ = + ... + (-l)~D....~ ... D,~,.

Finally by means of a limit argument we show the result, first for a simple process
of the form and then for a general process t~ verifying the conditions of the
theorem.
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