A family of second-order dissipative finite volume schemes for hyperbolic systems of conservation laws
The SMAI Journal of computational mathematics, Tome 9 (2023), pp. 31-60

We propose and study a family of formally second-order accurate schemes to approximate weak solutions of hyperbolic systems of conservation laws. Theses schemes are based on a dissipative property satisfied by the second-order discretization in space. They are proven to satisfy a global entropy inequality for a generic strictly convex entropy. These schemes do not involve limitation techniques. Numerical results are provided to illustrate their accuracy and stability.

Publié le :
DOI : 10.5802/smai-jcm.94
Classification : 65N08, 35L65, 35L67
Keywords: Systems of conservation laws, Second-order finite Volume schemes, Explicit schemes, Global entropy inequality.

Badsi, Mehdi 1 ; Berthon, Christophe 1 ; Martaud, Ludovic 1

1 Laboratoire de Mathématiques Jean Leray, CNRS UMR 6629, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes, France
@article{SMAI-JCM_2023__9__31_0,
     author = {Badsi, Mehdi and Berthon, Christophe and Martaud, Ludovic},
     title = {A family of second-order dissipative finite volume schemes for hyperbolic systems of conservation laws},
     journal = {The SMAI Journal of computational mathematics},
     pages = {31--60},
     year = {2023},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {9},
     doi = {10.5802/smai-jcm.94},
     zbl = {1507.65221},
     mrnumber = {4573691},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/smai-jcm.94/}
}
TY  - JOUR
AU  - Badsi, Mehdi
AU  - Berthon, Christophe
AU  - Martaud, Ludovic
TI  - A family of second-order dissipative finite volume schemes for hyperbolic systems of conservation laws
JO  - The SMAI Journal of computational mathematics
PY  - 2023
SP  - 31
EP  - 60
VL  - 9
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://www.numdam.org/articles/10.5802/smai-jcm.94/
DO  - 10.5802/smai-jcm.94
LA  - en
ID  - SMAI-JCM_2023__9__31_0
ER  - 
%0 Journal Article
%A Badsi, Mehdi
%A Berthon, Christophe
%A Martaud, Ludovic
%T A family of second-order dissipative finite volume schemes for hyperbolic systems of conservation laws
%J The SMAI Journal of computational mathematics
%D 2023
%P 31-60
%V 9
%I Société de Mathématiques Appliquées et Industrielles
%U https://www.numdam.org/articles/10.5802/smai-jcm.94/
%R 10.5802/smai-jcm.94
%G en
%F SMAI-JCM_2023__9__31_0
Badsi, Mehdi; Berthon, Christophe; Martaud, Ludovic. A family of second-order dissipative finite volume schemes for hyperbolic systems of conservation laws. The SMAI Journal of computational mathematics, Tome 9 (2023), pp. 31-60. doi: 10.5802/smai-jcm.94

[1] Berthon, Christophe Stability of the MUSCL schemes for the Euler equations, Comm. Math. Sci, Volume 3 (2005) no. 2, pp. 133-158 | Zbl | MR | DOI

[2] Berthon, Christophe Numerical approximations of the 10-moment Gaussian closure, Math. Comput., Volume 75 (2006) no. 256, pp. 1809-1832 | MR | DOI | Zbl

[3] Bouchut, François Construction of BGK models with a family of kinetic entropies for a given system of conservation laws, J. Stat. Phys., Volume 95 (1999) no. 1-2, pp. 113-170 | Zbl | MR | DOI

[4] Bouchut, François Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources, Frontiers in Mathematics, Birkhäuser, 2004, viii+135 pages | DOI

[5] Bouchut, François; Bourdarias, Christian; Perthame, Benoit A MUSCL method satisfying all the numerical entropy inequalities, Math. Comput., Volume 65 (1996) no. 216, pp. 1439-1462 | MR | DOI

[6] Castro, Manuel J.; Fjordholm, Ulrik S.; Mishra, Siddhartha; Parés, Carlos Entropy conservative and entropy stable schemes for nonconservative hyperbolic systems, SIAM J. Numer. Anal., Volume 51 (2013) no. 3, pp. 1371-1391 | MR | DOI | Zbl

[7] Chalons, Christophe; LeFloch, Philippe G. A fully discrete scheme for diffusive-dispersive conservation laws, Numer. Math., Volume 89 (2001) no. 3, pp. 493-509 | MR | DOI | Zbl

[8] Cockburn, Bernardo; Coquel, Frédéric; LeFloch, Philippe G. Convergence of the finite volume method for multidimensional conservation laws, SIAM J. Numer. Anal., Volume 32 (1995) no. 3, pp. 687-705 | DOI | MR

[9] Coquel, Frédéric; Hérard, Jean-Marc; Saleh, Khaled A splitting method for the isentropic baer-nunziato two-phase flow model, ESAIM, Proc., Volume 38 (2012), pp. 241-256 | MR | DOI | Zbl

[10] Coquel, Frédéric; Perthame, Benoit Relaxation of Energy and Approximate Riemann Solvers for General Pressure Laws in Fluid Dynamics, SIAM J. Numer. Anal., Volume 35 (1998) no. 6, pp. 2223-2249 | MR | DOI | Zbl

[11] Duran, Arnaud; Marche, Fabien Recent advances on the discontinuous Galerkin method for shallow water equations with topography source terms, Comput. Fluids, Volume 101 (2014), pp. 88-104 | DOI | MR | Zbl

[12] Duran, Arnaud; Vila, Jean-Paul; Baraille, Rémy Semi-implicit staggered mesh scheme for the multi-layer shallow water system, C. R. Acad. Sci. Paris, Volume 355 (2017) no. 12, pp. 1298-1306 | Zbl | Numdam | MR | DOI

[13] Eymard, Robert; Gallouët, Thierry; Herbin, Raphaèle Finite Volume Methods, Handbook of Numerical Analysis, 7, North-Holland, 2000, pp. 713-1020

[14] Gallouët, Thierry; Herbin, Raphaèle; Latché, Jean-Claude; Therme, Nicolas Consistent Internal Energy Based Schemes for the Compressible Euler Equations, Numerical Simulation in Physics and Engineering: Trends and Applications: Lecture Notes of the XVIII ‘Jacques-Louis Lions’ Spanish-French School (SEMA SIMAI Springer Series), Volume 24, Springer, 2021, pp. 119-154 | DOI | MR | Zbl

[15] Gastaldo, Laura; Herbin, Raphaèle; Latché, Jean-Claude; Therme, Nicolas A MUSCL-type segregated–explicit staggered scheme for the Euler equations, Comput. Fluids, Volume 175 (2018), pp. 91-110 | MR | DOI | Zbl

[16] Godlewski, Edwige; Raviart, Pierre-Arnaud Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, 118, Springer, 1996 | MR | DOI

[17] Godunov, Sergeĭ K. A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sb., N. Ser., Volume 47 (1959) no. 89, pp. 271-306 | MR

[18] Gottlieb, Sigal On high order strong stability preserving Runge-Kutta and multi step time discretizations, J. Sci. Comput., Volume 25 (2005) no. 1, pp. 105-128 | Zbl | MR | DOI

[19] Gottlieb, Sigal; Shu, Chi-Wang Total variation diminishing Runge–Kutta schemes, Math. Comput., Volume 67 (1998) no. 221, pp. 73-85 | MR | DOI | Zbl

[20] Gottlieb, Sigal; Shu, Chi-Wang; Tadmor, Eitan Strong stability-preserving high-order time discretization methods, SIAM Rev., Volume 43 (2001) no. 1, pp. 89-112 | DOI | MR | Zbl

[21] Harten, Amiram; Lax, Peter D. A random choice finite difference scheme for hyperbolic conservation laws, SIAM J. Numer. Anal., Volume 18 (1981) no. 2, pp. 289-315 | MR | DOI | Zbl

[22] Harten, Amiram; Lax, Peter D.; Van Leer, Bram On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., Volume 25 (1983), pp. 35-61 | MR | Zbl | DOI

[23] Herbin, Raphaèle; Latché, Jean-Claude; Nguyen, Trung T. Consistent explicit staggered schemes for compressible flows Part I: the barotropic Euler equations (2013)

[24] Hiltebrand, Andreas; Mishra, Siddhartha Entropy stable shock capturing space–time discontinuous Galerkin schemes for systems of conservation laws, Numer. Math., Volume 126 (2014) no. 1, pp. 103-151 | MR | DOI | Zbl

[25] Hiltebrand, Andreas; Mishra, Siddhartha; Parés, Carlos Entropy-stable space–time DG schemes for non-conservative hyperbolic systems, ESAIM, Math. Model. Numer. Anal., Volume 52 (2018) no. 3, pp. 995-1022 | DOI | Zbl | MR

[26] Ismail, Farzad; Roe, Philip L. Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks, J. Comput. Phys., Volume 228 (2009) no. 15, pp. 5410-5436 | MR | Zbl | DOI

[27] Khobalatte, Brahim; Perthame, Benoit Maximum principle on the entropy and second-order kinetic schemes, Math. Comput., Volume 62 (1994) no. 205, pp. 119-131 | DOI | MR | Zbl

[28] Lax, Peter D. Weak solutions of nonlinear hyperbolic equations and their numerical computation, Commun. Pure Appl. Math., Volume 7 (1954), pp. 159-193 | MR | Zbl

[29] Lax, Peter D. Shock waves and entropy, Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971), Academic Press Inc., 1971, pp. 603-634 | MR | Zbl

[30] Lax, Peter D. Hyperbolic systems of conservation laws and the mathematical theory of shock waves, CBMS-NSF Regional Conference Series in Applied Mathematics, 11, Society for Industrial and Applied Mathematics, 1973, v+48 pages | MR

[31] LeFloch, Philippe G. Hyperbolic systems of conservation laws. The theory of classical and nonclassical shock waves, Lectures in Mathematics, Birkhäuser, 2002, x+294 pages | DOI

[32] LeFloch, Philippe G.; Ranocha, Hendrik Kinetic Functions for Nonclassical Shocks, Entropy Stability, and Discrete Summation by Parts, J. Sci. Comput., Volume 87 (2021) no. 2, 55, 38 pages | MR | Zbl | DOI

[33] Noelle, Sebastian; Xing, Yulong; Shu, Chi-Wang High-order well-balanced finite volume WENO schemes for shallow water equation with moving water, J. Comput. Phys., Volume 226 (2007) no. 1, pp. 29-58 | Zbl | MR | DOI

[34] Perthame, Benoit; Qiu, Youchum A variant of Van Leer’s method for multidimensional systems of conservation laws, J. Comput. Phys., Volume 112 (1994) no. 2, pp. 370-381 | MR | DOI | Zbl

[35] Perthame, Benoit; Shu, Chi-Wang On positivity preserving finite volume schemes for Euler equations, Numer. Math., Volume 73 (1996) no. 1, pp. 119-130 | MR | DOI | Zbl

[36] Roe, Philip L. Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., Volume 43 (1981) no. 2, pp. 357-372 | Zbl | MR | DOI

[37] Rusanov, Viktor V. The calculation of the interaction of non-stationary shock waves and obstacles, USSR Comput. Math. Math. Phys., Volume 1 (1962) no. 2, pp. 304-320 | DOI

[38] Serre, Denis Systems of conservation laws. I: Hyperbolicity, entropies, shock waves, Cambridge University Press, 1999, xxii+263 pages (translated from the 1996 French original by I. N. Sneddon) | DOI | MR

[39] Shi, Jing; Zhang, Yong-Tao; Shu, Chi-Wang Resolution of high order WENO schemes for complicated flow structures, J. Comput. Phys., Volume 186 (2003) no. 2, pp. 690-696 | MR | Zbl

[40] Shu, Chi-Wang High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD, International Journal of Computational Fluid Dynamics, Volume 17 (2003) no. 2, pp. 107-118 | DOI | MR | Zbl

[41] Tadmor, Eitan The numerical viscosity of entropy stable schemes for systems of conservation laws. I, Math. Comput., Volume 49 (1987) no. 179, pp. 91-103 | MR | DOI | Zbl

[42] Tadmor, Eitan Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta Numer., Volume 12 (2003) no. 1, pp. 451-512 | MR | DOI | Zbl

[43] Toro, Eleuterio F. Riemann solvers and numerical methods for fluid dynamics. A practical introduction, Springer, 2009 | DOI | MR

[44] Toro, Eleuterio F.; Spruce, M.; Speares, W. Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, Volume 4 (1994) no. 1, pp. 25-34 | DOI | Zbl

[45] van Leer, Bram Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J. Comput. Phys., Volume 32 (1979) no. 1, pp. 101-136 | DOI | Zbl

[46] Zakerzadeh, Hamed; Fjordholm, Ulrik S. High-order accurate, fully discrete entropy stable schemes for scalar conservation laws, IMA J. Numer. Anal., Volume 36 (2015) no. 2, pp. 633-654 | DOI | MR | Zbl

Cité par Sources :