@article{SHC_1962-1963__15__A3_0,
author = {Cerf, Jean},
title = {La nullit\'e de $\pi _0${(Diff} $S^3$). 1. {Position} du probl\`eme},
journal = {S\'eminaire Henri Cartan},
note = {talk:9-10},
pages = {1--27},
year = {1962-1963},
publisher = {Secr\'etariat math\'ematique},
volume = {15},
zbl = {0117.16805},
language = {fr},
url = {https://www.numdam.org/item/SHC_1962-1963__15__A3_0/}
}
TY - JOUR AU - Cerf, Jean TI - La nullité de $\pi _0$(Diff $S^3$). 1. Position du problème JO - Séminaire Henri Cartan N1 - talk:9-10 PY - 1962-1963 SP - 1 EP - 27 VL - 15 PB - Secrétariat mathématique UR - https://www.numdam.org/item/SHC_1962-1963__15__A3_0/ LA - fr ID - SHC_1962-1963__15__A3_0 ER -
Cerf, Jean. La nullité de $\pi _0$(Diff $S^3$). 1. Position du problème. Séminaire Henri Cartan, Topologie différentielle, Tome 15 (1962-1963), Exposé no. 9-10, 27 p.. https://www.numdam.org/item/SHC_1962-1963__15__A3_0/
[1] . - On the subdivision of 3-space by a polyhedron, Proc. Nat. Acad. Sc. U. S. A., t. 10, 1924, p. 6-8. | JFM
[2] . - Topologie de certains espaces de plongements, Bull. Soc. math. France, t. 89, 1961, p. 227-380 (Thèse Sc. math. Paris. 1960). | Zbl | MR | Numdam
[3] . - Groupes d'homotopie locaux et groupes d'homotopie mixtes des espaces bitopologiques, C. R. Acad. Sc. Paris, t. 252, 1961, p. 4093-4095 et t. 253, 1961, p. 363-365. | Zbl
[4] . - Théorèmes de fibration des espaces de plongements, Applications, Séminaire Cartan : Topologie différentielle, t. 15, 1962/63, n° 8, 13 p. | Zbl | MR | Numdam
[5] . - Le lemme de Thom et les théorèmes de plongement de Whitney, III : Les théorèmes d'existence d'applications transverses, Séminaire Cartan : Topologie différentielle, t. 15, 1961/62, n° 6, 8 p. | Zbl | Numdam
[6] and . - Homotopy and homology related to the Schoenflies problem, Annals of Math., Series 2, t. 58, 1953, p. 142-165. | Zbl | MR
[7] . - Obstructions to the smoothing of piecewise-differentiable homeomorphisms, Annals of Math., Series 2, t. 73, 1960, p. 521-554. | Zbl | MR
[8] . - On the structure of manifolds, Amer J. of Math., t. 84, 1962, p. 387-399. | Zbl | MR





