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Pa r t i e l l e s

2009-2010

Sergei Kuksin and Galina Perelman
A Vey theorem for nonlinear PDE
Séminaire É. D. P. (2009-2010), Exposé no XVIII, 11 p.

<http://sedp.cedram.org/item?id=SEDP_2009-2010____A18_0>

U.M.R. 7640 du C.N.R.S.
F-91128 PALAISEAU CEDEX

Fax : 33 (0)1 69 33 49 49
Tél : 33 (0)1 69 33 49 99

cedram
Exposé mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://sedp.cedram.org/item?id=SEDP_2009-2010____A18_0
http://www.cedram.org/
http://www.cedram.org/


A Vey theorem for nonlinear PDE

Sergei Kuksin and Galina Perelman

Introduction

In these notes we summarize the results obtained in [9] where we develop
an infinite dimensional version of the Vey theorem and apply it to study
the Birkhoff normal forms of integrable Hamiltonian PDEs near an equilib-
rium point. In his celebrated paper [11] J. Vey proved a local version of
the Liouville-Arnold theorem which in the case of an elliptic singular point
can be stated as follows. 1 Consider the standard symplectic linear space
(R2n

x , ω0), ω0 =
∑n

j=1 dxj ∧ dxn+j. Let H(x) = O(|x|2) be a germ of an ana-

lytic function 2 and VH be the corresponding Hamiltonian vector field. It has
a singularity at zero and we assume that in a suitable neighbourhood O of
the origin, H has n commuting analytic integrals H1 = H,H2, . . . , Hn such
that Hj(x) = O(|x|2) for each j, the quadratic forms d2Hj(0), 1 ≤ j ≤ n, are
linearly independent and for all sufficiently small numbers δ1, . . . , δn we have
{x : Hj(x) = δj ∀ j} b O. Then in the vicinity of the origin exist special sym-
plectic analytic coordinates {y1, . . . , y2n} (Birkhoff coordinates) in which the
hamiltonians Hr(x) may be written as Hr(x) = Ĥr(I1, . . . , In), Ij = 1

2
(y2j +

y2n+j), where Ĥ1, . . . , Ĥn are germs of analytic functions on Rn. This theo-
rem was further developed and generalised in [2, 4, 3, 12]. In [2, 3] Eliasson
suggested a constructive proof of the theorem, which applies both to smooth
and analytic hamiltonians and may be generalised to infinite-dimensional
systems. In [9] we use Eliasson’s approach to get an infinite-dimensional ver-
sion of Vey’s theorem applicable to integrable Hamiltonian PDEs. Namely,
we consider the l2-space h0, formed by sequences u = (u+1 , u

−
1 , u

+
2 , u

−
2 , . . . ),

1Vey’s result applies as well to hyperbolic singular points and to singular points of
mixed type.

2Here and everywhere below ‘a germ’ means a germ at zero of a function or a map,
defined in the vicinity of the origin.
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provide it with the symplectic form ω0 =
∑∞

j=1 du
+
j ∧ du−j , and include h0 in

a scale {hj, j ∈ R} of weighted l2-spaces. Let us take any space hm, m ≥ 0,
and in a neighbourhood O of the origin in hm consider commuting analytic
hamiltonians I1, I2, . . . . We assume that Ij = O(‖u‖2m) ≥ 0 ∀ j and that this
system of functions is κ-regular, κ ≥ 0, in the following sense: There are
analytic maps Fj : O → R2, j ≥ 1, such that Ij = 1

2
|Fj|2 and

i) the map F = (F1, F2, . . . ) : O → hm is an analytic diffeomorphism on
its image,

ii) dF (0) = id and the mapping F− id analytically maps O → hm+κ

(i.e., F− id is κ-smoothing). Moreover, for any u ∈ O the linear operator
dF (u)∗− id continuously maps hm to hm+κ.

We also make some mild assumptions concerning Cauchy majorants for
the maps F− id and dF (u)∗− id, see Section 1. The main result of [9] is the
following theorem:

Theorem 1. Let the system of commuting analytic functions I1, I2, . . . on
O ⊂ hm is regular. Then there are analytic maps F ′j : O′ → R2, defined on
a suitable neighbourhood 0 ∈ O′ ⊂ O, such that the map F ′ = (F ′1, F

′
2, . . . ) :

O′ → hm satisfies properties i), ii), it is a symplectomorphism, the functions
I ′j = 1

2
|F ′j|2 commute and their joint level-sets define the same foliation of O′

as level-sets of the original functions Ij. In particular, each Ij is an analytic
function of the variables I ′1, I

′
2, . . . .

See Section 1, Theorem 2 for a more detailed statement of the result.
Theorem 1 applies to study an integrable Hamiltonian PDE in the vicinity

of an equilibrium. As an example we consider in [9] the KdV equation under
zero-meanvalue periodic boundary conditions

u̇(t, x) =
1

4
uxxx + 6uux, x ∈ S1 = R/2πZ,

2π∫

0

udx = 0. (1)

We show that Theorem 1 with κ = 1 applies to (1) and guarantees the
existence of local Birkhoff coordinates in a neighbourhood of the origin. The
integrating transformation we get in this way has the form: “identity plus 1-
smoothing analytic map”, see Section 2, Theorem 4 for the precise statement.
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1 Main result

Consider a scale of Hilbert spaces {hm, m ∈ R}. A space hm is formed by
complex sequences u = (uj ∈ C, j ≥ 1) and is regarded as a real Hilbert
space with the Hilbert norm

‖u‖2m =
∑

j≥1
j2m|uj|2. (2)

We will denote by 〈·, ·〉 the scalar product in h0: 〈u, v〉 =
∑
uj · vj =

Re
∑
uj v̄j. For any linear operator A : hm → hn we will denote by A∗ :

h−n → h−m the operator, conjugated to A with respect to this scalar prod-
uct.

We next introduce some notions related to the infinite-dimensional tech-
niques needed for our arguments. We consider germs or real-analytic maps

F : Oδ(hm)→ hn, F (0) = 0,

where Oδ(hm) = {u ∈ hm
∣∣ ‖u‖m < δ} and δ > 0 depends on F . Abusing

language we will say that F is an analytic germ F : hm → hn. Any ana-
lytic germ F = (F 1, F 2, . . . ) can be written as an absolutely and uniformly
convergent series

F j(u) =
∞∑

N=1

F j
N(u), F j

N(u) =
∑

|α|+|β|=N
Ajαβu

αūβ, (3)

where α, β ∈ Z∞+ , Z+ = N ∪ {0}. We will write that F (u) = O(ul) if in (3)

F j
N(u) = 0 for N < l and all j.

Clearly,

|F (u)| ≤ F (|u|), F j(|u|) =
∞∑

N=1

∑

|α|+|β|=N
|Ajαβ||u|α+β ≤ ∞.

Here |F (u)| = (|F 1(u)|, |F 2(u)|, . . . ), |u| = (|u1|, |u2|, . . . ) and |u|α+β =∏ |uj|αj+βj . The inequality is understood component-wise.

Definition 1. An analytic germ F as above is called normally analytic
(n.a.) if F defines a germ of a real analytic map hmR → hnR, where the
space hmR is formed by real sequences (uj), given the norm (2). That is, each
N -homogeneous map F j

N(v) =
∑

|α|+|β|=N
|Ajαβ|vα+β, where v ∈ hmR , satisfies

‖FN(v)‖n ≤ CRN‖v‖Nm for suitable C, R > 0.
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Take any m ≥ 0 and κ ≥ 0.

Definition 2. A n.a. germ F : hm → hm+κ belongs to the class Am,κ if
F = O(u2) and the adjoint map dF (u)∗v is such that

dF (|u|)∗|v| = Φ(|u|)|v|, (4)

where the linear map Φ(|u|) = ΦF (|u|) ∈ L(hmR , h
m+κ
R ) has non-negative ma-

trix elements and defines an analytic germ |u| 7→ Φ(|u|), hmR → L(hmR , h
m+κ
R ).

The notion of a n.a. germ naturally formalizes the method of Cauchy
majorants, is well known and was exploited before to calculate normal forms
for nonlinear PDE and other infinite-dimensional systems. In particular,
Nikolenko [10] used it to get a version of the Poincaré normal form theorem
for dissipative PDE, while Bambusi and Grébert [1] applied it to calculate
partial Birkhoff normal forms for some Hamiltonian PDE. In the same time
the notion of the class Am,κ may be new. It is not difficult to check that
the set of germs (id+Am,κ) form a division ring with respect to taking a
composition of germs (see [9]), this fact is one of the basic points of our
analysis.

We will write elements of the spaces hm as u = (uk ∈ C, k ≥ 1), uk =
u+k + iu−k , u±k ∈ R, and provide hm, m ≥ 0, with a symplectic structure by
means of the two-form ω0 =

∑
du+k ∧ du−k . This form may be written as

ω0 = idu ∧ du. Here and below for any antisymmetric (in h0) operator J we
denote by Jdu ∧ du the 2-form

(Jdu ∧ du)(ξ, η) =< Jξ, η > . (5)

The form ω0 is exact, ω0 = dα0, where

α0 =
1

2

∑
u+k du

−
k −

1

2

∑
u−k du

+
k .

By {H1, H2} we will denote the Poisson brackets of functionals H1 and H2,
corresponding to ω0: {H1, H2}(u) = 〈i∇H1(u),∇H2(u)〉 . Functionals H1

and H2 commute if {H1, H2} = 0.

Theorem 2. Assume that for some m ≥ 0 there exists a real analytic germ
Ψ : hm → hm such that

i) dΨ(0) = id and (Ψ− id) ∈ Am,κ for some κ ≥ 0;

Sergei Kuksin and Galina Perelman
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ii) the functionals Ij(Ψ(u)) = 1
2
|Ψj(u)|2, j ≥ 1, commute with each other.

Then there exists a germ Ψ+ : hm → hm which satisfies i), ii) with the same
κ, and such that

a) foliation of the vicinity of the origin in hm by the sets

{
∣∣Ψj
∣∣2 = constj, ∀j}; (6)

is the same as by the sets {
∣∣Ψ+j

∣∣2 = constj, ∀j}.

b) the germ Ψ+ is symplectic: Ψ+∗ω0 = ω0.

Remarks. 1) The sets, forming the foliation (6), are tori of dimension #{constj >
0}, which is ≤ ∞.

2) By the item a) of the theorem each Ij(Ψ(u)) is a function of the vector
I+ = {I+j = 1

2
|Ψ+j|2, j ≥ 1}. In fact, Ij is an analytic function of I+ with

respect to the norm ‖I+‖ =
∑ |I+j |j2m. E.g., see the proof of Lemma 3.1 in

[7].
3) The map Ψ+ is obtained from Ψ in a constructive way, independent

from m.
4) The theorem above is an infinite-dimensional version of Theorem C

in [3] which is the second step in Eliasson’s proof of the Vey theorem. At
the first step he proves that any n commuting integrals H1, . . . , Hn as in
Introduction can be written in the form ii). In difference with his work
we have to assume that the integrals are of the form ii), where the maps
Ψ1,Ψ2, . . . have additional properties, specified in i). Fortunately, we can
check i) and ii) for some important infinite-dimensional systems.

2 Application to the KdV equation

Consider the KdV equation (1). This equation can be viewed as a Hamil-
tonian system in any Sobolev spaces Hm

0 , m ≥ 1, of zero-meanvalue func-
tions on S1 = R/2πZ, equipped with the symplectic form ν

(
u(·), v(·)

)
=

−
∫
S1(∂/∂x)−1u(x) · v(x) dx. The corresponding hamiltonian has the form:

hKdV (u) =

∫ (
− 1

8
u2x + u3

)
dx.
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It will be convenient for us to renormalize the symplectic space (Hm
0 , ν) to

the canonical space (hm, ω0). To do this we write any u(x) ∈ Hm
0 as Fourier

series, u(x) = π−1/2
∑∞

s=1(u
+
s cos sx− u−s sin sx), and consider the map

T : u(x) 7→ v = (v±1 , v
±
2 , . . . ), v±j = u±j j

−1/2 ∀ j.

Then T : Hm
0 → hm+1/2 is an isomorphism for any m, and T ∗ω0 = ν.

To apply Theorem 2 we need a way to construct germs of analytic maps
Ψ : hm → hm which satisfy i) and ii). For Lax-integrable PDEs this can be
done by using spectral characteristics of the associated Lax operator. The
corresponding construction goes back to the work of Kappeler [5] (see also
[7], pp. 42-44) and in the case of the KdV equation can be summarized
as follows. The Lax operator for the KdV hierarchy is the Sturm-Liouville
operator Lu = −∂2/∂x2−u(x). Consider this operator on the interval [0, 4π]
with the periodic boundary conditions. Its spectrum is discrete and consists
of simple or double eigenvalues {λj, j ≥ 0}, tending to infinity:

λ0 < λ1 ≤ λ2 < . . . , λj →∞ as j →∞.

Let γj, j ≥ 1, be the lengths of spectral gaps of Lu: γj = λ2j − λ2j−1. It
is well known that γ2j (u), j ≥ 1, are commuting analytic functionals which
are integrals of motion for (1), as well as for other equations from the KdV
hierarchy, see [6]. In [5] T. Kappeler suggested a way to use the spectral
theory of the operator Lu to construct germs of analytic maps Ψj : h1/2 → R2,
j ≥ 1, such that 1

2
|Ψj(v)|2 = π

2j
γ2j (T

−1v). In [9] we show that the map

Ψ = (Ψ1,Ψ2, . . . ) meets assumptions i), ii) of Theorem 2 with κ = 1:

Theorem 3. For any m ≥ 1/2, Ψ defines a real-analytic germ Ψ : hm → hm

such that
i) dΨ(0) = id and (Ψ− id) ∈ Am,1;
ii) for any j ≥ 1 and v ∈ hm we have 1

2
|Ψj(v)|2 = π

2j
γj(u)2, where

u(x) = 1√
π

Re
∑∞

j=1

√
j vje

ijx.

Combining Theorems 2 and 3 we get

Theorem 4. For any m ≥ 0 there exists a germ of an analytic symplecto-
morphism Ψ : (Hm

0 , ν)→ (hm+1/2, ω0), dΨ(0) = T , such that
a) Ψ− T defines a germ of an analytic mapping Hm

0 → hm+3/2;

b) each γ2j , j ≥ 1, is an analytic function of the vector Ī = (1
2
|Ψj

(u)|2, j ≥
1). Similar, a hamiltonian of any equation from the KdV hierarchy is an

Sergei Kuksin and Galina Perelman
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analytic function of Ī (provided that m is so big that this hamiltonian is
analytic on the space Hm

0 );
c) the maps Ψ, corresponding to different m, agree. That is, if Ψmj

corresponds to m = mj, j = 1, 2, then Ψm1 = Ψm2 on hmax(m1,m2).

Assertion b) of the theorem means that the map Ψ puts KdV (and other
equations from the KdV hierarchy) to the Birkhoff normal form.

In a number of publications, starting with [5], T. Kappeler with collabo-
rators established existence of a global analytic symplectomorphism

Ψ : (Hm
0 , ν)→ (hm+1/2, ω0), dΨ(0) = T,

which satisfies assertion b) of Theorem 4, see in [6]. Our work shows that a
local version of Kappeler’s result follows from Vey’s theorem. What is more
important, it specifies the result by stating that a local transformation which
integrates the KdV hierarchy may be chosen ‘1-smoother than its linear part’.
This specification is crucial to study qualitative properties of perturbed KdV
equations, e.g. see [8].

Although we believe that 1-smoothing is optimal, we have only a partial
result in this direction:

Proposition 1. Assume that there exists a real-analytic germ Ψ : Hm
0 →

hm+1/2 ∀ m ≥ 0, dΨ(0) = T , such that:
a) for each m ≥ 0, Ψ − T defines a germ of analytic mapping Hm

0 →
hm+1/2+κ with some κ ≥ 0;

b) the hamiltonian hKdV of the KdV equation is a function of the variables
1
2

∣∣Ψj(u)
∣∣2, j ≥ 1, only.

Then κ ≤ 3/2.

3 Proof of the main theorem

In this section we sketch the proof of Theorem 2, the details can be found in
[9]. The proof is constructive and follows the scheme suggested in Section VI
of [3]. To overcome corresponding infinite-dimensional difficulties we check
recursively that all involved transformations of the phase-space hm are in
id+ Am,κ.

Denote
G = Ψ−1, ω1 = G∗ω0, α1 = G∗α0.

Exp. no XVIII— A Vey theorem for nonlinear PDE
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We have ω1 = dα1.
For j ≥ 1 and τ ∈ S1 = R/2πZ define the rotation Φτ

j : hm → hm

as the linear transformation of vectors (u1, u2, . . . ) which does not change
components ul, l 6= j, and multiplies uj by eiτ .

Our goal is to find a transformation Θ : hm → hm which satisfies i) of
Theorem 2, reduces α1 to α0 and ω1 to ω0 and such that the maps Ij ◦ Θ,
j ≥ 1, are rotation invariant:

Ij ◦Θ ◦ Φτ
j = Ij ◦Θ, ∀j, k, τ.

Then the mapping Ψ+ = Θ ◦ Ψ would satisfy the required properties. Fol-
lowing [3] we construct such Θ in two steps.

Step 1. At this step we achieve that the average in angles of the form ω1

equal to ω0.
For any function f(u) we define its averaging with respect to j-th angle

as

Mjf(u) =
1

2π

2π∫

0

f(Φt
ju)dt,

and define its averaging in all angles as

Mf(u) = (M1M2 . . . )f(u) =

∫

T∞

f(Φθu)dθ,

where dθ is the Haar measure on T∞ and Φθu = (Φθ1
1 ◦ Φθ2

2 ◦ . . . )u. For a
form α we define Mjα ad Mα similarly. That is

Mjα(u) =
1

2π

∫ 2π

0

((Φt
j)
∗α)(u)dt,

and Mα = (M1M2 . . . )α.
Let us consider the equation

(ω0 + s(Mω1 − ω0))cZs = −M(α1 − α0).

It defines a non-autonomous vector field Zs ∈ Am,κ for 0 ≤ s ≤ 1. One
can show that the flow map ϕs of Zs belongs to id + Am,κ, commutes with
the rotations Φτ

j , j ≥ 1, τ ∈ S1, and pulls ω0 + s(Mω1 − ω0) back to ω0.
Therefore,

ω0 = (ϕ1)∗Mω1 = M(ϕ1)∗ω1.

Sergei Kuksin and Galina Perelman
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Set Ψ̄ = (ϕ1)−1 ◦ Ψ. Then Ψ̄ satisfies assumptions i), ii) and in addition
M
(
(Ψ̄∗)−1ω0

)
= ω0. Since ϕ1 commutes with the rotations, then Ψ̄ satisfies

assertion a) of Theorem 2.

We re-denote back Ψ̄ = Ψ. Then

iii) Mω1 = ω0 for ω1 =
(
Ψ̄∗)−1ω0.

Step 2. Now we prove the theorem, assuming that Ψ meets i) – iii).
Let χj be the vector field generating the rotations Φτ

j , τ ∈ R: χj(v) =
(0, . . . , ivj, 0, . . . ). Denote hj(v) = (α1 − α0, χj). We first construct a func-
tional f : hm → R such that

(df, χj) ≡ (ivj · ∇vj)f(v) = hj(v), j ≥ 1. (7)

Using ii), iii) it is not difficult to check that hj, j ≥ 1, satisfy the following
compatibility conditions

χk(hj) = χj(hk), ∀j, k,

Mhj = 0, ∀j.
Under these conditions system (7) is solvable and its solution can be obtained
by the explicit formulas which are due J. Moser (see [3]):

f(v) =
∞∑

l=1

fl(v), fl = M1 . . .Ml−1Llhl, (8)

where Lj is given by

Ljg(v) =
1

2π

2π∫

0

t g(Φt
j(v))dt.

One can show that series (8) converges and defines a n. a. germ f : hm → R
that satisfies (7). Moreover, the germ v 7→ Y (v) = ∇vf(v), hm → hm+κ, is
n.a. and Y (v) = O(v).

We are now in position to complete the proof of Theorem 2. Let Zs be
the solution of

(ω0 + s(ω1 − ω0))cZs = −(α1 − α0 − df),

Exp. no XVIII— A Vey theorem for nonlinear PDE
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and let ϕs be the flow map of Zs for 0 ≤ s ≤ 1. One has: ϕs−id : hm → hm+κ

is n.a., ϕs−id = O(v2), (ϕs)∗(ω0+s(ω1−ω0)) = ω0. In particular, the 1-time
map ϕ1 pulls ω1 back to ω0:

(ϕ1)∗ω1 = ω0. (9)

We now define Ψ+ as
Ψ+ = (ϕ1)−1 ◦Ψ.

Then clearly, Ψ+ : hm → hm is n.a., dΨ+(0) = id and dΨ+− id : hm → hm+κ

is n.a. as well. Also by (9), Ψ+∗ω0 = ω0.
Furthermore, it follows from (7) that

(ω0 + s(ω1 − ω0))(Zs, χj) = 0, ∀j ≥ 1,

which implies that Ij ◦ ϕs = Ij, j ≥ 1. As a consequence,

Ij ◦Ψ+ = Ij ◦Ψ, j ≥ 1.

Finally, the property Ψ+ − id ∈ Am,κ follows from the fact that Ψ+ is sym-
plectic and dΨ+ − id : hm → hm+κ is n.a. This completes the proof of the
theorem.
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