Tzvetkov, Nikolay 1
@article{SEDP_2008-2009____A15_0,
author = {Tzvetkov, Nikolay},
title = {Riemannian analogue of a {Paley-Zygmund} theorem},
journal = {S\'eminaire Goulaouic-Schwartz},
note = {talk:15},
pages = {1--14},
year = {2008-2009},
publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
language = {en},
url = {https://www.numdam.org/item/SEDP_2008-2009____A15_0/}
}
TY - JOUR AU - Tzvetkov, Nikolay TI - Riemannian analogue of a Paley-Zygmund theorem JO - Séminaire Goulaouic-Schwartz N1 - talk:15 PY - 2008-2009 SP - 1 EP - 14 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://www.numdam.org/item/SEDP_2008-2009____A15_0/ LA - en ID - SEDP_2008-2009____A15_0 ER -
%0 Journal Article %A Tzvetkov, Nikolay %T Riemannian analogue of a Paley-Zygmund theorem %J Séminaire Goulaouic-Schwartz %Z talk:15 %D 2008-2009 %P 1-14 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U https://www.numdam.org/item/SEDP_2008-2009____A15_0/ %G en %F SEDP_2008-2009____A15_0
Tzvetkov, Nikolay. Riemannian analogue of a Paley-Zygmund theorem. Séminaire Goulaouic-Schwartz (2008-2009), Exposé no. 15, 14 p.. https://www.numdam.org/item/SEDP_2008-2009____A15_0/
[1] A. Ayache, N. Tzvetkov, properties for Gaussian random series, Trans. AMS 360 (2008) 4425-4439. | Zbl | MR
[2] N. Burq, N. Tzvetkov, Random data Cauchy theory for supercritical wave equations I, II, Inventiones Math. 173 (2008) 449-496 . | Zbl | MR
[3] S. Grivaux, N. Tzvetkov, A Riemannian Paley-Zygmund theorem, in preparation.
[4] D. Li, H. Queffélec, Introduction à l’étude des espaces de Banach, Cours Spécialisés, 12. Société Mathématique de France, Paris, 2004. | Zbl | MR
[5] M. Marcus, G. Pisier, Random Fourier series with applications to harmonic analysis, Annals Math. Stud. 101 (1981). | Zbl | MR
[6] E. A. C. R. Paley, A. Zygmund, On some series of functions (1) (2) (3), Proc. Camb. Philos. Soc. 26 (1930) 337-357, 458-474, 28 (1932) 190-205. | Zbl
[7] C. Sogge, Concerning the norm of spectral clusters for second order elliptic operators on compact manifolds , J. Funct. Anal. 77 (1988), 123-138. | Zbl | MR
[8] C. Sogge. Fourier integrals in classical analysis, Cambridge tracts in Mathematics, 1993. | Zbl | MR






