In this paper we prove the global well-posedness of the two-dimensional Boussinesq system with zero viscosity for rough initial data.
@article{SEDP_2007-2008____A24_0,
author = {Hmidi, Taoufik},
title = {On the global well-posedness of the {Boussinesq} system with zero viscosity},
journal = {S\'eminaire Goulaouic-Schwartz},
note = {talk:24},
pages = {1--15},
year = {2007-2008},
publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
mrnumber = {2532956},
language = {en},
url = {https://www.numdam.org/item/SEDP_2007-2008____A24_0/}
}
TY - JOUR AU - Hmidi, Taoufik TI - On the global well-posedness of the Boussinesq system with zero viscosity JO - Séminaire Goulaouic-Schwartz N1 - talk:24 PY - 2007-2008 SP - 1 EP - 15 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://www.numdam.org/item/SEDP_2007-2008____A24_0/ LA - en ID - SEDP_2007-2008____A24_0 ER -
%0 Journal Article %A Hmidi, Taoufik %T On the global well-posedness of the Boussinesq system with zero viscosity %J Séminaire Goulaouic-Schwartz %Z talk:24 %D 2007-2008 %P 1-15 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U https://www.numdam.org/item/SEDP_2007-2008____A24_0/ %G en %F SEDP_2007-2008____A24_0
Hmidi, Taoufik. On the global well-posedness of the Boussinesq system with zero viscosity. Séminaire Goulaouic-Schwartz (2007-2008), Exposé no. 24, 15 p.. https://www.numdam.org/item/SEDP_2007-2008____A24_0/
[1] H. Abidi, T. Hmidi, On the global well-posedness for Boussinesq system, J. Diff. Equa.,233, 1 (2007) 199-220. | Zbl | MR
[2] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. de l’ Ecole Norm. Sup., 14 (1981) 209-246. | Zbl | Numdam
[3] J. T. Beale, T. Kato, A. Majda, Remarks on the breakdown of smooth solutions for -D Euler equations, Comm. Math. Phys 94 (1984) 61-66. | Zbl | MR
[4] J. R. Cannon, E. Dibenedetto, The initial value problem for the Boussinesq equations with data in in Approximation Methods for Navier-Stokes Problems, Lecture Notes in Math. 771, Springer, Berlin 1980, 129-144. | Zbl | MR
[5] D. Chae, Global regularity for the -D Boussinesq equations with partial viscous terms, Advances in Math., 203, 2 (2006) 497-513. | Zbl | MR
[6] J.-Y. Chemin, Perfect incompressible Fluids, Oxford University Press. | Zbl | MR
[7] J.-Y. Chemin, Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel, J. Anal. Math. 77 (1999) 27-50. | Zbl
[8] R. Danchin, M. Paicu, Le théorème de Leray et le théorème de Fujita-Kato pour le système de Boussinesq partiellement visqueux, to appear in Bull. S. M. F.
[9] B. Guo, Spectral method for solving two-dimensional Newoton-Boussinesq equation, Acta Math. Appl. Sinica, 5 (1989) 201-218. | Zbl | MR
[10] T. Hmidi, Régularité höldérienne des poches de tourbillon visqueuses, J. Math. Pures Appl. (9) 84, 11 (2005) 1455-1495. | Zbl | MR
[11] T. Hmidi, Poches de tourbillon singulières dans un fluide faiblement visqueux. Rev. Mat. Iberoamericana, 22, 2 (2006) 489-543. | Zbl | MR
[12] T. Hmidi, S. Keraani, On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity, Adv. Diff. Equations, 12, 4 (2007) 461-480. | MR
[13] T. Hmidi, S. Keraani, Incompressible viscous flows in borderline Besov spaces, to appear in Arch. Ratio. Mech. Ana.
[14] T. Y. Hou, C. Li, Global well-posedness of the viscous Boussinesq equations, Discrete and Continuous Dynamical Systems, 1 (2005) 1-12. | MR
[15] O. Sawada, Y. Taniuchi, On the Boussinesq flow with nondecaying initial data, Funkcial. Ekvac. 47, 2 (2004) 225-250. | Zbl | MR
[16] M. Vishik, Hydrodynamics in Besov Spaces, Arch. Rational Mech. Anal 145(1998) 197-214. | Zbl | MR






