Nakanishi, Kenji 1 ; Takaoka, Hideo 2 ; Tsutsumi, Yoshio 1
@article{SEDP_2007-2008____A17_0,
author = {Nakanishi, Kenji and Takaoka, Hideo and Tsutsumi, Yoshio},
title = {Unique local existence of solution in low regularity space of the {Cauchy} problem for the {mKdV} equation with periodic boundary condition},
journal = {S\'eminaire Goulaouic-Schwartz},
note = {talk:17},
pages = {1--5},
year = {2007-2008},
publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
mrnumber = {2532952},
language = {en},
url = {https://www.numdam.org/item/SEDP_2007-2008____A17_0/}
}
TY - JOUR AU - Nakanishi, Kenji AU - Takaoka, Hideo AU - Tsutsumi, Yoshio TI - Unique local existence of solution in low regularity space of the Cauchy problem for the mKdV equation with periodic boundary condition JO - Séminaire Goulaouic-Schwartz N1 - talk:17 PY - 2007-2008 SP - 1 EP - 5 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://www.numdam.org/item/SEDP_2007-2008____A17_0/ LA - en ID - SEDP_2007-2008____A17_0 ER -
%0 Journal Article %A Nakanishi, Kenji %A Takaoka, Hideo %A Tsutsumi, Yoshio %T Unique local existence of solution in low regularity space of the Cauchy problem for the mKdV equation with periodic boundary condition %J Séminaire Goulaouic-Schwartz %Z talk:17 %D 2007-2008 %P 1-5 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U https://www.numdam.org/item/SEDP_2007-2008____A17_0/ %G en %F SEDP_2007-2008____A17_0
Nakanishi, Kenji; Takaoka, Hideo; Tsutsumi, Yoshio. Unique local existence of solution in low regularity space of the Cauchy problem for the mKdV equation with periodic boundary condition. Séminaire Goulaouic-Schwartz (2007-2008), Exposé no. 17, 5 p.. https://www.numdam.org/item/SEDP_2007-2008____A17_0/
[1] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I, II, Geom. Funct. Anal. 3 (1993), 107–156, 209–262. | Zbl | MR
[2] —, Periodic Korteweg de Vries equation with measures as initial data, Sel. Math., New Ser. 3 (1997), 115–159. | Zbl | MR
[3] M. Christ, J. Colliander, and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math. 125 (2003), 1235–1293. | Zbl | MR
[4] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Sharp global well-posedness of KdV and modified KdV on the and , J. Amer. Math. Soc 16 (2003), 705–749. | Zbl | MR
[5] A. Grünrock, An improved local wellposedness result for the modified KdV-equation, Int. Math. Res. Not. 61 (2004), 3287–3308. | Zbl | MR
[6] T. Kappeler and P. Topalov, Global well-posedness of mKdV in , Comm. Partial Differential Equations 30 (2005), 435–449. | Zbl | MR
[7] —, Global well-posedness of KdV in , Duke Math. J. 135 (2006), 327–360. | Zbl
[8] C. E. Kenig, G. Ponce, and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996), 573–603. | Zbl | MR
[9] —, On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 (2001), 617–633. | Zbl | MR
[10] S. Klainerman and M. Machedon, Space time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993), 1221–1268. | Zbl | MR
[11] H. Koch and N. Tzvetkov, Nonlinear wave interactions for the Benjamin-Ono equation, Int. Math. Res. Not. 30 (2005), 1833–1847. | MR
[12] H. Takaoka and Y. Tsutsumi, Well-posedness of the Cauchy problem for the modified KdV equation with periodic boundary condition, Internat. Math. Res. Notices 56 (2004), 3009–3040. | MR
[13] T. Tao, Global well-posedness of the Benjamin-Ono equation in , J. Hyperbolic Differ. Equ. 1 (2004), 27–49. | Zbl | MR





