Unique local existence of solution in low regularity space of the Cauchy problem for the mKdV equation with periodic boundary condition
Séminaire Goulaouic-Schwartz (2007-2008), Exposé no. 17, 5 p.

Nakanishi, Kenji 1 ; Takaoka, Hideo 2 ; Tsutsumi, Yoshio 1

1 Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan
2 Department of Mathematics, Faculty of Science, Kobe University, Kobe 657-8501, Japan
@article{SEDP_2007-2008____A17_0,
     author = {Nakanishi, Kenji and Takaoka, Hideo and Tsutsumi, Yoshio},
     title = {Unique local existence of solution in low regularity space of the {Cauchy} problem for the {mKdV} equation with periodic boundary condition},
     journal = {S\'eminaire Goulaouic-Schwartz},
     note = {talk:17},
     pages = {1--5},
     year = {2007-2008},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     mrnumber = {2532952},
     language = {en},
     url = {https://www.numdam.org/item/SEDP_2007-2008____A17_0/}
}
TY  - JOUR
AU  - Nakanishi, Kenji
AU  - Takaoka, Hideo
AU  - Tsutsumi, Yoshio
TI  - Unique local existence of solution in low regularity space of the Cauchy problem for the mKdV equation with periodic boundary condition
JO  - Séminaire Goulaouic-Schwartz
N1  - talk:17
PY  - 2007-2008
SP  - 1
EP  - 5
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - https://www.numdam.org/item/SEDP_2007-2008____A17_0/
LA  - en
ID  - SEDP_2007-2008____A17_0
ER  - 
%0 Journal Article
%A Nakanishi, Kenji
%A Takaoka, Hideo
%A Tsutsumi, Yoshio
%T Unique local existence of solution in low regularity space of the Cauchy problem for the mKdV equation with periodic boundary condition
%J Séminaire Goulaouic-Schwartz
%Z talk:17
%D 2007-2008
%P 1-5
%I Centre de mathématiques Laurent Schwartz, École polytechnique
%U https://www.numdam.org/item/SEDP_2007-2008____A17_0/
%G en
%F SEDP_2007-2008____A17_0
Nakanishi, Kenji; Takaoka, Hideo; Tsutsumi, Yoshio. Unique local existence of solution in low regularity space of the Cauchy problem for the mKdV equation with periodic boundary condition. Séminaire Goulaouic-Schwartz (2007-2008), Exposé no. 17, 5 p.. https://www.numdam.org/item/SEDP_2007-2008____A17_0/

[1] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I, II, Geom. Funct. Anal. 3 (1993), 107–156, 209–262. | Zbl | MR

[2] —, Periodic Korteweg de Vries equation with measures as initial data, Sel. Math., New Ser. 3 (1997), 115–159. | Zbl | MR

[3] M. Christ, J. Colliander, and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math. 125 (2003), 1235–1293. | Zbl | MR

[4] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Sharp global well-posedness of KdV and modified KdV on the and 𝕋, J. Amer. Math. Soc 16 (2003), 705–749. | Zbl | MR

[5] A. Grünrock, An improved local wellposedness result for the modified KdV-equation, Int. Math. Res. Not. 61 (2004), 3287–3308. | Zbl | MR

[6] T. Kappeler and P. Topalov, Global well-posedness of mKdV in L 2 (𝕋,), Comm. Partial Differential Equations 30 (2005), 435–449. | Zbl | MR

[7] —, Global well-posedness of KdV in H -1 (𝕋,), Duke Math. J. 135 (2006), 327–360. | Zbl

[8] C. E. Kenig, G. Ponce, and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996), 573–603. | Zbl | MR

[9] —, On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 (2001), 617–633. | Zbl | MR

[10] S. Klainerman and M. Machedon, Space time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993), 1221–1268. | Zbl | MR

[11] H. Koch and N. Tzvetkov, Nonlinear wave interactions for the Benjamin-Ono equation, Int. Math. Res. Not. 30 (2005), 1833–1847. | MR

[12] H. Takaoka and Y. Tsutsumi, Well-posedness of the Cauchy problem for the modified KdV equation with periodic boundary condition, Internat. Math. Res. Notices 56 (2004), 3009–3040. | MR

[13] T. Tao, Global well-posedness of the Benjamin-Ono equation in H 1 (), J. Hyperbolic Differ. Equ. 1 (2004), 27–49. | Zbl | MR