Delort, Jean-Marc 1
@article{SEDP_2007-2008____A11_0,
author = {Delort, Jean-Marc},
title = {Stabilit\'e en temps grand pour les petites solutions d{\textquoteright}\'equations de {Klein-Gordon} quasilin\'eaires sur $\mathbb{S}^{1}$},
journal = {S\'eminaire Goulaouic-Schwartz},
note = {talk:11},
pages = {1--17},
year = {2007-2008},
publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
language = {fr},
url = {https://www.numdam.org/item/SEDP_2007-2008____A11_0/}
}
TY - JOUR
AU - Delort, Jean-Marc
TI - Stabilité en temps grand pour les petites solutions d’équations de Klein-Gordon quasilinéaires sur $\mathbb{S}^{1}$
JO - Séminaire Goulaouic-Schwartz
N1 - talk:11
PY - 2007-2008
SP - 1
EP - 17
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
UR - https://www.numdam.org/item/SEDP_2007-2008____A11_0/
LA - fr
ID - SEDP_2007-2008____A11_0
ER -
%0 Journal Article
%A Delort, Jean-Marc
%T Stabilité en temps grand pour les petites solutions d’équations de Klein-Gordon quasilinéaires sur $\mathbb{S}^{1}$
%J Séminaire Goulaouic-Schwartz
%Z talk:11
%D 2007-2008
%P 1-17
%I Centre de mathématiques Laurent Schwartz, École polytechnique
%U https://www.numdam.org/item/SEDP_2007-2008____A11_0/
%G fr
%F SEDP_2007-2008____A11_0
Delort, Jean-Marc. Stabilité en temps grand pour les petites solutions d’équations de Klein-Gordon quasilinéaires sur $\mathbb{S}^{1}$. Séminaire Goulaouic-Schwartz (2007-2008), Exposé no. 11, 17 p.. https://www.numdam.org/item/SEDP_2007-2008____A11_0/
[1] D. Bambusi : Birkhoff normal form for some nonlinear PDEs, Comm. Math. Phys. 234 (2003), no. 2, 253–285. | Zbl | MR
[2] D. Bambusi, J.-M. Delort, B. Grébert and J. Szeftel : Almost global existence for Hamiltonian semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Comm. Pure Appl. Math., to appear. | MR
[3] D. Bambusi and B. Grébert : Birkhoff normal form for partial differential equations with tame modulus, Duke Math. J. 135 (2006), no. 3, 507–567. | Zbl | MR
[4] J.-M. Bony : Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 2, 209–246. | Zbl | MR | Numdam
[5] J. Bourgain : Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations, Geom. Funct. Anal. 6 (1996), no. 2, 201–230. | Zbl | MR
[6] : Long-time Sobolev stability for small solutions of quasi-linear Klein-Gordon equations on the circle, preprint (2007).
[7] J.-M. Delort and J. Szeftel : Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres, Internat. Math. Res. Notices (2004), no. 37, 1897–1966. | Zbl | MR
[8] J.-M. Delort and J. Szeftel : Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Amer. J. Math. 128 (2006), no. 5, 1187–1218. | Zbl | MR
[9] V. Marchenko : Sturm-Liouville operators and applications, Operator Theory : Advances and Applications, 22. Birkhäuser Verlag, Basel, (1986), xii+367 pp. | Zbl | MR
[10] T. Ozawa, K. Tsutaya et Y. Tsutsumi : Global existence and asymptotic behavior of solutions for the Klein-Gordon equations with quadratic nonlinearity in two space dimensions, Math. Z, 222, (1996) 341–362. | Zbl | MR
[11] J. Shatah : Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math. 38, (1985) 685–696. | Zbl | MR






