On démontre que l’équation des ondes défocalisante quintique avec des conditions aux limites de Dirichlet est globalement bien posée sur tout domaine régulier et borné . La démonstration repose sur des estimations pour le projecteur spectral obtenues récemment par Smith et Sogge [12], combinées avec une étude précise du problème aux limites. Ce travail a été obtenu en collaboration avec G. Lebeau. et F. Planchon
Burq, Nicolas 1
@article{SEDP_2006-2007____A1_0,
author = {Burq, Nicolas},
title = {Existence globale pour l{\textquoteright}\'equation des ondes semi lin\'eaire $H^1$-critique dans des domaines de dimension $3$},
journal = {S\'eminaire Goulaouic-Schwartz},
note = {talk:1},
pages = {1--8},
year = {2006-2007},
publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
language = {fr},
url = {https://www.numdam.org/item/SEDP_2006-2007____A1_0/}
}
TY - JOUR AU - Burq, Nicolas TI - Existence globale pour l’équation des ondes semi linéaire $H^1$-critique dans des domaines de dimension $3$ JO - Séminaire Goulaouic-Schwartz N1 - talk:1 PY - 2006-2007 SP - 1 EP - 8 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://www.numdam.org/item/SEDP_2006-2007____A1_0/ LA - fr ID - SEDP_2006-2007____A1_0 ER -
%0 Journal Article %A Burq, Nicolas %T Existence globale pour l’équation des ondes semi linéaire $H^1$-critique dans des domaines de dimension $3$ %J Séminaire Goulaouic-Schwartz %Z talk:1 %D 2006-2007 %P 1-8 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U https://www.numdam.org/item/SEDP_2006-2007____A1_0/ %G fr %F SEDP_2006-2007____A1_0
Burq, Nicolas. Existence globale pour l’équation des ondes semi linéaire $H^1$-critique dans des domaines de dimension $3$. Séminaire Goulaouic-Schwartz (2006-2007), Exposé no. 1, 8 p.. https://www.numdam.org/item/SEDP_2006-2007____A1_0/
[1] Ramona Anton. Strichartz inequalities for lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains, 2005. preprint, arXiv :math.AP/0512639.
[2] Nicolas Burq, Patrick Gérard, and Nikolay Tzvetkov. Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds. Amer. J. Math., 126(3) :569–605, 2004. | Zbl | MR
[3] Michael Christ and Alexander Kiselev. Maximal functions associated to filtrations. J. Funct. Anal., 179(2) :409–425, 2001. | Zbl | MR
[4] Manoussos G. Grillakis. Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity. Ann. of Math. (2), 132(3) :485–509, 1990. | Zbl | MR
[5] Sergiu Klainerman and Matei Machedon. Remark on Strichartz-type inequalities. Internat. Math. Res. Notices, (5) :201–220, 1996. With appendices by Jean Bourgain and Daniel Tataru. | Zbl | MR
[6] Gilles Lebeau. Estimation de dispersion pour les ondes dans un convexe. In Journées “Équations aux Dérivées Partielles” (Evian, 2006). 2006. | Numdam
[7] Gerd Mockenhaupt, Andreas Seeger, and Christopher D. Sogge. Local smoothing of Fourier integral operators and Carleson-Sjölin estimates. J. Amer. Math. Soc., 6(1) :65–130, 1993. | Zbl | MR
[8] Jeffrey Rauch. I. The Klein-Gordon equation. II. Anomalous singularities for semilinear wave equations. In Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. I (Paris, 1978/1979), volume 53 of Res. Notes in Math., pages 335–364. Pitman, Boston, Mass., 1981. | Zbl | MR
[9] Jalal Shatah and Michael Struwe. Regularity results for nonlinear wave equations. Ann. of Math. (2), 138(3) :503–518, 1993. | Zbl | MR
[10] Jalal Shatah and Michael Struwe. Well-posedness in the energy space for semilinear wave equations with critical growth. Internat. Math. Res. Notices, (7) :303ff., approx. 7 pp. (electronic), 1994. | Zbl | MR
[11] Hart F. Smith and Christopher D. Sogge. On the critical semilinear wave equation outside convex obstacles. J. Amer. Math. Soc., 8(4) :879–916, 1995. | Zbl | MR
[12] Hart F. Smith and Christopher D. Sogge. On the norm of spectral clusters for compact manifolds with boundary, 2006. to appear, Acta Matematica, arXiv :math.AP/0605682. | Zbl | MR
[13] Michael Struwe. Globally regular solutions to the Klein-Gordon equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 15(3) :495–513 (1989), 1988. | Numdam | Zbl | MR | EuDML
[14] Terence Tao. Local well-posedness of the Yang-Mills equation in the temporal gauge below the energy norm. J. Differential Equations, 189(2) :366–382, 2003. | Zbl | MR
[15] Daniel Tataru. Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III. J. Amer. Math. Soc., 15(2) :419–442 (electronic), 2002. | Zbl | MR






