Nous discutons l’asymptotique des noyaux de Bergman pour des puissances élevées de fibrés de droites, d’après deux travaux récents avec B.Berndtsson et R. Berman.
Keywords: complex, line, bundle
Sjöstrand, Johannes 1
@article{SEDP_2004-2005____A22_0,
author = {Sj\"ostrand, Johannes},
title = {Asymptotics for {Bergman} kernels for high powers of complex line bundles, based on joint works with {B.~Berndtsson} and {R.~Berman}},
journal = {S\'eminaire Goulaouic-Schwartz},
note = {talk:22},
pages = {1--8},
year = {2004-2005},
publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
mrnumber = {2182066},
language = {en},
url = {https://www.numdam.org/item/SEDP_2004-2005____A22_0/}
}
TY - JOUR AU - Sjöstrand, Johannes TI - Asymptotics for Bergman kernels for high powers of complex line bundles, based on joint works with B. Berndtsson and R. Berman JO - Séminaire Goulaouic-Schwartz N1 - talk:22 PY - 2004-2005 SP - 1 EP - 8 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://www.numdam.org/item/SEDP_2004-2005____A22_0/ LA - en ID - SEDP_2004-2005____A22_0 ER -
%0 Journal Article %A Sjöstrand, Johannes %T Asymptotics for Bergman kernels for high powers of complex line bundles, based on joint works with B. Berndtsson and R. Berman %J Séminaire Goulaouic-Schwartz %Z talk:22 %D 2004-2005 %P 1-8 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U https://www.numdam.org/item/SEDP_2004-2005____A22_0/ %G en %F SEDP_2004-2005____A22_0
Sjöstrand, Johannes. Asymptotics for Bergman kernels for high powers of complex line bundles, based on joint works with B. Berndtsson and R. Berman. Séminaire Goulaouic-Schwartz (2004-2005), Exposé no. 22, 8 p.. https://www.numdam.org/item/SEDP_2004-2005____A22_0/
[1] B. Berndtsson, R. Berman, J. Sjöstrand, In preparation.
[2] R. Berman, J. Sjöstrand, In preparation.
[3] R. Berman, Bergman kernels and local holomorphic Morse inequalities, Math. Z. 248(2)(2004), 325–344. | Zbl | MR
[4] J.M. Bismut, Demailly’s asymptotic Morse inequalities, a heat equation proof, J. Funct. Anal., 72(1987), 263–278. | Zbl
[5] P. Bleher, B. Shiffman, S. Zelditch, Universality and scaling of correlations between zeros on complex manifolds, Invent. Math. 142(2)(2000), 351–395. | Zbl | MR
[6] T. Bouche, Convergence de la métrique de Fubini Study d’un fibré linéaire positif, Ann. Inst. Fourier, 40(1)(1990), 117-130. | Zbl | Numdam
[7] L. Boutet de Monvel, V. Guillemin, The spectral theory of Toeplitz operators, Annals of Mathematics Studies, 99. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1981. | Zbl | MR
[8] L. Boutet de Monvel, J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegö, Astérisque 34-35 (1976), 123–164. | Zbl | MR | Numdam
[9] D. Catlin, The Bergman kernel and a theorem of Tian, Analysis and geometry in several complex variables (Katata, 1997), 1–23, Trends in Math. Birkhäuser, Boston, MA, 1999. | Zbl | MR
[10] L. Charles, Berezin-Toeplitz operators, a semi-classical approach, CMP 239(2003),1–28. | Zbl | MR
[11] X. Dai, K. Liu, X. Ma, On the asymptotic expansion of Bergman kernel, Preprint and CRAS 339(2004), 193–198. | Zbl | MR
[12] M. Dimassi, J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Math. Soc Lecture Notes Series 268, Cambridge Univ. Press 1999. | Zbl | MR
[13] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26(1974), 1–65. | Zbl | MR
[14] L. Hörmander, An introduction to complex analysis in several variables, van Nostrand, (1966), 1967. | Zbl | MR
[15] Z. Lu, On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch, Am. J. Math., 122(2)(2000), 235–273. | Zbl | MR
[16] Z. Lu, G. Tian, The log term of Szegö kernel, Duke Math. J. 125(2)(2004), 351-387. | Zbl | MR
[17] X. Ma, Marinescu, The spin Dirac operator on high tensor powers of a line bundle, Math. Z. 240(3)(2002), 651–664. | Zbl | MR
[18] A. Melin, J. Sjöstrand, Fourier integral operators with complex valued phase functions, Springer LNM, 459. | Zbl | MR
[19] A. Melin, J. Sjöstrand, Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem, CPDE, 1(4)(1976), 313–400. | Zbl | MR
[20] A. Melin, J. Sjöstrand, Determinants of pseudodifferential operators and complex deformations of phase space, Methods and Appl. of Anal. 9(2)(2002), 177–238. | Zbl | MR
[21] A. Menikoff, J. Sjöstrand, On the eigenvalues of a class of hypoelliptic operators, Math. Ann. 235(1978), 55–85. | Zbl | MR
[22] A. Menikoff, J. Sjöstrand, The eigenvalues of hypoelliptic operators III, the non-semibounded case, J. d’Analyse Math. 35(1979), 123–150. | Zbl
[23] W. Ruan, Canonical coordintes and Bergman metrics, Comm. Anal. Geom., 6(1998), 589–631. | Zbl | MR
[24] G. Tian, On a set of polarized Kähler metrics, J. Diff. Geom., 32(1990), 99–130. | Zbl | MR
[25] R.O. Wells, Differential analysis on complex manifolds, Graduate texts in mathematics 65, Springer 1980 | Zbl | MR
[26] S. Zelditch, Szegö kernels and a theorem of Tian, IMRN 1998(6), 317–331. | Zbl | MR






