We study certain Fourier integral operators arising in the inversion of data from reflection seismology.
@article{SEDP_2003-2004____A17_0,
author = {Stolk, Christiaan},
title = {Microlocal analysis and seismic imaging},
journal = {S\'eminaire Goulaouic-Schwartz},
note = {talk:17},
pages = {1--20},
year = {2003-2004},
publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
mrnumber = {2117049},
language = {en},
url = {https://www.numdam.org/item/SEDP_2003-2004____A17_0/}
}
TY - JOUR AU - Stolk, Christiaan TI - Microlocal analysis and seismic imaging JO - Séminaire Goulaouic-Schwartz N1 - talk:17 PY - 2003-2004 SP - 1 EP - 20 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://www.numdam.org/item/SEDP_2003-2004____A17_0/ LA - en ID - SEDP_2003-2004____A17_0 ER -
%0 Journal Article %A Stolk, Christiaan %T Microlocal analysis and seismic imaging %J Séminaire Goulaouic-Schwartz %Z talk:17 %D 2003-2004 %P 1-20 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U https://www.numdam.org/item/SEDP_2003-2004____A17_0/ %G en %F SEDP_2003-2004____A17_0
Stolk, Christiaan. Microlocal analysis and seismic imaging. Séminaire Goulaouic-Schwartz (2003-2004), Exposé no. 17, 20 p.. https://www.numdam.org/item/SEDP_2003-2004____A17_0/
[1] G. Beylkin. Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform. J. Math. Phys., 26(1):99–108, 1985. | MR
[2] J. F. Claerbout. Imaging the Earth’s Interior. Blackwell Scientific Publications, Oxford, 1985.
[3] J. J. Duistermaat. Fourier Integral Operators. Birkhäuser, Boston, 1996. | Zbl | MR
[4] Victor Guillemin. On some results of Gelʼfand in integral geometry. In Pseudodifferential operators and applications (Notre Dame, Ind., 1984), pages 149–155. Amer. Math. Soc., Providence, RI, 1985. | Zbl | MR
[5] L. Hörmander. The Analysis of Linear Partial Differential Operators, volume 3,4. Springer-Verlag, Berlin, 1985. | Zbl
[6] V. P. Maslov and M. V. Fedoriuk. Semi-Classical Approximation in Quantum Mechanics. D. Reidel Publishing Company, 1981. | Zbl | MR
[7] C. J. Nolan and W. W. Symes. Global solution of a linearized inverse problem for the wave equation. Comm. Partial Differential Equations, 22(5-6):919–952, 1997. | Zbl | MR
[8] Rakesh. A linearized inverse problem for the wave equation. Comm. Partial Differential Equations, 13(5):573–601, 1988. | Zbl | MR
[9] P. Shen, W. W. Symes, and C. C. Stolk. Differential semblance velocity analysis by wave-equation migration. In 73rd Ann. Internat. Mtg., pages 2132–2135. Soc. of Expl. Geophys., 2003. http://seg.org/publications.
[10] C. C. Stolk and M. V. De Hoop. Microlocal analysis of seismic inverse scattering in anisotropic elastic media. Comm. Pure Appl. Math., 55(3):261–301, 2002. | Zbl | MR
[11] C. C. Stolk and M. V. De Hoop. Modeling of seismic data in the downward continuation approach. To appear in SIAM Journal on Applied Mathematics, 2004. http://www.math.polytechnique.fr/~stolk. | Zbl
[12] C. C. Stolk and M. V. De Hoop. Seismic inverse scattering in the downward continuation approach. Preprint, 2004. http://www.math.polytechnique.fr/~stolk.
[13] W. W. Symes. Extensions and nonlinear inverse scattering: Lecture at opening conference of IPRPI, April 2004. http://www.trip.caam.rice.edu/txt/tripinfo/other_list.html.
[14] W. W. Symes and J. Carazzone. Velocity inversion by differential semblance optimization. Geophysics, 56(5):654–663, 1991.
[15] A. P. E. Ten Kroode, D. J. Smit, and A. R. Verdel. A microlocal analysis of migration. Wave Motion, 28:149–172, 1998. | Zbl | MR
[16] François Treves. Introduction to Pseudodifferential and Fourier Integral Operators, volume 2. Plenum Press, New York, 1980. | Zbl | MR





