@article{SEDP_2002-2003____A8_0,
author = {Perelman, Galina},
title = {Asymptotic stability of solitary waves for nonlinear {Schr\"odinger} equations},
journal = {S\'eminaire Goulaouic-Schwartz},
note = {talk:8},
pages = {1--15},
publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
year = {2002-2003},
zbl = {1062.35139},
mrnumber = {2030703},
language = {en},
url = {https://www.numdam.org/item/SEDP_2002-2003____A8_0/}
}
TY - JOUR AU - Perelman, Galina TI - Asymptotic stability of solitary waves for nonlinear Schrödinger equations JO - Séminaire Goulaouic-Schwartz N1 - talk:8 PY - 2002-2003 SP - 1 EP - 15 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://www.numdam.org/item/SEDP_2002-2003____A8_0/ LA - en ID - SEDP_2002-2003____A8_0 ER -
%0 Journal Article %A Perelman, Galina %T Asymptotic stability of solitary waves for nonlinear Schrödinger equations %J Séminaire Goulaouic-Schwartz %Z talk:8 %D 2002-2003 %P 1-15 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U https://www.numdam.org/item/SEDP_2002-2003____A8_0/ %G en %F SEDP_2002-2003____A8_0
Perelman, Galina. Asymptotic stability of solitary waves for nonlinear Schrödinger equations. Séminaire Goulaouic-Schwartz (2002-2003), Talk no. 8, 15 p.. https://www.numdam.org/item/SEDP_2002-2003____A8_0/
[1] Berestycki, H.; Lions, P.-L. Nonlinear scalar field equations, I, II, Arch. Rat. Mech. Anal. 1983, 82 (4), 313-375. | Zbl | MR
[2] Buslaev V.S.; Perelman, G.S. Scattering for the nonlinear Schrödinger equation: states close to a soliton. St. Petersburg Math. J. 1993, 4 (6),1111-1143. | Zbl | MR
[3] Cuccagna, S. Stabilization of solutions to nonlinear Schrödinger equation, Comm. Pure Appl. Math. 2001 54, 1110-1145. | Zbl | MR
[4] Ginibre, J.; Velo G. On a class of nonlinear Schrödinger equations I, II. J.Func.Anal. 1979, 32, 1-71. | Zbl | MR
[5] Ginibre, J.; Velo G. On a class of nonlinear Schrödinger equations III. Ann. Inst. H.Poincare -Phys. Theor. 1978, 28 (3), 287-316. | Zbl | MR | Numdam
[6] Hagedorn, G. Asymptotic completeness for the impact parameter approximation to three particle scattering. Ann. Inst. Henri Poincaré. 1982, 36 (1), 19-40. | Zbl | MR | Numdam
[7] McLeod, K. Uniqueness of positive radial solutions of in . Trans. Amer. Math. Soc. 1993, 339 (2), 495-505. | Zbl | MR
[8] Nier, F.; Soffer, A. Dispersion and Strichartz estimates for some finite rank perturbations of the Laplace operator. J. of Func. Analysis, to appear. | Zbl | MR
[9] Perelman, G. Some results on the scattering of weakly interacting solitons for nonlinear Schrödinger equation. In: Spectral Theory, Microlocal Analysis, Singular Manifolds, M.Demuth et al., eds., Math. Top. 14, Berlin, Akademie Verlag, 1997, pp. 78-137. | Zbl | MR
[10] Perelman, G. Asymptotic stability of solitons for nonlinear Schrödinger equations, preprint. | Zbl
[11] Soffer A.; Weinstein, M.I. Multichannel nonlinear scattering theory for nonintegrable equations I. Commun. Math. Phys. 1990, 133 (1), 119-146. | Zbl | MR
[12] Soffer A.; Weinstein, M.I. Multichannel nonlinear scattering theory for nonintegrable equations II. J. Diff. Eq. 1992, 98 (2), 376-390. | Zbl | MR
[13] Weinstein, M.I. Modulation stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 1985, 16 (3), 472-491. | Zbl | MR
[14] Weinstein, M.I. Lyapunov stability of ground states of nonlinear dispersive evolution equations. Comm. Pure Appl. Math. 1986, 39 (1), 51-68. | Zbl | MR






