@article{SEDP_2001-2002____A22_0,
author = {Martel, Yvan and Merle, Frank},
title = {Existence de solutions explosives dans l{\textquoteright}espace d{\textquoteright}\'energie pour l{\textquoteright}\'equation de {Korteweg{\textendash}de} {Vries} g\'en\'eralis\'ee critique},
journal = {S\'eminaire Goulaouic-Schwartz},
note = {talk:22},
pages = {1--9},
year = {2001-2002},
publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
language = {en},
url = {https://www.numdam.org/item/SEDP_2001-2002____A22_0/}
}
TY - JOUR AU - Martel, Yvan AU - Merle, Frank TI - Existence de solutions explosives dans l’espace d’énergie pour l’équation de Korteweg–de Vries généralisée critique JO - Séminaire Goulaouic-Schwartz N1 - talk:22 PY - 2001-2002 SP - 1 EP - 9 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://www.numdam.org/item/SEDP_2001-2002____A22_0/ LA - en ID - SEDP_2001-2002____A22_0 ER -
%0 Journal Article %A Martel, Yvan %A Merle, Frank %T Existence de solutions explosives dans l’espace d’énergie pour l’équation de Korteweg–de Vries généralisée critique %J Séminaire Goulaouic-Schwartz %Z talk:22 %D 2001-2002 %P 1-9 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U https://www.numdam.org/item/SEDP_2001-2002____A22_0/ %G en %F SEDP_2001-2002____A22_0
Martel, Yvan; Merle, Frank. Existence de solutions explosives dans l’espace d’énergie pour l’équation de Korteweg–de Vries généralisée critique. Séminaire Goulaouic-Schwartz (2001-2002), Exposé no. 22, 9 p.. https://www.numdam.org/item/SEDP_2001-2002____A22_0/
[1] J.L. Bona, V.A. Dougalis, O.A. Karakashian and W.R. McKinney, Conservative, high order numerical schemes, Phil. Trans. Roy. Soc. London Ser. A. 351, (1995) 107—164. | Zbl | MR
[2] D.B. Dix and W.R. McKinney, Numerical computations of self-similar blow up solutions of the generalized Korteweg-de Vries equation, Diff. Int. Eq., 11 (1998), 679—723. | Zbl | MR
[3] W. Eckhaus and P. Schuur, The emergence of solitons of the Korteweg–de Vries equation from arbitrary initial conditions, Math. Meth. Appl. Sci. 5 (1983), 97—116. | Zbl | MR
[4] C.E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46, (1993) 527—620. | Zbl | MR
[5] D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag. 539, (1895) 422—443.
[6] G.L. Lamb Jr., Element of soliton theory (John Wiley & Sons, New York 1980). | Zbl | MR
[7] P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21, (1968) 467—490. | Zbl | MR
[8] Y. Martel and F. Merle, A Liouville Theorem for the critical generalized Korteweg–de Vries equation, J. Math. Pures Appl. 79, (2000) 339—425. | Zbl | MR
[9] Y. Martel and F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal. 157, (2001) 219—254. | Zbl | MR
[10] Y. Martel and F. Merle, Stability of the blow up profile and lower bounds on the blow up rate for the critical generalized KdV equation, Ann. of Math. 155, (2002) 235—280. | Zbl | MR
[11] Y. Martel and F. Merle, Blow up in finite time and dynamics of blow up solutions for the -critical generalized KdV equation, à paraître dans J. Amer. Math. Soc. | Zbl | MR
[12] Y. Martel, F. Merle and Tai–Peng Tsai, Stability and asymptotic stability in the energy space of the sum of solitons for subcritical gKdV equations, préprint. | MR
[13] F. Merle, Blow-up phenomena for critical nonlinear Schrödinger and Zakharov equations, Proceeding of the International Congress of Mathematicians, (Berlin, 1998), Doc. Math. J. DMV. | Zbl | MR
[14] F. Merle, Existence of blow-up solutions in the energy space for the critical generalized KdV equation, J. Amer. Math. Soc. 14, (2001) 555—578. | Zbl | MR
[15] F. Merle and P. Raphael, Blowup dynamic and upper bound on the blowup rate for the critical nonlinear Schrödinger equation, préprint.
[16] R.M. Miura, The Korteweg–de Vries equation: a survey of results, SIAM Review 18, (1976) 412—459. | Zbl | MR
[17] M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567—576. | Zbl | MR






