@article{SEDP_2000-2001____A13_0,
author = {Hassell, Andrew and Melrose, Richard and Vasy, Andr\'as},
title = {Spectral and scattering theory for symbolic potentials of order zero},
journal = {S\'eminaire Goulaouic-Schwartz},
note = {talk:13},
pages = {1--19},
year = {2000-2001},
publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
zbl = {1063.35126},
mrnumber = {2020655},
language = {en},
url = {https://www.numdam.org/item/SEDP_2000-2001____A13_0/}
}
TY - JOUR AU - Hassell, Andrew AU - Melrose, Richard AU - Vasy, András TI - Spectral and scattering theory for symbolic potentials of order zero JO - Séminaire Goulaouic-Schwartz N1 - talk:13 PY - 2000-2001 SP - 1 EP - 19 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://www.numdam.org/item/SEDP_2000-2001____A13_0/ LA - en ID - SEDP_2000-2001____A13_0 ER -
%0 Journal Article %A Hassell, Andrew %A Melrose, Richard %A Vasy, András %T Spectral and scattering theory for symbolic potentials of order zero %J Séminaire Goulaouic-Schwartz %Z talk:13 %D 2000-2001 %P 1-19 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U https://www.numdam.org/item/SEDP_2000-2001____A13_0/ %G en %F SEDP_2000-2001____A13_0
Hassell, Andrew; Melrose, Richard; Vasy, András. Spectral and scattering theory for symbolic potentials of order zero. Séminaire Goulaouic-Schwartz (2000-2001), Exposé no. 13, 19 p.. https://www.numdam.org/item/SEDP_2000-2001____A13_0/
[1] Shmuel Agmon, Jaime Cruz, and Ira Herbst, Generalized Fourier transform for Schrödinger operators with potentials of order zero, J. Funct. Anal. 167 (1999), 345–369. | Zbl | MR
[2] J. Brüning and V.W. Guillemin (Editors), Fourier integral operators, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1994. | MR
[3] J.J. Duistermaat and L. Hörmander, Fourier integral operators, II, Acta Math. 128 (1972), 183–269. | Zbl | MR
[4] V.W. Guillemin and D. Schaeffer, On a certain class of Fuchsian partial differential equations., Duke Math. J., 4 (1977), 157–199. | Zbl | MR
[5] Ira Herbst and Erik Skibsted, Quantum scattering for homogeneous of degree zero potentials: Absence of channels at local maxima and saddle points, Tech. report, Center for Mathematical Physics and Stochastics, 1999.
[6] Ira W. Herbst, Spectral and scattering theory fo Schrödinger operators with potentials independent of , Amer. J. Math. 113 (1991), 509–565. | Zbl | MR
[7] L. Hörmander, Fourier integral operators, I, Acta Math. 127 (1971), 79–183, See also [2]. | Zbl | MR
[8] —, The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math. 32 (1979), 359–443. | Zbl
[9] R.B. Melrose, Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces, Spectral and scattering theory (Sanda, 1992) (M. Ikawa, ed.), Marcel Dekker, 1994, pp. 85–130. | Zbl | MR
[10] —, Fibrations, compactifications and algebras of pseudodifferential operators, Partial Differential Equations and Mathematical Physics. The Danish-Swedish Analysis Seminar, 1995 (Lars Hörmander and Anders Melin, eds.), Birkhäuser, 1996, pp. 246–261. | Zbl | MR
[11] R.B. Melrose and M. Zworski, Scattering metrics and geodesic flow at infinity, Invent. Math. 124 (1996), 389–436. | Zbl | MR
[12] Richard B. Melrose, The wave equation for a hypoelliptic operator with symplectic characteristics of codimension two, J. Analyse Math. 44 (1984/85), 134–182. MR 87e:58199. | Zbl | MR
[13] M.A. Shubin, Pseudodifferential operators on , Sov. Math. Dokl. 12 (1971), 147-151. | Zbl






