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LES MOMENTS MICROLOCAUX ET LA REGULARITE
DES SOLUTIONS DE L’EQUATION DE SCHRODINGER

WALTER CRAIG

§1. Introduction

Dans cet article, nous allons considérer les solutions de ’équation de Schrodinger
) q g )
qui s’écrit

z'ath—%Za a?*(z)0y,, TER',tER,
(1) =
)

’l,Z)(CL‘,O = 'l/)o(l') .

Les points d’interét seront les moments et la régularité des données initiales ()
pour ’équation (1), et le rapport avec les moments et la régularité des solutions.
Le fait de base est qu’il existe un rapport entre les propriétés des moments des
données initiales et la régularité des solutions pour les temps ¢ non nuls, qui dépend
du comportement global des orbites de la limite classique de (1). Celle-ci est le
systéme hamiltonien pour (z, &) € T*(R™);

d

d—x =0¢a(z,§) ,
® B

% - 8ma(w7€) )

avec la fonction hamiltonienne provenant du symbole principal de (1);

n

(3) a(z, &) =1 ) d*(x)&& ,

J,e=1

dont la solution est le flot bicaractéristique ¢(s;z,€&) dans l’espace cotangent
T*(R™).

Je remercie 'THES pour la chaleureuse hospitalité pendant le printemps 1996. Cet article est
un prolongement du texte de deux exposés, & I'Ecole Polytechnique le 9 Avril 1996 (séminaire
‘Equations aux Dérivées Partielles’) et Universitdt Bonn le 2 Mai 1996 (‘Oberseminar zur Anal-
ysis’). Une partie de cette recherche est soutenue par la bourse du NSF #DMS - 94 01514.
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Ce rapport est évidemment un phénomeéne microlocal, et ’analyse peut étre
étendue aux équations en forme plus générale

(4) i0yp = — 3 Z 8,078 (), % + ma (z, D) + vo(z, D)9
j,e=1

ou il y a des termes de potentiel, et aussi éventuellement des termes de premier
ordre provenant d’un champ magnétique. Les résultats principaux pour cette
équation sont donnés dans les articles [4] et [5]. Dans cet article, je vais étendre
Panalyse dans plusieurs directions. D’abord, je vais examiner les propriétés de
I’évolution de I’équation comme des applications agissant sur les espaces de Sobolev
et les espaces de Sobolev munis de poids. En plus, certains des résultats des
références ci-dessus sont valables pour les problémes non auto-adjoints, en utilisant
une technique dit de ‘transformation de jauge’ dans l'article [9]. On répond a la
question naturelle des propriétés de ces transformations agissant sur les mémes
espaces de Sobolev avec poids.

Pour expliquer le phénomene, il est mieux de commencer avec le cas de I’équation
de Schrodinger libre

(5) i) = —1Ay, zeR".

Le résultat ci-dessous est bien connu, et pas difficile a verifier.

Théoréme 1. Considérons les données initiales 1o(x) € L2(R™) pour I’équation
(5). (i) Pour toutt € R

(6) 1% (2, )2 = llvo()|L> -

(11) Si en plus les données initiales sont localisées, ce qui veut dire que tous ses
moments sont finis,

(7 vk / oo (2)|2dz < +00 |

alors pour tout t # 0, la solution ¥ (z,t) est C™.
(i1i) Pour les données initiales 1o € H"(R™), l’espace de Sobolev avec norme

o) = / (1= AYo(a)2de |

alors pour tout t, Y(z,t) € H"(R"), et [|[(z,t)||ur = |[vo(@)||Hr-
(1) Quand Yo(x) est dans S, la classe de Schwartz, alors pour tout t, {(z,t) est
dans S.

Le premier énoncé (i) est fondamental pour l'interprétation de la mécanique
quantique, ot la mesure |¢o(z)|?dz = dPy(x) décrit la distribution de probabilité
spatiale initiale d’une particule quantique, |1(z,t)|*dz = dP;(z) est la distribution
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spatiale qu’il est permi de déduire selon les lois de la mécanique quantique a un
autres temps ¢ par résolution de ’équation de Schrodinger, et (6) exprime le fait que
I’équation de Schrodinger conserve la probabilité. A partir de cette interprétation,
il est naturel d’imposer la condition (7) aux moments de la distribution initiale, et
le résultat (ii) du Théoreme 1 est que la solution devient réguliere instantanément,
mais pourtant non localisée, pour tout ¢ non nul. Il est clair que I'exigence que
les moments initiaux soient finis ne garantit pas qu’ils soient finis pour d’autres
valeurs de t ; ce qu’on discutera ci-dessous. Pourtant, une norme de Sobolev
finie de ¥o(z) correspond directement aux moments finis de la densité de vitesse
]% (€)|%d€, et I'affirmation du Théoréme 1(iii) est que ces moments sont conservés
par I’évolution de Schrodinger.

Le but est d’étudier les résultats analogues pour les solutions de 1’équation (1),
et de décrire la connection entre la régularisation dispersive des solutions et le
comportement global des bicaractéristiques de (2)(3). Dans ce but, nous allons
adopter les estimations suivantes sur les coefficients de (1):

1
(8) o [l < 10¢alz, &) < Clel

qui est ’hypothese d’ellipticité, et

Ca

(9) 102 (a?*(z) — 67%)| < BECR

m(a) > |a]+ 1,

qui est la condition pour que la métrique Riemannienne sur R* donnée par (a’¢)~!
soit asymptotiquement plate.

Définition 2. Le point (x¢,£%) € T*(R™) n’est pas captif au futur (respective-
ment au passé) par le flot bicaractéristique, si

(10) | T20(8; 10, E%)| — o0, quand s — +oo (respectivement, s — —o0) .

L’ensemble de points (z,&) € T*(R™) qui ne sont pas captifs au futur est appelé
&4, et 'ensemble qui n’est pas captif au passé est £_. L’involution £ — —¢ de
T*(R™) permute les ensembles £, et E_.

Le résultat de base de I'article [5] prend en considération le front d’onde classique
W F(¢(z,t)) des solutions de I’équation (1).

Théoreme 3. Considérons les solutions de U’équation (1) , dont les coefficients
satisfont les estimations (8) et (9). Supposons que le point (x,£E°) n’est pas captif
au passé par le flot bicaractéristique ¢(s;x,€). Pour les données initiales 1o(x) €
L*(R™) telles que tous ses moments sont finis (7), alors pour tout t > 0, (x0,£°) ¢
WF(i)(z,t)).

Il est clair que le résultat analogue est valable pour t < 0, quand (x¢.£%) n’est pas
captif au futur par le flot bicaractéristique.

En plus, I’équation (5) est souvent considérée avec les termes de potentiel ou
de potentiel vectoriel electromagnétique, et & propos de cela un théoreme parallele
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est valable pour I’équation plus générale (4), oit my(z, &) et vo(z, £) sont des sym-
boles pour les opérateurs pseudodifférentiels dont les propriétés seront décrites
ci-dessous. Les travaux originaux sur la régularité microlocale de I’équation de
Schrodinger (1)(4) est de L. Boutet de Monvel [2] et R. Lascar [10]. Le résultat
principal sur la régularité des solutions pour ¢ # 0, dépendant de la condition
globale des bicaractéristiques non captives est publié en [5]. Cet article donne
une esquisse des méthodes de la démonstration. En plus, cet article développe les
résultats de [5] en plusieurs directions. (i) D’abord, il donne les estimations glob-
ales des moments des solutions, en termes de moments, de méme que les normes
de Sobolev des données initiales. Un corollaire des théoremes 1 et 2 est que,
différemment que des solutions des équations de diffusion, les moments des solu-
tions de ’équation de Schrodinger ne sont pas bornés en termes seuls de moments
des données initiales ¥o(z), et il faut avoir aussi une information sur les dérivées
de 9o(x). Les bornes nécessaires et suffisantes en termes des normes des espaces de
Sobolev avec poids sont présentées dans le Théoreme 14 de section 3, avec estima-
tions de la croissance en temps de ces moments. (ii) L’analyse dans [5] est valable
pour l'opérateur de Laplace-Beltrami \/det(a) >, , 0z, Vdet(a)~1a’*(z)d,,, mais
les probléemes non auto-adjoint sont exclus en équation (1) ainsi que les parties de
premier ordre de 1’équation (4). Utilisant une idée de l’article [9] on introduit une
transformation de jauge, et certaines aspects de ’analyse peut étre faite pour les
équations (1) et (4) qui contiennent des termes non auto-adjoints qui décroissent
suffisamment vite & 'infini. Cette transformation de jauge est basée sur une quad-
rature microlocale, et les opérateurs pseudodifférentiels résultants ont les symboles
de propriétés nouvelles, qui peuvent étre analysé avec les techniques de [5, section
4] et [4]. (iii) En outre, cet article décrit des propriétés d’application sur les espaces
de Sobolev et de Sobolev avec poids les opérateurs apparaissant en (ii).

L’article [4] et le présent article sont des prolongements du texte des exposés
des séminaires & Toronto en 1995 et a ’Ecole Polytechnique et Universitat Bonn
en 1996. Tandis que les introductions des deux sont du niveau discursif, j’ai fait
un effort pour minimiser I'intersection entre eux, et il y a des résultats nouveaux
dans chacun.

§2. Moments microlocaux et régularité
On réécrit I’équation (1) symboliquement ainsi
(11) W0 = Ay,

ouA=—-3% ;.0 02,0500z, est auto-adjoint sur un domaine convenable de L?(R™).
Alors il y a une identité satisfaite par les solutions de (11), pour presque n’importe
quel opérateur B;

(12) dre(w, BY) + re(v, §[A, Bly) = re(y, (9, B)Y) -

Dans les cas précis pour lesquels B commute avec A et est indépendant du temps,
on peut conclure que dire(y, By) = 0. En particulier, pour B = I, d;||¢(z,t)|2, =
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0, qui démontre le fait que I’équation (1) conserve la probabilité des solutions, ce
qui est I’analogue pour I’équation (1) du Théoréme 1(i). La seconde estimation de
base provient du choix B = A lui méme, duquel 8,5% / Zj,e ajg(a:)m(?wz/) dx = 0,
qui est le principe de conservation d’énergie.

Changeant de point de vue, considérons l'identité (12) avec B = b(z, D) un
opérateur pseudodifférentiel, dont le symbole b(z, £) est d’ordre m et appartient &
une classe convenable. Les ordres des termes de 'identité sont bien définis, et 'on
voit que b(z, D) est d’ordre m, tandis que 1[4, b(z, D)] = —{a,b}(z, D) + e, ou le
crochet de Poisson est d’ordre m + 1 et on compte sur 'erreur e étant de I'ordre
égal ou inférieur & m. L’identité (12) sera utile pour estimer la solution si

(13) c(xig) :—{a,b}(x,f) 3
b(z,6) >0, c(x,&) >0,

en utilisant I'inégalité de Garding et I'inégalité différentielle résultante de (12). La
relation (13) entre b(z, &) et c(x, &) s’appelle équation cohomologique du systéme
dynamique (2). En fait la méme stratégie a été utilisée par L. Hérmander pour une
de ces démonstrations du théoréme de propagation des singularités des équations
hyperboliques; cela apparait en [7]. Cependant, dans le cas présent le terme {a, b}
représente la contribution principale, et non pas I’erreur comme dans la référence
antérieure.

L’identité (12) et les demandes de positivité (13) nous meénent & une question
fondamentale. Quand peut - on avoir une paire de symboles (b(x, &), c(x, €)) qui
satisfait (13)7 Autrement dit, ’énoncé (13) est que b(x, &) > 0, et b(z, £) décroit
le long des orbites du flot bicaractéristique du champ hamiltonien (2) de a(z, §).
Une réponse minime est que pour s < 0, ¢(s;supp(b)) C supp(b), une relation
qui a de mauvais conséquences pour les propriétés des symboles b(x, &) dans les
régions non captives au futur £,.

Adoptons le point de vue que, étant donné un symbole convenable ¢(z, £), nous
construisons le symbole b(x, ) tel que —{a,b} = —X4(b) = ¢, ou X, est le champ
de vecteurs hamiltonien de a(x, &) sur T*(R™). Il est bien connu que I'éxistence et
la régularité des solutions de ’équation cohomologique (13) sont tres liées aux pro-
priétés de récurrence du flot o(s; z,€). L'exemple le plus simple est si ¢(xg, £%) > 0
a un point (zg, £°) sur un orbite périodique du flot bicaractéristique, alors il n’existe
pas de solution b(z, £) de (13). Par contre, quand supp(c) C £_ est dans une région
noncaptive, la réponse est plus directe. Prenons c(z,£) € S™*! un symbole clas-
sique, qui veut dire que m supp(c) est compact dans R™, et

(14) 10260 c(z,€)] < Caglé)m™ 1191

Supposons que supp(c) C E- et, pour éviter les difficultés, que c(x,£) = 0 pour
|€] < 1. Une solution de (13) est donnée par la quadrature

+00
(15) b, €) = / c(p(si2,€))ds .
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Le fait de base est que le symbole b(x, &) n’a pas de support 7 supp(b) compact,
car son support contient ’orbite au passé de chaque bicaractéristique provenant de
supp(c). De plus, cette construction naturelle (15) mene & une classe de symboles
qui ne se comportent pas particulierement bien.

Proposition 3. Pour c(z,t%) > 0 (pas identiquement nul), avec supp(c) € £_, le
symbole b provenant de la quadrature (15) est de support msupp(b) non compact.
Les estimations générale des symboles satisfaits par b(x,£) sont que

(16) |6§‘8§'b(m,§)| < Cap(€)m181(z) 181

L’estimation (16) elle - méme ne donne pas une classe raisonnable de symboles,
et les opérateurs pseudodifférentiels construit d’apres cette classe ne forment pas en
général un calcul usuel. Heureusement il y a quelques propriétés supplémentaires
des symboles provenant du processus de quadrature (15). Puisque a(z, &) est
asymptotiquement plate, il existe quatre champs de vecteurs particuliers par rap-
port auxquels le symbole b(x, ) se comporte mieux. Définissons

(17) )(1:6'85, X2=x-am, X3=@l"8§, X4:@€-5m.

()

Proposition 4. Pour les symboles classiques c(x,&) € S™+! tels que supp(c) C
E_, le résultat b(x, &) de formule de quadrature (15) satisfait ’estimation

(18) X192086(2,€)| < Cago{€)™ 191 (z) H181 |

ol o, B sont les n - multiindices, et v est un 4 - multiindice.

Définition 5. La classe de symboles S™*(p, ) consiste en des symboles b(z, £)
qui sont C°(R™) et qui satisfont

(19) 10507b(w, €)] < Cap(e)™1Pl(z)HIBI=dlel

Définissons la classe de symboles S(T’k(l,O) le sous ensemble de S™k(1,0) satis-
faisant de plus I’estimation (18) par rapport aux champs de vecteurs X;.

Pour m = 0 Popérateur b(x, D) dont le symbole satisfait (16) peut méme ne pas
étre borné sur L2(R™), par contre les opérateurs résultant de la quadrature ont un
meilleur comportement.

Théoréme 6. Prenons c(x,£) € S' un symbole classique tel que supp(c) C £
et c(x,&) = 0 pour |E| < 1. Alors la solution b(x,€&) de (15) satisfait b(z,&) €
52’0(1,0), et de plus

(20) 16(z, D)b()l|z> < Cllep()| 2 -

La démonstration de ce théoreme est dans [5] (section 4); elle implique les
étapes suivantes. (i) Sans perte de généralité nous pouvons supposer que le sup-
port de c(z,§) est suffisamment petit. (ii) Alors on peut voir que le support de
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b(x, &) provenant de (15) satisfait la condition géométrique suivante: quand on a
(z,8),(y,€&) € supp(b) en méme temps que |z — y| > R, alors

(21) e =l <@ -y) €.

(iii) L’opérateur b(z, D) permet maintenant une décomposition presque orthogo-
nale dans la région non captive au passé. Evidemment la méme analyse s’applique
aux symboles c(x,&) € S™T! tels que supp(c) C &4 la région non captive au
futur, et la formule de quadrature est une intégrale sur ’orbite future de la bicar-
actéristique,

(22) b, €) = — / ((s2,€)) ds |

— OO0

bien que maintenant b(z,€) < 0 si ¢(z,€) > 0. Une application immédiate du
Théoreme 6 et de I'identité (12) est le résultat de ‘régularisation microlocale’ pour
les régions non captives £, U £_ pour 'équation (1).

Théoréme 7. Prenons un symbole classique arbitraire s(x,&) € SY? tel que
supp(s) C €4 UE_. Soit Y(z,t) une solution de I’équation (1), alors pour tout
T >0, ¢(x,t) satisfait ’estimation

(23) /O Is(z, D)(x, 0)]|% dt < C(T)|lwbo(x)|2 .

Démonstration. On a déja observé que l’évolution par 1’équation (1) conserve la
norme L? des solutions. Par troncature réguliere on peut supposer que le sup-
port de s(z,&) ne contient pas £ = 0, et est contenu dans un seul des deux
ensembles £_, £,. Mettons c(x,&) = s(z,£)? et utilisons (15) ou bien (22)
pour b(z,§&) € 53’0(1,0). Utilisons la paire de symboles (b(, &), c(x,£)) pour les
opérateurs pseudodifférentiels dans l'identité (12), et intégrons sur 'intervalle de
temps ¢ € [0,T], ce qui nous donne I'identité

T
re((7), bar, DU(T)) + [ retw(t), ~{a bh(z, DY (1) i
(24) °

T
= re(1)g, b(z, D)1pg) — / re(1(t), et (t)) dt .
0
Les termes de (24) suivants sont bornés en termes des données initiales:

[re(¥(T), b(z, D)y(T))| <Cl[w(T)|[72 = Cllwolli

(25) 2
.lre<¢07 b<$7 D)¢0>| SCHI/)OHU :

Avec un peu plus de travail ([5], Theorem 4.5) on peut montrer que
(26) [re(w(t), et (1)) < Cllvollz: -
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donc provenant de (24) on a une estimation du terme qui reste

T
(27) / re((t), e(z, DY(1)) dt < C(T) o2 |

et a partir d’'une application de l'inégalité de Garding pour le symbole classique
c(z,§), on a le résultat (23). O

Pour (z9,£%) € £_ et s(z,£) construit avec support dans un voisinage suffisam-
ment petit de (zo,£), 'énoncé (23) est I’étape initiale d’'une démonstration par
récursion, dont la conclusion est I’énoncé du Théoreme 2 de régularité dispersive
des solutions de 1’équation (1). Les étapes suivantes pour les résultats C°° sont
plus difficiles, et demandent des classes de symboles plus convenables au calcul
pseudodifférentiel. Celles-ci sont les classes S™F(p, ) de la Définition 5, ou 'on
pose que 0 < p < 6§ < 1, avec les symboles soutenus dans des voisinages conven-
ables de la bicaractéristique au passé provenant de (zo, £9).

Théoreme 8. Quand0 < p < 6 < 1, l’ensemble des opérateurs pseudodifférentiels
construit des classes S™%(p,8) forme un calcul traditionnel.

Les classes de symboles avec conditions sur les propriétés spatiales et trans-
formées de Fourier mélangées ont été étudiées dans le passé, en particulier dans
l'article de R. Beals & C. Fefferman [1] et dans l'article de L. Hérmander au su-
jet du calcul de Weyl [8]. Les classes S™*(p, §) ne satisfont pas le critere de [1],
cependant elles sont un sous-cas du calcul de symboles de Hormander - Weyl. Un
traitement direct est présenté dans [4] et [5].

Etant donnée une paire de symboles (b(z, &), c¢(z,§)) telle que —{a,b}(z, &) =
c(z,€), et en écrivant 1[A,b(x,D)] = —{a,b}(z, D) + e, I'intégrale en temps de
I’identité (12) montre que

T
re(4(T)b(z, DYb(T)) + / re(y(t), ez, D)(1)) dt
(28) 0

T .
— re(to, b(z, D)) + /0 re((t), (b(z, D) — e)b(t)) dt .

Le premier souci est de savoir si les moments, proprement microlocalisés, des
solutions ¢ (t),t > 0 peuvent étre controlés en termes de moments analogues des
données initiales. Prenons une paire de symboles (bo(z, £), co(z, €)) € S©K(p, §) x
SLE=1(p. 6), avec p < 6, telle que (z9,£°) € supp(cg) C supp(by) = & C E_, et
telle que
bO(xvg) 2 0 )
(29) 00(33,6) = —{a,bo}(x,f) Z 0 ’
—{a, () Kb} >0 pour |z|>R.

Une telle paire de symboles peut étre construite quand on pose que p+ ¢ > 1. Les
termes d’erreur de la partie droite de (28) satisfont 0;b = 0, e = e(1y(x, D)+R(3), o
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e(1) est un symbole dans la classe 59K =2(0=0)(p, §) et R(yy est borné sur L?(R™).
Les K-iemes moments de la solution ¢ (z,T), microlocalisés dans &y, sont donc
bornés en termes des K-iemes moments des données initiales et des K —2(6 — p)-
iemes moments de la solution, dans un voisinage £; légerement plus grand que &.
Puisque K —2(6 — p) < K, une récursion sur une suite croissante de voisinages de
la bicaractéristique du passé {(z,&) = ¢(s;10,6%) : s <0} CE CE - En C
E£O) = supp(sp) sert & démontrer que les K-iémes moments de la solution 1 (z, t)
sont bornés par les K-iémes moments des données initiales 1o(x). Cela est I’énoncé
du théoreme suivant.

Théoréme 9. Supposons que (xo,£9) € E_, alors il existe un symbole so(x, &) €
SOK(p,6), avec 0 < p < § <1 tel que s(xo,E%) =1 et bo(x, &) = s§(x, ) satisfait

- {CL?bO}(xvg) >0,

30
. abole) Ky @20 pour o> R

Quand les données initiales o(x) € L*(R™) sont telles que son K -iéme moment
microlocal dans supp(sg) = £ est fini,

(31) (o, s550(z, D)1hg) < +00

alors il existe un voisinage € C £©) qui contient la bicaractéristique par (xq, £9)
du passé, tel que pour tout T' > 0,

(32) OiltlgTre(w(t),b(%D)tb(t)) < o0,

pour tout bz, €) € SOK(p,8) avec supp(b) C EMW.

C’est - & - dire, pour t > 0 les K-ieme moments microlocaux de la solution
Y(x,t) sont bornés sur les voisinages légérement plus petits de la bicaractéristique
au passé provenant du point (xg,£%). En fait, cet énoncé de [5] est nouveau méme
pour ’équation de Schrodinger libre (5).

Le deuxiéme élément de la récurrence est d’utiliser encore I'identité (12) pour
échanger I'information sur les moments de la solution dans £_ avec les estimations
microlocales des dérivées. Pour atteindre ce but, considérons les paires de symboles
(b(z, €), c(x, £)) € S™*(p, 6) x S™HE=1(p,6), avec supp(e) C supp(b) C £ C &
telles qu’elles satisfont les relations (13). On emploie les opérateurs conséquents
tPb(x, D), tPc(zx, D) dans lidentité (12); la conclusion est que
(33)

T

re(4(T),TPb(z, DY(T)) + / re(i(t), tPe(, DY(t)) dt

0

T
= re(tho, t* |s=0b(x, D)vho) +/O re(y)(t), (pt?~'b(w, D) — tPe)y(t)) dt .

Quand p > 0 le premier terme de la partie droite s’annule et l'identité ne
dépend pas explicitement des données initiales 1g(z) ni de ces dérivées. Pour la
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n-ieme étape de la récurrence, prenons m = n, p = n et k = K — n, et alors la
partie gauche de (33) est bornée en termes des intégrales en temps des quantités
qui dépendent de moins de dérivées, mais de plus de moments. Le résultat est la
constatation d’un théoreme qui précise ’augmentation des dérivées microlocalisées
de la solution pour ¢ > 0 en termes des propriétés de moment des données initiales.

Théoréme 10. Supposons que (xg,£°) € T*(R™) n'est pas captif au passé par le
flot bicaractéristique du symbole principal a(z,£). Dans les voisinages appropriés
plus petits E2) C Q) C £_ de la bicaractéristique au passé provenant de (o, £°),
on considére les paires de symboles (by (2€),ck(z,€)) € SEO(p,6) x SE+L=V(p, §)
(ot v > 1), telles que les relations (13) sont satisfaites. Considérons les données
initiales Yo(x) telles que

(34) (0, 5550(2, D)tho) < 400 ,
alors pour tout T >0 et K' > K (K' = K si K est un entier),

sup (tX're(y(t), b (z, D)(t)) < +o0 ,
0<t<T

(35) T
/ t5 re(y(t), cx (z, D) (t)) dt < 400 .
0

Ce résultat précise la régularité microlocale supplémentaire que ’on attend dans
les voisinages des points (o, £°) non captifs, en termes des moments microlocaux
des données initiales dans les voisinages & 1) C £0) des orbites au passé de la
bicaractéristique provenant de (xg,£%). Ce résultat, qui apparait dans [5], est
aussi nouveau méme pour ’équation de Schrédinger libre (5). Dans le cas ou
(z0,£%) € £_ est également non captif au futur par le flot bicaractéristique, un
argument par récursion analogue donne pour résultat les bornes sur la croissance
asymptotique a infini spatial des dérivées des composants sortants des solutions.
Dans ce cas, il est nécessaire de prendre les paires de symboles (b, (z, &), cn(x,§£)) €
S;n’k(l, 0) x S;nﬂ’k_l(l, 0), et la récursion est telle que n = m < K, p = n et avec
k < —n, donnant un poids de taux negatif en (x). En effet, la solution est aussi
réguliere qui ’est permis par le nombre de moments entrants des données initiales,
et cependant la taille des dérivées est croissante en (z).

Sous 'involution & — —£, les ensembles £, et £_ sont échangés, et sous les con-
ditions analogues les mémes résultats sont valables pour ¢ < 0. Une modification
de la démonstration est valable pour 1’équation (4), étant données les conditions
sur les deux symboles my(x,§) et vo(z, &) que mq(x,§) est réel, et que pour un
p<l,

10208 (2, €)] < Cap (€)1 ()P0

36
(36) |3§6§v0(1’,§)} < Ca6<€>1—|5|<x>p_l_|a| ‘

Un potentiel réel v(x) qui satisfait [03v(z)| < Cy(z)P~1%l est permis par 'hypothese
(36), car il satisfait les estimations pour mq(z,£). Cela a été discuté dans les
références [3], [4] et [5]. L’information sur la régularité du noyau de I’équation de
Schrodinger, au - dela de celle qui est donnée ici, est présentée dans article [3].
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63. Estimations dans les espaces de Sobolev

Dans cette section nous allons décrire les propriétés de base de I’évolution de
I’équation de Schrodinger (1) et (4), comme application des espaces de Sobolev
standard et Sobolev avec poids. Ces estimations sont globales, dans le sens ou
I’analyse des solutions et de ses dérivées n’utilise pas les fonctions de troncature
ni les techniques microlocales. Ces estimations sont de niveau assez bas; pourtant
elles n’apparaissent pas dans la litterature, pour autant que je sache, pour les
équations a coefficients variables considérées en [3], [4] et [5] et le présent article.
Les hypotheéses que nous imposons sur les coefficients de I’équation (1) sont que

z Oz, a’*(2)0y, = a(z, D) + ay(x, D) ,
=1

J,e

(37) -

=

ot les opérateurs pseudodifferentiels ont des symboles a(z, ), le symbole princi-
pal exprimé en (3), et a1(2,§) = — 3, 0z, a’*(x)&,. En termes des classes des
symboles, nous demandons que a(z,£) € §%°(0,1), tel que a;(z,€) € SL=1(0,1),
et nous supposons que la condition d’ellipticité est valable

(38) ZIEP < a(z,€) < Clel?

Celle-ci est une hypothese plus faible que (9) en terme de taux de décroissance,
bien qu’elle implique encore que la matrice (a’*)~! est asymptotique plate. Les
demandes sur les termes d’ordre inférieur de ’équation (4) sont que mq(x,§) €
S19(0,1), et qu’il soit réel, tandis que vo(x,€) € S*°(0,1). Jimagine que ces
demandes peuvent étre affaiblies, mais cela ne sera pas poursuivi ici.

Théoréme 11. Les solutions de I’équation (1) conservent la probabilité et ’énergie;
c’est - a - dire

(@, e = oz et
(39) S [ ()0, 0 Bide = (6(0), Aw(E)) = (o, Ad)
.

Supposons que my(x, D) + vo(z, D) soit formellement auto-adjoint sur L*(R™).
Alors les solutions de U’équation (4) conservent aussi la probabilité et [’énergie.

Démonstration. Ces faits ont été mentionnés ci-dessus, et l'idée de base de la
démonstration est que dans lidentité (12), les opérateurs B = [ et B = A
commutent avec A. Bien str les solutions ne sont pas nécessairement réguliere,
alors argument complet entretient une approximation dans L?(R") par les solu-
tions régulieres et une limite. L’énergie de ’équation (4) est le produit scalaire
(1), (A + mi(z, D) + vo(w, D))(t)). O

L’analogue du Théoreme 1(iii) pour les solutions des équations (1) et (4) est le
résultat que I’évolution préserve les espaces de Sobolev classiques H™ (R™).
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Théoreme 12. Les solutions de [’équation (1) préservent les estimations de Sobolev
dans les espaces H™(R™),

(40) [ (z, )z < C(r)llvho(@)l ar -

Quand mi(x,€) € SH0(0,1) est réel et vo(x,€) € $%°(0,1), alors les estimations
de Sobolev sont aussi valables pour les solutions de ’équation (4);

(41) [ (@, )l < e“OF o ()] -

De méme que les demandes sur les moments comme (7) donnent une information
de localisation sur la densité de position |9 (z,t)|?dz = dP;(z), les estimations de
Sobolev donnent une information sur les moments de la densité de vitesse (ou de
momentum ) lzz(f, t)|2d€ = dP,(€). L’énoncé du Théoréme 12 est que les 2r-iemes

~

moments de dP;(£) sont bornés en termes des 2r-iemes moments de la densité

de moments initiaux dPy(€); par contre 1’énoncé parallele & propos de la densité
de position n’est pas valable. Il est naturel alors de demander de l'information
suffisante telle que les moments spatiaux de la solution soient controlés; cela est le
sujet du prochain théoreme.

Définition 13. L’espace de Sobolev avec poids W7 (R™) est I'espace de Hilbert
résultant de la cloture de S par rapport a la norme

(42) Pl = Y [0

la|+|8|=r

Théoréme 14. Les solutions de [’équation (1) préservent les espaces de Sobolev
avec poids W (R™); elles satisfont ’estimation

(43) (2, t)|wr < eCO 1o ()| -

Les solutions de l’équation (4) satisfont aussi (43) quand, comme ci-dessus, mi(z,§)
€ S19(0,1) est réel, et vo(x,€) € S99(0,1).

Remarquons que, en particulier, la variance [ |z|?|¢(z,t)|?dz d’une solution
est finie pour tout ¢t € R si les données initiales ont en méme temps la variance
initiale finie et I’énergie initiale finie, mais pas nécessairement autrement. En fait
les opérateurs d’évolution pour (1) et (4) préservent aussi les espaces de Hilbert
basés sur les normes

W) Eo= Y. 1059y .

0<|BI<s

Il est possible de voir que le caractére de la norme (42) est nécessaire, suivant les
exemples des paquets d’ondes gaussiens. Regardons les données initiales pour (5)
de la forme

(44) Yo(z) = exp(—3(z, Az) + i(k, z)) ,
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avec A = AT réelle et définie positive. Alors dPy(z) = exp(—(z, Az))dz et

lvo(z)||2. = +/7"/det(A) (nous n’avons pas normalisé ¢, alors dPy n’est pas
une mesure de probabilité). Les moments de dPy(x) sont

(46) /a:klwo(a:)lzd:c = /xk exp(—(z, Az))dx

qui sont indépendants de k. De plus, les normes de Sobolev avec poids de ()
peuvent étre exprimeées

() 0zbo(@i = [ ()" Py(a,k) exp(~(z, Az))da

ou Py(x,k) est un polyndome monique en k de degré maximal 2¢q. La solution de
(5) provenant des données initiales (44) est un paquet d’ondes gaussien ¢ (x,t) =
[ 8%z — y,t)po(y)dy, ou S°(z,t) est le noyau de I'équation de Schrodinger libre,
et la solution est explicitement

(47)

bla ) = .

V(2mit)™ det(1 + t2A2?)

avec la fonction de phase ®(z,t) = 4 ((z,x) — (z — kt, (1 + t2A%) "}z — kt))). La
densité de position est donc

1
(2wt)™ det(1 + t2A2
dont les 2|r|-itmes moments sont
(48)
[ Pap@) -

exp(—3(z —kt, A(1+t>A*) " (z — kt))) exp(i®)

dP(z) =

] exp(—(z — kt, A(1 + t2A%) "z - kt))) da

kt)"|? —A(1+t?AH2))d
(27 t)"det (1+1t2A2) /Ix+ )" exp(~(, —A(L+ )z))dz

et ceux-ci croissent en |(kt)"|2. La conclusion est que (48) divergera en k plus
vite que (45) & moins que |g| > |r| explicitement. Dans ce cas les moments de
la solution |[{(z)"¢(z,t)||2. ne seront pas bornés dans une norme de Sobolev de

données initiales qui ne contient pas au moins 2|r| moments et 2|r| dérivées.

Démonstration. (du Théoreme 12) Le fait que A est elliptique implique que les
normes construites de Iopérateur A, soit

(AT, A7)+ |[Yll72  (r pair) |
(ACHD/2y AT=D/20y 1|2, (r impair) ,

sont comparables aux normes de Sobolev usuelles de H"(R™). Pour I'équation
(1) Vestimation standard est de prendre b(z, D) = A" dans l'identité (13), et
cela commute bien stir avec A, qui démontre que 9;(y(t), A™¥(t)) = 0. Cette
facon de raisonner n’est pas valable en elle - méme bien sir, car 1’élément typique
¥ € H"(R™) n’est pas régulier; mais I'approximation standard par les fonctions
réguliéres marche dans ce cadre de probléme, et montre que les quantités de (49)
sont préservées par ’évolution de (1). En présence de termes d’ordre inférieur,
la méme démonstration marche aussi, avec les modifications appropriées pour les
effets des perturbations.

(49)
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Lemme 15. Etant donnés mq(z,€) € SY0(0,1) un symbole réel, et vo(x,€) €
599(0,1), alors

[AP,my(z, D)] = %{a”,ml}(x, D) +eq)
(50) (APmy(z, D) — m}(=, D)AP) = %{ap,ml}(x, D) + e

[AP,vo(z, D)] = 1{aP,vo}(z, D) + (3,

0l {ap,ml}(m,f) € SQp,—l(O, 1)? {ap7U0}(x7€) € SQp—l,—l(O, 1)7 et avec €(1)s €(2)
borné de L*(R™) a H*P~Y(R™), ey borné de L*(R™) ¢ H*P~2(R").

Démonstration. Les opérateurs A = a(z, D) + ay(z, D), m1(x, D) et vo(z, D) sont
construits d’apres des classes de symboles S™*(0, 1), qui ont un calcul de symboles
qui se comporte bien (voir [4] et [5, section 5]). A partir de cela, la démonstration
n’est pas difficile. O

Pour finir la démonstration du Théoréme 12, supposons que m;(x, D) et vo(x, D)
soient conforms aux hypotheses précédentes. Alors pour r pair, 'analogue de
I'identité (13) avec b = A" est que

dire(sh, A™Y) +re(y, 1[A, AT]Y) + re(y, (F(A"mi(z, D) — mj(z, D)A")

50 + LA v0(z, D) - v (x, D)AT))) = 0.

Bien stir [A, A"] = 0, et une estimation des restes est

re(y, %(A’"ml(x, D) — mj(z,D)A™)Y)
(52) = —re(A"%p, L(A*my (z, D) — mj(z, D)A™/?)p)
+re(A™%p, 1 (A ?my(z, D) — my(z, D)A™?)y) .

Les quantités dans (52) sont les deux premiéres expressions dans (50) de Lemme 15,
et alors

1A 2my (@, D) = mi (@, DYA 2l 2 < C(r) 1]
(A2 (2, D) = my (2, DA™ 2l 12 < C(r) el -

Le terme avec vo(z, D) est méme plus simple. L’identité (51) donne alors une
inégalité différentielle pour ((t), A™)(t)), qui implique (41). Le cas r impair est
semblable. Remarquons que, si my(z,€) = 0 et vo(x,&) est réel alors (41) est
valable avec les bornes indépendentes du temps, car (1, (A+ V) ) ~ |[¢]|%.. O

Démonstration. (de Théoreme 14) Nous allons considérer ’équation (1), car la
démonstration dans le cas de I’équation (4) entraine que plus de termes d’erreur
dans I’analyse. Etant donnée une solution ¢ (z,t), alors

(53) 10, ((z)7) = A((2)*P) + [(2)7, A]Y .
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Développons le terme du commutateur,
[(z), Al = — 5 (%( Yo’ (2) 8z, v — Z 01, 0?°) (s, () )

(54)
2 Za]é 83338$Z< > )10 .

Puisque a(z,€) € .5'2'0(0,1), une inspection du taux de décroissance dans (54)
montre le lemme suivant.

Lemme 16.

185 1(2), Allle < C(r, @) (I(2) T~ 05 ol 2 +[[(2) T2l 2+ -+ ({2} ™"l )

Il n’est pas suffisant de I'utiliser dans (53) pour achever une inégalité différentielle
pour (x)?071, mais cela donne I'information nécessaire pour I’é¢tape de récursion
du théoreme.

Lemme 17. Supposons que ¥(x,t) satisfait ’estimation

(55) ey ot (e, bl < exp(Clg — 1,7 + 1)) [[{x) T Yol grer

alors

(56)

{z) 2054 ()| 2 < exp(Clg,m)t) ([[{x) 1050 ()| L2 +C(g—1, r+1)|[{x)? ol mr) -

La démonstration entraine, comme d’habitude, 'inégalité de Gronwall pour
(53), appliquée & A"/%¢, et les estimations du Lemme 16 qui bornent les termes
d’erreur. La récursion dans la démonstration du Théoreme 14 commence avec
I’énoncé du Théoreme 12 pour H"(R™), et continue en r décroissant et g ascendant
pour aboutir au résultat. [

t4. Probléemes non auto-adjoints

Les résultats de [5] sont presque tous limités au cas ou l'opérateur du c6té droit
de (4) est auto-adjoint (sauf qu’il est permis d’admettre des termes non auto-
adjoints du zéro-ieme ordre qui décroissent en (z) grand). Il est donc naturel de
se demander jusqu’a quel point la propriété auto-adjointe est nécessaire pour les
résultats de régularisation dispersive. La technique dans cette section entraine une
‘transformation de jauge’, et il est intéressant que ces transformations impliquent
les opérateurs pseudodifférentiels basés sur la classe des symboles 52’0(1, 0) qui
apparaissait ailleurs. Dans cette section nous considérons la forme générale des
équations dispersives du deuxieme ordre a coefficients variables, qui est réécrite
dans la forme convenable suivante:

(57) 0 = (a(z, D) + ai(x, D))y + (mi(x, D) + ici(x, D))y + vo(x, D)y .

Les deux symboles de premier ordre mq(x, ) et ¢y(x, &) seront réels, a(z, D) +
ai(z,D) = A sera auto-adjoint comme précédamment et le terme nouveau du
probleme est la contribution ic;(z, D) qui ne lest pas. L’équation (57) n’est plus
réversible en temps, par contraste avec ’équation (1), et la convention sera de
discuter la régularité du cas ¢t > 0. Cependant nous n’aurons pas les mémes
résultats pour ¢t < 0, simplement par 'involution £ — —¢ de T*(R™).
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Théotreme 18. Supposons que cy(z,&) € SYP(0,1) soit réel, et qu’il satisfasse
c1(x, &) > 0. Alors pour t > 0 les conclusions du Théoréme 3, Théoréme 7 et
Théoréme 10 sont valables pour les solutions de I’équation (57).

Démonstration. Pour simplifier mettons my(z,£) = 0 = vo(z, ). L’identité (13)
est modifiée pour étre réécrite

dere(h, b(x, D)) +re(, ;[a(z, D) + ai(z, D), b(x, D))
+(, %(bcl(m, D) + c¢j(z, D)b)yp) = re(vp, 0;biy) .

Au lieu d’étre un point difficile, la quantité 5 (bcy +c}b(z, D)) est positive & Pordre
principal, grace a ’hypothese sur le signe de ¢;(x,¢). Pour b(z, &) € 52’0(1, 0) qui
en plus satisfait la condition géométrique (21),

(58)  3(¥, (b(z, D)es(x, D) + ci(z, D)b(x, D)) = clls(z, D)vl|7- + (¥, e0t)) ,

ol eg est un opérateur borné sur L2(R"*). Cela est utilisé pour controler le terme
supplémentaire qui va apparaitre dans la démonstration du Théoreme 7, et la
conclusion (27) suivra. Les considérations analogues s’appliquent dans les étapes
de récursion de la démonstration du Théoréeme 10, d’ol sa conclusion, et celle du
Théoréme 3 suivra aussi. [

L’analyse est plus intéressante quand le symbole c¢;i(z,&) de I’équation (57)
n’est pas supposé avoir un signe particulier. Nous pouvons prendre ci(z,£) = 0
pour |£| < 1 en modifiant le terme vo(x,¢). Considérons une transformation
p(z, D)y = ¢, et son effet sur I'’équation (57);

i0yp = (a(z, D) + a1(z, D)) + mi(z, D)¢ + vo(z, D)@

(59) + ([p’ a] + ip(.’E,D)Cl(:E,D))¢ + [ a(al +my + 'Ul)]w .

L’idée présentée en [9] est de choisir la transformation p(x, D) pseudodifférentielle,
telle que les termes de 1'ordre le plus haut de [p,a] + ic; s’annule, avec les restes
d’ordre zéro, qui peuvent étre contrdlés en L2, alors que notre analyse prend en
compte cette situation. Cette stratégie implique que

(60) {a,p}(x,f) +p(x7€)cl($a€) =0,
qui veut dire que,
(61) p(z, &) = exp(bo(z,€)), et —{a,bo} = c1(z,§) .

Cette équation pour bg(x, £) est précisément 1’équation cohomologique du systeme
dynamique (2),(3), dont les propriétés de récurrence influencent la résolution du
(61). Il est clair qu’il y a peu de chance de simplifier (57) par ces transformations,
sauf si le flot bicaractéristique n’est pas captif sur le support du symbole ¢ (z, §).
Continuons alors en ajoutant I’hypothese que supp(c;) C €4 U E_. Provenant de
la connaissance ci-dessus de la quadrature, nous avons l'information suivante de
la nature du symbole p(z, &).
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Proposition 19. Le symbole by(z, &) obtenu de la quadrature de c¢q(x,&) est un
élément de la classe 53’0(1,0). Pourtant, par la régle de Leibnitz, le symbole
p(x,€) = exp(bo(z,€)) est dans S3°(1,0) aussi.

Cette classe d’opérateurs a été étudiée en [4] et [5], et elle se présente encore
tres naturellement dans le cadre des transformations de jauge. Pour que les sym-
boles p(z, £) satisfassent la condition géométrique (21), adoptons la condition tres
restrictive que m,supp(ci) est compact dans R™. Il est probable qu’une condition
moins rigoureuse soit possible, cependant on ne va pas la considérer ici. Faisons
les hypothéses suivantes sur les coefficients de ’équation (57):

a(z, &) est elliptique, et asymptotiquement plate,
my(z, &) € S5°(0,1) et il est réel,
(62) vo(x, €) € §99(0,1), et
ci(z, &) € S1°(0,1), avec supp(cy) C EL UE_,
mesupp(c;) CC R jey(z,€) =0 pour [€] < 1.

Le Théoreme 4.5 de [5] aborde la question de la composition d’un opérateur basé

sur S(T’k(l, 0) et les opérateurs classiques du type S™%1(0, 1), avec les conclusions
suivantes dans notre cas.

Proposition 20. Les opérateurs dans la liste suivante sont bornés sur L*(R™).

p(x, D)a(z, D) — a(x, D)p(x, D) + ip(z, D)cy1(z, D)
p(x, D)ay(z, D) — ai(x, D)p(x, D) ,

p(z, D)mi(z, D) — my(z, D)p(z, D) ,

p(z, D)vo(z, D) ,

vo(z, D)p(z, D) .

Provisoirement, écrivons par la fonction f les termes de (59) qui entrainent
d’une maniere explicite; c’est - & - dire,

f(z,t) :([p(x, D),a(z,D)] + ip(z, D)ci(z, D)
+ [p(=, D), a1(z, D) + my(z, D) + vi(z, D)])v(z, t) ,

et posons que ||[¢(x,t)||pz est fini. Il est alors important d’étudier le probleme
inhomogene

10 = ((1(.’1), D)+ al(x7D))90 + ma(x, D)y + vo(z, D)o + f(z,1) ,

(64) o(2,0) = gole) € LARY) . f(a,) € LA(R") .

Les solutions de cette équation ont un traitement dans les espaces L?(R™) (et
méme en H"(R™) si f(z,&) le permet) semblable au cas homogene (4), et I'identité
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analogue & (13) est que

dire(p,b(z, D)) + re(p, +la + ay, b(z, D)]p)
(65) + re(p, 1 ((b(z, D)my — mib(z, D)) + (b(z, D)vg — v$b(z, D))) )
=re(p, 8:b(z, D)y + (b(z, D) — b*(z, D)) f) -

Etant données les hypotheéses (62) (ou encore plus clémentes) ceci entraine les
estimations de Sobolev des solutions de (64) en termes de ¢o(z) et f(x,t). En
particulier, si on met b(z, D) = I, alors

(66) Bllo(z, t)172 < Co(lle(, )lI72 + (e, )l 2l f (2, t)llz2)
donc

t
(67) ()72 < e“llpollZa +/0 eS|\ f(z,7)|32d7 .

Ce n’est pas une estimation des solutions de (59), car f(z,t) est une fonction
linéaire de ¢(z) selon la relation p(z, D)y = ¢. De plus, il est naturel d’attendre
que l'inverse p~!(z, D) = ¢ soit ¢ ~ exp(—bo(z, D)); cependant il n’y a pas de
calcul pseudodifférentiel pour 53’0(1, 0), alors le rapport entre q et exp(—bo(x, D))
n’est pas garanti. Avec '’hypothése que p(z, D) a un inverse qui est borné sur
L?(R™), on a le résultat suivant.

Théoreme 21. Si l'opérateur p(x, D) est inversible sur L?(R"), alors il existe
une solution o(x,t) de I’équation (59) dans L?(R™), et elle satisfait I’estimation

(68) le)llzz < e“llwollz

ou. Cy dépend de Cy de méme que les normes d’opérateurs de p~'(x, D), [p,a] +
ipCy et [p,a; + my + vo)]. De plus, la fonction (x,t) = p~1(z, D)p(x,t) est une
solution de ’équation (57).

Démonstration. En esquisse, on utilise une récursion pour ¢, (t) qui est la solution
de I’équation (64) avec f = f(1n—1), ol PYp—1 = qpn—1. Les estimations directes
montrent que 1’équation inhomogene a les solutions en L%(R™), et un argument
par contraction, aussi direct, qui entraine I’estimation (67) sur un court intervalle
de temps, montre que la suite o, (z,t) converge dans C([0,T]; L?(R™)) vers une
solution de (59). L’équation est linéaire, donc cette solution peut étre prolongée
sur les intervalles en temps quelconque. O

L’identité (65) peut étre appliquée encore une fois pour démontrer une es-
timation de régularité microlocale des solutions de l’équation (59), analogue a
'estimation (23). Supposons comme ci-dessus que les coefficients de (57) satisfont
(62).
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Théoreme 22. Supposons que lopérateur p(x, D) est inversiblement borné sur
L*(R"), et prenons c(z, &) un symbole classique dans S* tel que supp(c) C ELUE_.
Alors pour tout T > 0, la solution de I’équation (59) satisfait ’estimation de
régularisation microlocale

T
(69) | retelt).cta Diptt))at < Clol

En ce cas, la solution (x,t) = p~(z, D)p(x,t) de U'équation (57) satisfait l’esti-
mation de réqularité

T
(70) / re(i)(t), &z, DY (1))dt < Cllol2 |

ot &(z, &) = [p(z, €)|*c(, £).
Remarquons que ces hypotheses sont réversibles en temps, alors la démonstration

du Théoreme 22 implique les mémes résultats pour 7' < 0.

Démonstration. L’identité (65) et la solution de (14) pour b(z,¢) € 52’0(1,0),
étant donné c(z,£) € S' avec supp(c) C €4 U E_ impliquent le procédé de la
démonstration du Théoréme 7 pour pouvoir conclure (69). Pour arriver a I’énoncé

(70) on peut utiliser le résultat dans [4] que la composition de S;n’k'(l, 0) avec un
symbole classique (ou 7 supp(c) est compact) est bien définie et donne une série
asymptotique d’opérateurs pseudodifférentiels avec des restes bien controlés. Alors

(@, c(x, D)) = (¢, p*(z, D)c(z, D)p(x, D))
= (1, &(x, D)) + (p,er) ,

ol e est un opérateur de restes qui est borné sur L2(R*). O

Il manque un critere raisonnable pour que p(x, D) soit inversible borné sur
L?(R™). Sans un calcul de symboles on ne peut corriger simplement le choix
naturel de p~!(z, D) ~ exp(—bg)(x, D). Pourtant un critere direct est de supposer
que ci(z, &) est petit, et d’utiliser la petite taille de bo(x, D) que cela impliquee.

Théoréme 23. Quand ci(x,&) est suffisamment petit, dans le sens que les con-
stantes Cnp de l’estimation

(71) 10507 ¢1(w,€)] < Cap (€)' 1) 1!

sont suffisamment petites pour ||, |8 < L, pour L approprié, alors 'opérateur
p(z, D) = exp(bo)(x, D) est inversible sur L*(R™).

Démonstration. Les petites constantes en (71) impliquent que la solution by(z, &)
donnée par les quadratures (13) et (22) est aussi petite, ce que, a son tour. implique
que la décomposition

p(‘rvé) = QXp(bo(l’,f)) =1 +p(l)(rv€)
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a pour résultat le symbole p(z,§) € 52’0(1,0) qui est petit. Le résultat est que
Py (z, D) est un opérateur qui est borné sur L?(R™), avec petite norme d’opérateur
(voir [5], section 4). Donc 'opérateur p(x, D) est une petite perturbation de
I'identité, et il est inversible. O

Remarquons que, ni le résultat du Théoreme 21 ni celui du Théoreme 22,
ne demande de comprendre 'inverse de p(x, D) en termes d’opérateurs pseudod-
ifférentiels et les propriétés de leurs symboles; on demande seulement que I'inverse
est un opérateur borné sur L?(R"). Le critére méme que p(x, D) est borné ne
dépend que des quantités associées du systeme dynamique (2), (3) et de la quad-
rature de ¢1(z, §).

§5. Propriétés d’application de 52’0(1,0)

La transformation p(x, D) de Section 4 entraine les symboles p(z, ) € 52’0(1, 0), et
aprés avoir été transformée, I’équation (59) entraine les coefficients qui sont aussi
dans cette classe. C’est ce qui a motivé la question des propriétés de continuité de
ces opérateurs pseudodifférentiels, agissant sur les espaces de Sobolev classiques,
ou bien sur les espaces de Sobolev avec poids. Les deux résultats ici donnent une
réponse a ces questions de base, et ils montrent le role des champs de vecteurs X;
définis en (17), et la condition géométrique sur le support de ces symboles.

Théoréme 24. FEtant donné p(z,§) € 53’0(1, 0) qui satisfait la condition géomé-
trique (21) sur son support, lopérateur p(z, D) est borné sur H"(R™) pour tout
entier r.

Démonstration. Pour p(x,§) € 52’0(1, 0) et p(z) € S,

9zp(x, D)y =0 / / e“@=p(z, &)p(y)dyde
= / / @) (9,p(x, £)(y) + pla, £)Oye(y))dyds .

Puisque p(z, &) € Sg’o(l, 0), alors d,p(x, £) est aussi dans 53’0(1, 0) et la condition
(21) sur le support est autant valable pour I'un que pour l'autre. Les hypotheses
du théoréeme impliquent donc que l'opérateur p(z, D) est une application continue
de HY(R™) en soi - méme, et le reste suit par récursion. [

La méme question est naturelle & poser quand cela entraine les normes de
Sobolev avec poids. Définissons les espaces de Sobolev H™*(R™) avec les normes

(@) |13 = / () (82) ()2 .

Théoréme 25. FEtant donné p(x,§) € 5'2’0(1,0) tel qu’il satisfait la condition
du support (21), Uopérateur p(x, D) est borné sur H™*(R"™). Pourtant, p(z,&) €
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S;n’k(l, 0) qui satisfait (21) donne un opérateur pseudodifférentiel qui est une ap-
plication borné de H™*(R™) a H™~™~k(R").

Démonstration. Commencant avec p(z,£) € 5'2’0(1, 0) et o(z) € S, les poids mul-
tiplicatifs contre p(z, D) ont les résultats suivants
(73)

2 Pp(z, D)p(x) = |af? / / 5@V p(z, € (y)dyde
. / / (z — ) SV p(z, €)p(y)dyde + @ - / / ECD (., €)yip(y)dyde
- / / EED)iz - Dep(e, €)ply)dydé + @ - / / (i, €)p(y)dyde

Quand p(z, &) est dans 52’0(1,0), alors iz - O¢p(z, &) € S~11(1,0) grace a la pro-
priété (18) par rapport au champs vectoriel X3. Alors quand p(z,§) satisfait en
méme temps la condition du support (21),

z|?
(74) H|<7>;D($, D)ollrz < C(lle(@)llez + lzo(@)l L2)
et cela implique que p(x, D) est borné sur H>!(R™). Le reste de 1’énoncé du
résultat suit par récursion. O

La derniére remarque est au sujet des conditions (17), (18) et (21) des symboles
pour que les opérateurs pseudodifférentiels se comportent bien sur L?(R"). La
discussion ci-dessous est basée sur les constructions de L. Hormander dans la
référence [6].

Théoréme 26. Il existe des symboles q(z,&) € S%9(p,8) avec § < p tels que
q(z, D) n'est pas borné sur L*(R"™).

Démonstration. Dans la référence [6], le Corollaire 5 montre des exemples des
symboles r(z,§) € Sg’ ,» la classe de symboles de Hérmander, (d’ou
10208 (2, €)] < Cap(K)(E)1=0181 )

o 0 < § < p<1etour(z,D)nest pas borné de L2, (R*) a L{ (R™). Sans
perte de généralité supposons que m supp(r) C K est un ensemble compact. Il est
clair que r(x, D) n’est pas borné sur L%(R™), pas plus que les opérateurs constru-
its de n’importe quelle extension du symbole 7(z,£) de 'extérieur de K. Mettons
q(z,€) = r(&, x) pour x € R*, £ € K, et prolongeons ¢(z,{) d’une maniere ho-
mogene de degré zéro en £ a l'extérieur d’une grande boule qui contient K, tel que
q(z, &) € S%9(p, ), les classes de la Définition 5. Alors g(z, D) ne peut pas étre
borné sur L?(R™), car autrement ¢*(z, D) serait aussi borné, et alors pour tout
¢ € L*(R™), nous aurions

Ir(z, D)ol = [lg*(z, D)@ll2 < Cllpllr2 -
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