@article{SEDP_1993-1994____A16_0,
author = {Lebeau, G.},
title = {\'Equations des ondes amorties},
journal = {S\'eminaire Goulaouic-Schwartz},
note = {talk:15},
pages = {1--14},
year = {1993-1994},
publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
mrnumber = {1300911},
language = {fr},
url = {https://www.numdam.org/item/SEDP_1993-1994____A16_0/}
}
Lebeau, G. Équations des ondes amorties. Séminaire Goulaouic-Schwartz (1993-1994), Exposé no. 15, 14 p.. https://www.numdam.org/item/SEDP_1993-1994____A16_0/
[B-L-R] , , : Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control and Optimization, vol. 30, n° 5, (1992), p. 1024-1065. | Zbl | MR
[C-Z] , : The rate at which the energy decays in a dumped string, à paraître à C.P.D.E., et Estimations sur le taux de décroissance exponentielle de l'énergie dans des équations d'ondes, Note C.R.A.S., Paris, 317 (1993), p. 249-254. | Zbl | MR
[G] : Microlocal defect measures, C.P.D.E. 16 (1991), p. 1761-1794. | Zbl | MR
[G-L] , : Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. Journal, vol.71, (1993), p. 559-607. | Zbl | MR
[G-K] , : Introduction to the Theory of Linear non Self adjoint Operators, Translations of Mathematical Monograph, vol. 18, Amer. Math. Soc. 1969. | Zbl | MR
[H-S] , : Multiple wells in the semi classical limit I, C.P.D.E. 9 (4) (1984), p. 337-408. | Zbl | MR
[L] : Equation des ondes amorties, à paraître dans les actes de l'école "Geometric Methods in Mathematical Physics", Math. Physics Studies Book Series, (Kluwers).
[M-S] , : Singularities of boundary value problems I, CPAM 31 (1978), p. 593-617, II, CPAM 35 (1982), p. 129-168. | Zbl | MR
[R] : Fonctions de coût et contrôle des solutions des équations hyperboliques, à paraître dans Asymptotic Analysis. | Zbl
[R-T] , : Decay of Solutions to Nondissipative Hyperbolic Systems on Compact Manifolds, CPAM 28 (1975), p. 501-523. | Zbl | MR
[T] : H-measures: a new approach for studying homogenization, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 115 (1993), p. 193-230. | Zbl | MR






