@article{SEDP_1993-1994____A13_0,
author = {Naboko, S.},
title = {On the singular spectrum of discrete {Schr\"odinger} operator},
journal = {S\'eminaire Goulaouic-Schwartz},
note = {talk:12},
pages = {1--9},
year = {1993-1994},
publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
mrnumber = {1300908},
zbl = {0886.34073},
language = {en},
url = {https://www.numdam.org/item/SEDP_1993-1994____A13_0/}
}
TY - JOUR AU - Naboko, S. TI - On the singular spectrum of discrete Schrödinger operator JO - Séminaire Goulaouic-Schwartz N1 - talk:12 PY - 1993-1994 SP - 1 EP - 9 PB - Ecole Polytechnique, Centre de Mathématiques UR - https://www.numdam.org/item/SEDP_1993-1994____A13_0/ LA - en ID - SEDP_1993-1994____A13_0 ER -
Naboko, S. On the singular spectrum of discrete Schrödinger operator. Séminaire Goulaouic-Schwartz (1993-1994), Exposé no. 12, 9 p.. https://www.numdam.org/item/SEDP_1993-1994____A13_0/
[1] - Perturbation theory for linear operator Springer-Verlag (1906). | Zbl
[2] - Perturbation of spectra of operators in Hilbert space Amer. Math. Soc. (1965). | MR
[3] and - Inverse problems in quantum scattering theory Springer-Verlag (1977). | Zbl | MR
[4] - Fourier series, a modern introduction Springer-Verlag (1979). | Zbl
[5] - Some Jacobi matrices with decaying potential and dense point spectrum Comm. in Math. Phys. 87 (1982), 253-258. | Zbl | MR
[6] - Singular continous measures in scattering theory Comm. in Math Phys. 60 (1978), 13-36. | Zbl | MR
[7] and - Trace class perturbations and the absence of absolutely continuous spectra Comm. in Math. Phys. 125 (1989), 113-126. | Zbl | MR
[8] and - Methods of modern mathematical physics 4 (Analysis of operators) Acad. Press (1977). | Zbl | MR
[9] - On bound states in the continum of N-body system and the virial theorem Ann. Phys. 71 (1972), 167-276. | MR
[10] - Uniqueness theorems for operator-valued functions with positive imaginary part, and the singular spectrum in the selfadjoint Friedrichs model Arkiv for Matem. 23:1 (1987), 115-140. | Zbl | MR
[11] and - Discrete Schrödinger operator, point spectrum on a continuous one Algebra and Analysis 4:3 (1992), 183-195 (in Russian). | Zbl | MR
[12] and - Introduction to the theory of linear nonselfadjoint operators in Hilbert space Amer. Math. Soc. Providence R. I. (1969). | Zbl | MR
[13] and - On the singular spectrum of weakly perturbed operator of multiplication, Funk. Anal. i Priloz 4:2 (1970), 54-61 (in Russian) ; English. transl. in Functional Anal. Appl. 4 (1970). | Zbl | MR
[14] - On Friedrichs model in continuous spectrum perturbation theory Trudy Math. Inst. Acad. of Sci. USSR 73 (1964) 292-313 (in Russian) ; English transl. in Amer. Math. Soc. Transl. 62 (1967). | Zbl | MR
[15] and - Zero sets of operator-functions with positive imaginary part Lecture Notes in Math. Springer-Verlag, 1043 (1984) 124-128.
[16] and - Subharmonicfunctions 1, Acad. Press (1976).
[17] - Spectral analysis of selfadjoint operators in Friedrichs model S.-Petersburg Univ. Depart. Math. Phys. Thesis (1991).
[18] - Nonselfadjoint difference operator, Dokl. Acad. Sci. USSR, 173:6 (1967), 1260-1263 (in Russian). | MR
[19] , and - The boundary of finiteness of the singular spectrum in the selfadjoint Friedrichs model, Algebra and Analysis, 3:2 (1991) (in Russian) ; English transl. in St. Petersburg Math. J. 3:2 (1992) 299-311. | Zbl | MR





