@article{SEDP_1991-1992____A20_0,
author = {Temam, Roger},
title = {Vari\'et\'es inertielles dans le cas non auto-adjoint. {Applications} aux vari\'et\'es lentes},
journal = {S\'eminaire Goulaouic-Schwartz},
note = {talk:20},
pages = {1--11},
year = {1991-1992},
publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
mrnumber = {1226499},
language = {fr},
url = {https://www.numdam.org/item/SEDP_1991-1992____A20_0/}
}
TY - JOUR AU - Temam, Roger TI - Variétés inertielles dans le cas non auto-adjoint. Applications aux variétés lentes JO - Séminaire Goulaouic-Schwartz N1 - talk:20 PY - 1991-1992 SP - 1 EP - 11 PB - Ecole Polytechnique, Centre de Mathématiques UR - https://www.numdam.org/item/SEDP_1991-1992____A20_0/ LA - fr ID - SEDP_1991-1992____A20_0 ER -
%0 Journal Article %A Temam, Roger %T Variétés inertielles dans le cas non auto-adjoint. Applications aux variétés lentes %J Séminaire Goulaouic-Schwartz %Z talk:20 %D 1991-1992 %P 1-11 %I Ecole Polytechnique, Centre de Mathématiques %U https://www.numdam.org/item/SEDP_1991-1992____A20_0/ %G fr %F SEDP_1991-1992____A20_0
Temam, Roger. Variétés inertielles dans le cas non auto-adjoint. Applications aux variétés lentes. Séminaire Goulaouic-Schwartz (1991-1992), Exposé no. 20, 11 p.. https://www.numdam.org/item/SEDP_1991-1992____A20_0/
[1] , , Attractors of evolutions equations, North-Holland, Amsterdam, 1992. | Zbl | MR
[2] , , , , Determining modes and fractal dimension of turbulent flows, J. Fluid Mech. 150, (1985), p.427-440. | Zbl | MR
[3] , , , and Manifolds for Dissipative Partial Differential Equations, Springer-Verlag, New York, (1989). | Zbl | MR
[4] , , , Attractors representing turbulent flows, Mem. Amer. Math. Soc., (1985), vol.53. | Zbl | MR
[5] , , , On the dimension of the attractors in twodimensional turbulence, Physica D., 30, (1988), p.284-296. | Zbl | MR
[6] , , Inertial manifolds and the slow manifolds in meteorology, Diff. Int. Equ., 4, (1991), p.897-931. | Zbl | MR
[7] , , , Solutions of the incompressible Navier-Stokes equations by the nonlinear Galerkin Method, to appear. | Zbl | MR
[8] , , , Variétés inertielles des équations différentielles dissipatives, C.R. Acad. Sci. Paris, Serie I, 301 (1985), 139-142. Inertial manifolds for nonlinear evolutionary equations, J. Diff. Eqs., 73 (1988), 309-353. | Zbl | MR
[9] , , Introduction to the Theory of Linear non Selfadjoint Operators, Translations of Mathematical Monographs, vol, 18. Amer. Math. Soc., 1969. | Zbl | MR
[10] , Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol 25, AMS Providence. | Zbl | MR
[11] , , , The nonlinear Galerkin method in computational fluid dynamics, Applied Numerical Mathematics, 6, (1989) 190, p.361-370. | Zbl | MR
[12] , , , A nonlinear Galerkin Method for the Navier-Stokes equations, Computer Math. in Appl. Mechanics and Engineering, 80, (1990), p.245-260. | Zbl | MR
[13] , Finite dimensional inertial forms for the 2D Navier-Stokes equations, University of Minnesota, AHPCRC, Preprint, 1991. | Zbl
[14] , A dynamical system generated by the Navier-Stokes equation, J. Soviet Math. 3, n°4, (1975), p.458-479. | Zbl
[15] , On the determination of minimal global B- attractors for semigroups generated by boundary value problems for nonlinear dissipative partial differential equations, Steklov Institute, Leningrad 1987.
[16] , , , Implementation of finite element nonlinear Galerkin methods using hierarchical bases, J. Comp. Mech., to appear | Zbl | MR
[17] , Nonlinear normal mode initialization and quasi-geostrophic theory, J. Atmos. Sci., 37, (1980), p.958-968. | MR
[18] , , Inertial manifolds,for reaction-diffusion equation in higher space dimension, J. Amer. Math. Soc., I, (1988), 805-866. | Zbl | MR
[19] , Inertial manifolds, The mathematical Intelligencer, 12, n.° 4, (1990), p.68-74. | Zbl | MR
[20] , Infinite Dimensional Dynamical Systems in Mechanics and Physics Applied Mathematical Sciences, vol. 68, Springer Verlag, New York, 1988. | Zbl | MR
[21] , Nonlinear initialization on an equatorial Beta-plane, Mon. Wea. Rev., 107, (1979), 704-713.






