@article{SEDP_1984-1985____A7_0,
author = {Bismut, J. M.},
title = {Formules de {Lefschetz} d\'elocalis\'ees},
journal = {S\'eminaire Goulaouic-Schwartz},
note = {talk:7},
pages = {1--12},
year = {1984-1985},
publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
mrnumber = {819773},
zbl = {0589.58026},
language = {fr},
url = {https://www.numdam.org/item/SEDP_1984-1985____A7_0/}
}
Bismut, J. M. Formules de Lefschetz délocalisées. Séminaire Goulaouic-Schwartz (1984-1985), Exposé no. 7, 12 p.. https://www.numdam.org/item/SEDP_1984-1985____A7_0/
[1] and : A Lefschetz fixed point formula for elliptic complexes. I. Ann. of Math. 86 (1967), 374-407.II 88 (1968), 451-491. | Zbl | MR
[2] , , and : On the heat equation and the index theorem. Invent. Math. 19 (1973), 279-330. | Zbl | MR
[3] , : Spin-manifolds and group actions. In Essays in Topology and related topics. Dedicated to G.de Rham p18-28.A. Haefliger and R. Narasimhan ed.Berlin -Springer 1970. | Zbl | MR
[4] and : The index of elliptic operators III Ann. of Math.87 (1968), 546-604. | Zbl | MR
[5] , : Zéros d'un champ de vecteurs et classes caractéristiques équivariantes. Duke Math. Journ 50 (1983), 539-549. | Zbl | MR
[6] , : Une démonstration simple de la formule de l'indice équivariant. A paraître.
[7] : The Atiyah-Singer Theorems: a probabilistic approach I. The index theorem. J. Funct. Anal. 57 (1984), p.56-99 II The Lefschetz fixed point formulas. Ibid. 57 (1984), 329-348. | Zbl | MR
[8] : Index theorem and equivariant cohomology on the loop space. A paraître dans Comm. Math. Physics (1984). | Zbl | MR
[9] : The infinitesimal Lefschetz formulas: A heat equation proof. A paraître dans J. Funct. Anal. (1985). | Zbl | MR
[10] : Large deviations and the Malliavin calculus. Progress in Math. n°45: Birkhaüser 1984. | Zbl | MR
[11] : Lefschetz fixed point formulas and the heat equation. In " Partial differential equations and geometry".Park City Conf.1977 (C. Byrne ed.) Lecture Notes in Pure and Appl. Math. n°48, 91-147. Dekker: New-York 1979. | Zbl | MR
[12] : Supersymmetry and Morse theory. J. of Diff. Geom. 17 (1982) 661-692. | Zbl | MR





