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1

§ 1. ' Soit n 2 3 un entier naturel, R" l'espace: euclidien n-dimen-
sionel, ¥ = Sn—l la sphere xi+...+ xi =1 et S0(n) le groupe orthogonal

spécial.;On peut munir ¥ d'une structure riemannienne invariante par 1l'ac
tion de SO(n); la distance géodésique entre deux points 0 et 9% de T
sera alors notée d(d,do) et 4 : ¢7(5) =~ &7(5) désignera 1'opérateur de
Laplace —Beltrami associé a cette métrique riemanniénne.

Nous allons étudier le comportement asymptotique (t = + =) des

solutions indéfiniment dérivables u : xR - R de

2
(1) aw g

at?

\

. Soient Hk C'C?(E), k 20, les espaces usuelg d'harmoniques
sphériques; ¢ : ¥ - R appartient a Hk si ¢ est la restriction a I
d'un polynodme homogene de degré k en n variables dont le laplacien
ordinaire est nul. Les Hk sont les espaces propres &e A et les valeurs

propres correspondantes sont -k (k+n-2) ([2]).

' Toute solution u ¢ C?(E,xll) de (1) peut etre écrite sous la

forme

(2) u(o,t) = a, + 2: ak(c) coéJk(ka—n - 2i't+ bk(d) sinVk(k+n -2)t

k=1

ou a  est une constante, a, et bk appartiennent a H., k 2 1, et ou la
série (2) ainsi que toutes celles obtenues en appliquant les opérateurs

A et—%; convergent uniformément sur T x R,

Théoreme 1 : En dimension n 2 3, il existe une constante Cn > 0 telle

que, pour toute solution indéfiniment dérivable u de (1) dont 1le

développement est donné par la formule (2) et pour tout o de T on ait

(3) la | + Z(Iak(d)l + b (o)) s lim |u(o,t)].
k=1 t—+
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1

Plus précisément, soit u : TXR — Rune solution indéfiniment dérivable

gg_(l) dont la moyenne a, est nulle. Alors, pour tout ¢ € ¥,
K Z ‘,
(4) : [ak(c)y + [bk(c)} < C_ lim u(o,t).

k=1 t—4o
t

}

:;La meilleure constante possible C, dans (4) n'est pas nécessai-
rement la méme que dans (3). L'inégalité (4) permet'de déterminer les
points 0 € ¥ ol l'oscillation prendra de tres grandés valeurs, positives
et négatives.

1 Le théoreme 1 montre, en particulier, qu'en deux points anti-
podiques G et -0 de T, lim [u(o,t) et lim lu(-0,t) sont du méme ordre

f—+ PO e o) , '
de grandeur : on peut meme7[4]) améliorer ce résultat en montrant qu'il
existe une constante 6n telle que pour tout to € R,
lu(o,t )| < &6_ sup [u(-0,t)!. Si donec u(o,t ) est tres grand, cette
ol ™ n o’
. ft ot +217.] -
o' o
forte vibration se répercutera au point antipodiquei-d au bout d'un
temps ne idépassant pas 2.
tr .
-Mais comment cette forte vibration se propage-t-elle de 0 en

-0 ? Est-ce en donnant de fortes vibrations aux points "intermédiaires" ?

Théoreme 2 : Soient ¢, un_point de I, & > 0 et M >0 deux nombres

positifs arbitrairement petits et T > 0 un nombre arbitrairement grand.

On peut alors trouver une solution indéfiniment dérivable u gg_(l) telle

que

’ :
(5) qud,t)[ < £ pour tout t € R dés que d(d,do);z M et d(d,—%} |

(6) |u€o,t)] < e pour tout o € £ lorsque |t| s T
—_— —_ i

(1)  lim Ju(o_,t)! 21 et lim (u(-0 ,t)| = 1.
t—o 0 Tt 0
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,Le théoreme 2 signifie qu'une vibration qui était restée négli-
geable “pendant des siecles" peut dans un voisinage brbitrairement petit
3 - 3 -~ i
du "pole nord" et du "pdle sud" devenir tres grande tout en restant

toujours pégligeable sur le reste de la sphere.

;Les solutions indéfiniment dérivables de (1) sont presque pério-
diques; c'est-a-dire que ce sont des fonctions presgue périodiques dytemps
uniformément par rapport a ¢ € £ (3] ch.II). Nous alions caractériser
l'espace @e toutes les fonctions con*tinues u : Tx R~ R, solutions
"générali%ées" de (1) — c'est-a-dire solutions au sens des distribu-
tions — q@i sont presque périodiques — c'est-a-dire ?eﬂe que u(o,t) soit

| . N .
presque périodique en t uniformément en C.

Théoreme 3 : Les solutions presque periodiques u iﬁ (1) sont données

G .
par les séries (infinies)

i T f R
(8) u(o,t) = a, + L ak(d) cosVk(k +n-2) t + bk(d) siﬁJk(k+n—2) t

k21

telles qué a, seit une constante, a) et bk des harmoniques sphériques de

degré k et que la série

(9) : ’a0| +k21 ak(ﬁ)l + ’bk(d)|

i !

converge uniformément sur ¥.

Evidemment la convergence uniforme de (9) sur ¥ entraline la
i

convergenée uniforme de la série (8) sur ¥ xR et la' somme u de (8) est
donc presgue périodique; il est moins évident que toute solution presque-
!

i

périodique de (1) admette une telle représentation.

Théoreme 4 : Tl cviste une solution généralisée u : TxR-oR de (1) qui

t . - - .
est continue et hornece mais qui n'est pas presque-périodique.
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[ 1
1

; Malgré son aspect technique, le résultat essentiel est le théo-
reme 1. Sa démonstration est donnée au paragraphe 2. Le théoreme 3
s'obtient alors sans difficulté. En utilisant les pﬁopriétés des fonctions

zonales nous en déduirons le théoreme 2 (8§ 3) dont le théoreme 4 sera

I
un corollaire facile. i)
i
) H

|

8 2. DEMONSTRATION DU THEOREME 1 |

1
!

Nous allons d'abordl'énoncer sous une forme un peu allégée

(mais équivalente). L

Proposition 1 : Si n 23, il existe une constante"Cn telle que, pour

\2

toute somme finie s : R- R définie par

(10) ;As(t) = Z a cotVk(k +n-2) t + b sinVk(k +n}-2)t

" k=1

' )
on ait !
(11) Zla l+ b | =C_ lim s(t).

S !

Admettons la proposition 1 et démontrons le théoreme 1. Pour
tout o fixé a, est la moyenne temporelle de la fonction presque-périodi-

que t - u(o,t). On a donc la,| < lim  |u(o,t)]. Cette inégalité, jointe
d t—t '

a (11) donpe (3) — les meilleures constantes possibles dans (3) et (11) ne
sont peut-étre pas les mémes.

. La démonstration de la proposition 1 se fait & l'aide des lemmes

suivants:
t
1

Lemme 1 : Soient PyseeesPy et p n+1 nombres premiers distincts.
Alors J;Un'appartient pas au corps @ Pysreees pn). |
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‘ Pour tout nombre premier 1 désignons par 91 le corps l~adique

correspondant. En utilisant la loi de réciprocité quadratique et le théo-
reme de birichlet ({77) p.16 et p.103) on peut*>trouver un nombre premier
1 tel que, dans Ql, Pyso--,p, deviennent des carrésimais que p n'en soit
pas un. Le lemme 1 est donc prouvé. :

! t

' a . ¢ . . ’
Lemme 2 ': Soit D l'ensemble des entiers q 2 1 sans diviseurs carrés

(on convient ici que 1 € D). Alors les nombres Vq sont Z- linéairement

indépendants.

i
]
1.

C'est une conséquence immédiate du lemme 1.

4]
Lemme 3 !: Soit m = 1 un entier, w,,...,w m nombres réels Z - lindaire-
s vt st 9 19 b m e ————

ment indgpendants et sj : R- R, 1 s j<m m fonctions continues et 27

]
périodiques. Alors \

'
LN

¢

—_ .
(12) 11-,—1on sy(wt) +ou.r s, (0 t) = S\;%) s,(t) +ooo4 Es%p s, (t).

1 t
C'est une conséquence immédiate du théoreme de Kronecker ([47 p.175)

Lemme 4 : Soit 8 > 1 un nombre réel et N =2 1 un entier. Soit A la réu-

nion de N suites croissantes A. d'entiers, 1 < j < N. Supposons que

chaque A, puisse étre écrite Aj = {n(i,j),i=1} ot 1 < n(1,3j) et
en(i,j) ¥ n(i+1,j) pour tout i =1 et 1 < j < N.

Alors il existe une constante C(e,N), ne dépendant que de 8 et

de N telle que, pour toute somme finie s(t) = ¢ axdpskt4-bhsinxt, on ait
) AEAN T,
! T
(13) L |a,l + Ib
AEA

h' s ¢(9,N) sup s(t).
[0,2n]

Cela résulte essentiellement de la démonstration du théoreme 5.7.5 de [6]

p-124.
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Lemme 5 é Soit @ 2 2 un entier sans diviseurs carrers, a 2 1 un entier

et e > 1 1'unité fondamentale du corps Q(F) I1 GXJ.Ste un ensemble fini

Ade solut10nsz= y'\]-;de x2-qy2=a(xez qéz) tel que
Card A = a et tel que toute solution z = x+ yVq de x2 qy = a s'écrive

z-oce‘]oﬁJ € Z etaEA.
Ceci est démontré dans [i] p-90, theorem 5.

Lemme 6 :‘ L'unité fondamentale # > 1 d'un cormns quadrathue réel
1+ /g
T2 ¢

vérifie 1‘1ne£a11te eq 2 —
: | ,
,La démonstration de la proposition 1 est maintenant aisée. On
appelle E 1'ensemble des couples (i,q), j 21, q € D tels que, pour un
certain k =2 1, on ait k(k +n-2) = j2q. On pose alors .

a, = a(j,a) et b= 8(j,q), k =21, (j,q) €E.

La somme finie s(t) = Z a, cos Vk(k +n-2) t + b sin Vk(k+n -2)t

k21
. B . ] . . A .,
devient oc(,],q) cosjvqt+ B(j,q)sin jVqt. Pouri.tout q € D fixé,
(jz'Q)eE
posons s (t) = Z a(j,q)cos jt + Bf(j,q) sin jt ¥ de sorte que
4 (i,q)€E ’

(14) ' s(t) = Z sq(’\/;t).

q€eD
Le lemme 3 donne
; —_ v
(15) N lim s(t) = (. sup %(t) -
tto q€D R :

-
et il reste, pour tout q € D 3 calculer sup 5y i
t m *

i

.Deux cas se présentent. b
Si g =1, k(k+n-2) = j2 implique (2k+n-2)2— 4j% = (0-2)% et 2k +n-2% 2]
sont des diviseurs de (n —2)2. Ily a, au plus, un no:r:nbre fini de valeurs
de j poss‘ibles et 1'on a .

¢
3
“
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(16) E: [a(3,1)] + [B8(j,1)] = ¢ sup sl(t).
(§,1)eE R |

Si q 22, ona (2k+n-—2)a - 4j2q = (n -2)2n Rsons z = 2k+n - 2+ 2j\/-c;: on

az = aeszoh « > 0 parcourt un ensemble fini A(q,n) d'au plus (n—2)4
4 1+N5 ‘
2

éléments, ;s € Z est un entier et Gq 2 Si z =z est l'automorphis-
1 P S - -
me de Q(Vq), on en deduit z = aeqs, 4JJE = aez - an% et donc, pour

chaque « é;A(q,n), j € Ala) qui_peut étre ordonné en,une suite Jgr 8 2 s,

5

214‘

vérifiant Jg =1 et Jer 5

- - . 2
Jg (@ >0 car xa = (n-2)7). Le lemme
4 peut étqé appliqué et donne, pour tout q = 2 appargenant a D,
60 2 el el 5o, s s (4
J,q)FE R

Les relations (15), (16) et (17) réunies donnent (10).

§ 3. PREUVE DU THEOREME 2 :

I (
{ .
Soit o, le point (0,...,0,1) de &, G le sous-groupe de SO0(n)

laissant o invariant et ¢ : £ = € la fonction @(x1$;,.,xn) = (xn+ix1)x;
il est clair que o appartient a Hk’ Posons
(18) : 2,(0) = [ o(egc) deg

G

ou gc est le résultat de l'action de g sur o et dg la mesure de Haar de
G. On a zk(oo) =1, zk(

ne contenant pas 9, et -o_, Zk tend uniformément vers 0([27).

—60) = (—1)k tandis que sur tout compact K de I

Il existe d'autre part une suite £ k =2 0; de nombres +1 ovu
-1telle que, pour tout t réel et tout N = 1, ‘
[ N {

t

V‘ . .
(19) ’ |L e elkt[ < 16J§ (lemme 2, p. 134 [47).
1 .

k
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2, (0) cos'k(k+h-2) t. On a

"

=Mz
)

! Considérons u(o,t) = %

Vk(k +n-2)it = k4 222 4-0(%) ce qui entraine
|cos Vk(k+n- )t - cos(k+= ) t| < —l—l et

lu(o,t) - § e % (0) cos(k+~——)t‘ = o(|t] 125- oF (19) donne alors

|u(o,t)] = VT?+'0(ltl lgg——) Par ailleurs |u(o,t)| s l f (Z (9) s

i
bl

quitte a choisir N assez grand, on peut assurer que 1u(6 t)l < ¢ si, soit
|t| = T, s0it d(o,0 o) = Met a(o,-c ) =M Cependant lim u(d ,t) = 1/cn
t—=+o

et de méme lim u(- S, ,t) = 1/Cn' Le théoreme 2 est donc démontré.
1=+ o

. Soit maintenant o, , k = 1 une suite de poi#ts deux a deux

k’
distincts de T et ﬂk > 0 des nombres positifs assez petits pour que les

disques de centres dk et -0y et de rayon ﬂk soient deux a deux disjoints.

Par abus de langage, appelons 7. la zonale d'ordre j (c'est-a-dire

: Jrk ,
appartena?t a HJ) mais construite en remplagant le pdle nord par Gk. Il
est possible de choisir une suite d'entiers Nk’ k 2 1, tendant assez vite

vers l'infini pour que N /Nk tende vers 1l'infini et que

k+1
‘ N,
(20) uk(c,t) = % p) . Z. k(c) cosVj(j+n-2)t

. -k _. ‘ .
verifie l?k(d’t)‘ < 277 si d(G,Gk) > M, et d(c,-ck) > T ou si |t] = k.

‘Posons

‘
1

) ¢
u(o,t) = L uk(o,t);

k21

(21)

la convergence est uniforme sur tout compact de Z xR et donc, pour tout
t € Rfixé, le développement en harmoniques sphériques de la fonction
6 = u(o,t), définie sur T, est donné par le second membre de (21) — il

faut remarquer que pour deux valeurs distinctes de k les degrés des har-
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moniques” sphériques rentrant dans la composition des uk(d,t) corres-

pondants:sont toujours différents.

i Supposons u(c,t) presque périodique; alors u(o,t) est donnée
par la f%rmule (8). Faisant t = to et remarquant que le développement
en harmoﬁiques sphériques d'une fonction de Lz(Z) eét unique, on obtient
que les ééries (8) et (21) sont identiques pour u(o,t). Si u(og,t) est
presque-périodique, la série (21) doit &tre uniformément convergente sur
ZxRen vertu du théoreme 3. Cela entraine sup ‘ (o, t)‘ - 0; mais
ce sup. dépasse Cn1 grice au théoreme 1. Dgnc u(d t) n'est pas presque-
périodique. Il est clair que |u(6,t)l < 2 (les dlsques de centres Ok ou
-0, et de rayon ﬂk sont deux “deux disjoints). Le théoreme 4 est ainsi

démontré.
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