
Séminaire Delange-Pisot-Poitou.
Théorie des nombres

H. W., JR. LENSTRA
Perfect arithmetic codes
Séminaire Delange-Pisot-Poitou. Théorie des nombres, tome 19, no 1 (1977-1978),
exp. no 15, p. 1-14
<http://www.numdam.org/item?id=SDPP_1977-1978__19_1_A12_0>

© Séminaire Delange-Pisot-Poitou. Théorie des nombres
(Secrétariat mathématique, Paris), 1977-1978, tous droits réservés.

L’accès aux archives de la collection « Séminaire Delange-Pisot-Poitou. Théo-
rie des nombres » implique l’accord avec les conditions générales d’utilisation
(http://www.numdam.org/conditions). Toute utilisation commerciale ou impression sys-
tématique est constitutive d’une infraction pénale. Toute copie ou impression de
ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SDPP_1977-1978__19_1_A12_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


15-01

PERFECT ARITHMETIC CODES

by H. W. LENSTRA Jr

Séminaire DELANGE-PISOT-POITOU
(Théorie des Nombres)
19e année, 1977/78, n° 15, 14 p. 12 décembre 1978

1. C clic 

Let rand n be integers with r ~ 2 and n > 3 . For x , y E 

the arithmetic distance d(x , y) is defined to be the smallest integer t %0 for

which there exists a representation

with c. , n(i) )c.)  r, It is easily seen

that d is a metric on Z/(r - 
An arithmetic code, or more precisely a cyclic AN-code of word length n in

base r, is a subgroup C of 1 ~ Z . The "AN" in the terminology is

explained by the observation that every such code can be represented as

for a unique pair A , B of positive integers, with AB == r - 1 . The adjective

"cyclic does not refer to the group structure of the code, but to the following pro-

perty. Let the elements of Z/(r~ - l)~ be represented by their digits in base r ,

i. e. let the "word" (ci)n-1i=0 represent the element 03A3n-1i=0 ci ri mod (rn - l) ;
only 0 mod. (rn - l) has two such representations. Then, for every cyclic AN-co-

de C , and every word (ci)n-1i=0 e C , also the cyclically permuted word (ci-1)n-1i=0 ,
with c . = c , belongs to C , since

Arithmetic codes are used for checking additions and subtractions of numbers

written in base r, see ([9], ~12~~. The procedure is roughly as follows. To
add two numbers N2 , one encodes them as AN y AN2 , and one adds the en-
coded numbers in 1)Z ; let the result be S . Next, one determines AN3 E C,
with S) least possible. If no errors have been made, then S , and

N 3 is the sum of N 1 and N 2 (mod B) . Generally, d(AN y S) is a lower bound

for the number of errors which have been made, and N 3 is the most likely result

of the addition N 1 + N (mod B) .

In this way, all combinations of e, or fewe~ errors, can be corrected if, and

only if , for every x E Z ( rn - 1 ~ Z , there is at most one c E C , with

d(x , c~ ~ e . A code having this property is called e-error-correcting. If, for

every x E 1)~ , there exists exactly one c E C , d(x , c~ ~ e , the

code is called perfect. If we put



then a subgroup C c ~~Z is e, perfect e-error-correcting arithmetic code

if, and only if, every x E Z/(rn - 1 )Z has a unique representation x = s + c ,

with s E S and c E C . yJe will be interested in the case e ~ 1 , cf. 
e

L3J9 L‘t’~9 ~~~1 w

2. Perfect one-error-correcting arithmetic codes.

Example. - Let r w n ; 3 , then rn - 1 = 26 . We have

It is easily checked that, for every x ~ Z/26Z , we have either or

x E 13 + Hence the subgroup C = {0 , y 13) is a perfect one-error-correcting

cyclic 13N-code of word length 3. in. base 3 . This code can be used to check addi-

tions modulo 2 (= B) on a ternary computer.

In the general case, we have

(here, we use that n > 3 ~. Let C 1~Z be generated by A mod (rn - ~~,
where A divides rn - 1 . This is a perfect one-error-correcting code if and on-*-

ly if, every x E Z ( rn - ~ ~ Z is uniquely representable as

with AN ~ C , 1  c  r - 1 , 0  j  n . If this condition is satisfied, then

so A and n determine each other by

Passing to ~~~rn -- we see that C is perfect one-error-correct-

ing if, and only if, every x E can be written in a unique way as

with 1  c $ r - 1 , 0  j  n . It was ohserved by GOTO and FUKUMURA [4], and by
BOJARINOV and KABATJANSKIJ [ij that this condition implies that A is prime. To
see this, suppose that A = ab , with a  A ~ b  A . With x = (a mod A) , we
find a = ± cr mod A , so a divides but a is coprime with r , s since

it divides r - 1 ,so a divides c, hence a  r . Similarly b  r . Then

A  r ~ so A has in base r at most two digits : 0~c.r.
But then x = mod A) has two representations,

contradicting our uniqueness assumption. 4Je conclude that A is prime.



Observing that ~1 ~ r , ... y r~" ) is a subgroup of , y we arrive at the f ol-

lowing proposition.

(2.1) PROPOSITION. - Let A be a positive integer. Then A generates a perfect

one-error-correcting cyclic in base r if, only if, A is prime, and

(i) and (ii) hold :

(i) ihe subgroup (r mod A) of ~ has index 2 in the subgroup

(r mod ~~ , - 1 mod A) ;

(ii) The subgroup (r mod A , - 1 mod A) has index r - 1 in F~~ , with
1 , 2 , ... , r - 1 (mod A) as a complete system of representatives.

The word length n of the code is determined by

~ 

it is necessarily Odd, since (- 1 mod A) ~ (r mod A) , by (i). Notice that, in

(ii), we may replace 1, 2 , ... , r - 1 by 2, 3 , ... , r - 1 , r, since

r = 1 mod (r mo d A , - 1 mod A) .

Let r = 2 . In this case (i) and (ii) mean

and this is easily seen to be equivalent to

A ~ 7 mod 8 and - 2 is a primitive root mod A .

Examples are A = 7 , 23 , 47 , 71 , 79 , 103 , 167 , .... If Artin’s conjectu-
re on primes, with a prescrived primitive root, is true, the condition is satisfied

for 18,69779... % of all prime numbers. We remark that this conjecture is known to
be a consequence of the generalized Riemann hypothesis [6].

Example [5]. - Let r = 3 . In this case, (3 mod A) must have odd order

(A - 1)/4 in ~’’~ . Then, A = 5 mod 8 , and - s ~ ~3 mod A) , and

2 ~ (3 mod A , - 1 mod A) are automatically satisfied. Examples are A = 13 ,
109 , 181 , 229 , 277 , 421 , .... Modulo the Riemann hypothes es, 3,739558 % of
all primes satisfy the condition.

In the general case, we are interested in conditions on r which are necessary
and probably sufficient for the existence of perfect one-error-correcting codes in
base r.

Assume that A as in (2.1) exists. Then

(2.2) r is no square,

since if r = s 2 say, then s (A-~ ~I~ r--2 ) = s 2n = r n == 1 mod A , so mod A,
for some t , contradicting that s , by condition (ii), represents a non-trivial
element in the group p~~ ~r mod A , - 1 mod A) =~~Z/(r - 1)1.
By (ii), the canonical map



is bijective, and this gives :

(2.3) There exists a group multiplication * on V = (2 , 3, ... , r - 1 ? , 1*)
such that t

(2.4) (V, *) is a cyclic group of order r - 1 with neutral element r ;

(2.5) a ~~ b = ab whenever a ~ b E V ~ are such that ab e V ;

(2.6) If p is prime and 2p divides r - 1 , then p is a square in (V, *) ;

(2.7) If r = - 1 mod 4 , then 2 is no square in ~~~ , *~ .

To prove (2.6~, notice that A = 1 + 2(r - l)n = 1 mod 4p , so the Legendre sym-

bol (p/A) equals 1 ~ y and (p mod A) ~ ~ ~~’2 . This proves (2.6). Similarly, if
r = - 1 mod 4 , then A = 5 mod 8 , since n is odd, so (2/A) = - 1 , which

implies that 2 is not a square in (V, *) . This proves (2.7).

Example. - Let r = 10, and suppose that V = (2 , 3 ? 9 ... , 9 y 10) has a cy-

clic group structure satisfying (2.4) and (2.5). Since 23 = 8 ~ 10 ( = unit ele-

ment), the order of 2 in V is 9 , so 2 generates the group, and

Let 3 = 2x . Clearly, x ~ 1 , 2 , 3 , 8 or 9 . If x = 4 , 5 or 6 , then

9 = 3 2 = 28 , 21 or 23 = 5 , 2 or 8, a contradiction. Also x=7 leads to a

contradiction : 6 ~ 2x+~ _ 28 = 5 . We conclude that no perfect one-error-correc-
ting arithmetic code in base 10 exists, cf. ([4-] (for the case A  106 ), C3~) .

The following theorem shows that the necessary conditions (2.2), (2.3), (2.4),
(2.5), (2.6), (2.7), for the existence of a perfect one-error-correcting arithmetic

code in base r , are, conversely, sufficient for the existence of infinitely many

such codes, if certain Riemann hypotheses are true. If M is a set of prime num-

bers, the limit

if it exists, is called the density of ~~I 9 and denoted by 

(2.8) THEOREM. - Let r be an integer ~2 satisfying (2.2)-(2.7), and suppose
that, for every squarefree integer n , the ’-function of the field

satisfies the generalized Riemann hypothesis. Here 03B6k de-

notes a primitive k-th root of unity. Then, there exist infinitely many prime num-

bers A which generate a perfect one-error-correcting cyclic A:N-code inbase r ; mo-

re precisely the set S of these prime numbers has strictly positive density.

The proof of this theorem is outlined in the following section: We shall also

give a precise formula for d(S) , under the assumptions of the theorem.



3. Proof of the theorem.

Denote by L the infinite Galois extension of Q obtained by adjoining L and

~/a to j~~ for all a as in (2.8). We

translate the conditions (2.1) (i) and (2.l) (ii) on A in conditions about the

behaviour of the prime in 

Let A be prime~ and let (A , L/~) denote the set of all o e Gal(L/~) for

which there exists a prime OL of L lying over A such that == c~ mod OL ~
for all algebraic integers 03B1 e L . Let a e (A , L/Q) .

If (2.i) (i) and (2.l) (ii) hold, then has a subgroup of index 2(r - l) y

so A ~ 1 mod 2(r - l) . This is equivalent to

if A > r . The requirement that ~ contains (r mod A) , but not
(-1 mod A) , is expressed by

Notice that (3.1~ and (3.3) are together equivalent to

Condition (2.1) (ii) implies that no two of 2 , 3 , ... , r - 1 , r (mod A)
are congruent modulo the subgroup F*(r-1)A , t , expres sed by

We have not yet expressed the condition that is generated by (r mod A)
and (-1 mod A). This is equivalent to the non-existence of a prime ~ dividing
the index [j~ : (r mod A , - 1 mod A)] ~ i. e. for which A=l mod 2(r-l)~
and (r mod A) This leads to

in the case ~2 = A , this may be wrong for some, but not all, a E (A , 
We conclude that a prime number A satisfies (2.1) (i) and ~2.1~ (ii) if, and

only if, A > r and

where

(3.7) U = (c e Gal(L/£) ; a satisfies ((3.2), (3.4), (3.5), (3.6))) .

Let  denote the Haar measure on Gal(L/£) , normalized such that

(3.8) PROPOSITION. - Let the hypotheses and notations be as in (2.9) , (3.7) . Then
d(S) = >(U) .

v

Proof. - The proposition would be an immediate consequence of the Cebotarev den-



sity theorem ~~ 10 ~, Chap. 7, ~ 3) if (3.6) only be required for finitely

many primes £ . In our situation, the desired conclusion can be drawn by appealing
to a suitably generalized form of Artin’ s conjecture on primes with prescribed

primitive roots, which is known to be a consequence of the Riemann. hypotheses men-

tioned in (2.9) (see ~2y [6]~ ~8~~. This proves (3.8).

We remark that, without any unproved hypothesis, it can be proved that

where

To prove the theorem, it suffices to show that > 0 if (2.2), (2.3), (2.4),
(2.5), (2.6), (2.7) are satisfied. In [8], it is proved that, for sets U of the ty-

pe, we are considering it is true that

> 0 if, and only if, U ~ ~ .

We give an outline of the proof that U ~ ~ if (2.2)-(2.7) hold.

We begin with an explicit description of Gal(L/~) . Choose ~ = 
ka = exp((log a)/k) , for a > 0 , and let  be the

profinite completion of with group of units ~ .

(3.9) PROPOSITION. - Let o- e Gal(L/~) . Then, there is a unique element u e ~ ,
and a unique sequence (v(p)) rime , with v(p) " for p prime, such that

Conversely, if u E ~3~ , v(p) E! (for p prime) satisfy (3.12), then there is

a element a~ E Gal(L~,~) satisfying (3. ~0), (3.11). 
’

Proof. - The existence of unique u p v(p) such that (3.10 ), ( 3. ~ 1 ) hold is
obvious, and (3.12) is proved by calculating 

, 

in two ways : using ~3 .l1 ) ~
or using (3,1U), with p expressed as a Gauss sum.

The converse follows by Kummer theory over the base field K; ~(~ ; k= 1,2, 3, ...)
if we know that

(3.13) For all u E Z" , there exists o- E such that (3.10) holds ;

Here (3.13) follows from the irreducibility of the cyclotomic polynomials, the

inclusion::> in (3.14) is proved by expressing square roots as Gauss sums, and the

opposite inclusion is proved as follows. Let K , with k ~ Z ~ 
a ~ ~ ~ a>0,let T~ be complex conjugation, and let p ~ Gal(K/~)
be arbitrary. Then, = ~ for some T) , , with ~ = 1 , and r(Tj) = T)"~ ~



If (v(p)) , is as in (3.9), then, for m E Z, m > 0 , we define v(m)

by

( P2 ’ ... , p prime). Notice that we then have for

all k E Z , k ~ ~. , in the situation of (3.9) .

Suppose now that (2.2)-(2.7) are satisfied, and (v , ~c~ ~ ~(r -1~Z
be a group isomorphism. Here, we use (2.4). We claim that, for an element a of

Gal(L/~) to belong to it suffices that the numbers u, v(p) from (3.9) sa-

tisfy

( 3.19 ~ For no prime number £ , y we have both

The properties (3.2), (3.4), (3.6) of o are obviously equivalent to (3.16),
(3.17), (3.19), respectively. From (3.18), (3.15), (2.5) and the fact that ~ is a

group homomorphism, we se3 that v(a) -~ ~(a~ mod (r - 1~ , for all 

2 ~ a ~ r , so the fact that V is bijective gives (3.5). This proves our claim.

By (2.6), (2.7), we have

(3.20) If p is prime and 2pjr - 1 , then is even ;

(3.21) If r = 3 mod 4 , then ~(2) is odd.

To finish the proof that ~, ~ ~ , and hence the proof of the theorem, it suffices

to see that the conditions (3.12), (3.16), (3.17~, (3.18), (3.19) are compatible if
(2.2), (3.20), (3.21) hold. This is an entirely straight forward combinatorial exe r-

cise, we leave to the reader ; notice that (3.20), (3.21) are forced by
(3.12), p (3.17), (3.18). This concludes our outline of the proof of theorem (2.9).

With slightly more effort, one can determine the number which by (3.8)
equals d(S) if the Riemann hypotheses are true. The result is as follows.

(3.22) PROPOSITION. - Let r be an integer  2 which is no square, and define



r is an m-th power) .

Let Tl be as in (3.7), and W the set of group multiplications ~ on
V= (2 , 3 , ... , r-1 , r) satisfying (2.4), (2.5), (2.6), (2.7). I;’ur ther , if

r is even, put

with if ranging over the primes ~ with ~jr-1 ~ and !)" over those

with ~2(r-l) . If r is odd, then, for ~~W , put

with 03C0III ranging over the primes l with l|r - 1 , l2w , y the product 03C0IV
over those primes A~r , which are squares in (V , F! over

the primes l > r . Then, we have :

odd and even y then

with n ranging over the primes l dividing r0 ,
r is even, but not as in (a), i. e. 2 occurs to an odd power in r ,

then

4. Perfect ne ac clic codes.

A negacyclic AN-code of word length n in base r is a subgroup 

where n is an. integer % 2 . Arithmetic distance and perfectness are defined as

in the cyclic case.

Example. - Let r = 2, n = 5 , then 1=33 . The elements of 

with arithmetic distance § 1 to 0 , are

(4.1) o,~~,=2,~49z8,~~6,

Every x E Z 33Z is of exactly one of the three forms x = s , 

x = s + 22 , with s one of the elements ( 4.1 ~ . It follows that C= ~C q ~,1 , 22)
is a perfect one-error-correcting negacyclic code.

The results of the preceding sections all have analogues for perfect one-error-

correcting negacyclic The modifications are as follows.



In proposition (2.1), 9 condition (i) is replaced by

The word length n = (A - l)/2(r - l) = (l/2)~(r mod A) is not necessarily odd,

and the proof that conditions (2.2) and (2.7) are necessary breaks down. No new

conditions take their place, and we have the following theorem.

(4.2) THEOREM. - Let r be an integer ~2 satisfying (2.3)? (2.4)~ (2.~)~ (2.6)

and suppose that, for every squarefree integer m , the ’-function of the field

the generalized Riemann hypothesis. Then, there

exist infinitely many prime numbers A which generate a perfect one-error-correct-

ing negacyclic in base r ; more precisely, the set S’ of these prime

numbers has strictly positive density.

In the proof of this theorem, the role of u is played by

The Riemann hypotheses imply that

and is given by the f ollowing proposition.

(4.3) PROPOSITION. -Let r be an integer ~2 , y and q , t , w as in (3.22). Let

tL’ be as just defined, and the set of group multiplications on

V= (2 , 3 , ... , r - 1, r) satisfying (2.4), p (2.5), y (2.6). Define c if r

i s even, and r is odd, f or ~~ E W’ , as in (3.22). Then, have :

(a) If r squarefree, r .~ ~, mod 4 and r even then

with ~ ranging over the primes ,I dividing rg ;

(b) If r is even, but not as in (a), then

r is an odd square, then

~ d.~ If r is odd but not a square 9 then

(5.1) PROPOSITION. - No perfect one-error-correcting cyclic or negacyclic AN-codes

in base r exist if r assumes one of the following values :

(a) r= 5 , 9 , 10 , 13 . 25 ;



In addition, no perfect one-error-correcting cyclic in base r exists if

r is a square.

Proof. - For r = 10~ see (2.8). The other f our cases are similar to each other ; 9
we only treat r = 25 . Let V = (2 , y 3 ? 9 ... , 24 y 25 ~ have a group multiplica-

tion ,,~ satisfying ( 2.4~ 9 ( 2. 5~ , (2.6). By (2.6), s the numbers 2 and 3 are

squares in (V, ~;~ 9 and since 5 has order it is also a square. This gives

fifteen squares in V :

2 1 3 . 4 , 5 , 6 , 8 , 9 , 10 , 12 , 15 , 16 , 1_c~,2Uy2~~.92 9

contradicting that, in a cyclic group of order 24 , there are only twelve squares.

For the last statement of ( 5, ~ ~’ see (2.2). This proves (5.1).

Notice that powers of two fall under (5.1) (b) : o If r = 2 y w > 1 , 9 and w

divides 2 - 1 , then let q be the smallest prime dividing From

~q-1 ~ / 9 w) B = 1 9 2 Q ’=" 1 = 1 mod q, 9 2’ W -- 1 mod q , y it then follows that

21 -- 1 mod q , a contradiction. Hence? there exist no perfect one-error-correcting
arithmetic codes in base 2w , w > 1 . The result is due to BOJARINOV and

KABATJANSKIJ [1].

I do not know whether, for all r, y other than those in (5. ~.~ perfect arithmetic
codes do exist. Modulo the Riemann hypotheses, this problem comes down to cons-

tructing group multiplications * as in (2.3). I can only do this in certain spe-
cial cases.

One way to proceed is as follows. Suppose one finds a map

such that , , when extended to V = (2 , y 3 , 9 .. , , r~ by the rule

becomes a bijection satisfying

Then, a group multiplication * on iT satisfying (2.4)y (2.5)~ (2.6)~ (2.7) is
given by a * b = 03C8-1(03C8(a) + 03C8(b)) .

For example, if r== 6 , one can take 03C8(2) = 1 , 03C8(3) = 4 , y 03C8(5) =3 (mod 5) ,
audit r = 15 , then ~(2) = 1, ~3) =4 , ~(5) = 10, ~(7) = 12, 
03C8(13) = 9 (mod 14) works. All r  60 , except those in (5.l)y can be treated in
this 

The following heuristic argument leads one to expect that, for all sufficiently



large r with ~ (r - l) (of. (3.22), (5.l) (b)), such a ~ can be f ound . The

number of maps (p ; p prize, is (~-l) y q as

in (3.22). The probability that the extended map it 2014~ ~/(r - satisfies (5.2)~
(5.3), (5.4) is w.2~/(r - l) or u.2~~/(r - i) , with t as in (3.22). If we

further estimate the probability the map to be bijective to be (r-l)!/(r-l) ~
then find

as the number of maps ~ may expect to satisfy our conditions. The reader easi-

ly checks that this espression tends to infinity with r . 
’

(5.5) PROPOSITION. - Let r be an integer satis fying one of the following condi-

tions :

(a) r is prime, and r = 1, mod 8 ;

(b) r is prime, and r = x2 + y2 + 1 y f or certain integers x y , 

(x , y) = 1 ; 

y2 + 1 9 gers x 9 y , 9

CX 9 y) "’ Z 9

(c) r is prime, and 2r - 1 is prime ; 9

(d) r = 3p , where p ~ 9 2p - 1 and 
. 

2.r .~- 1 are prime, and p ~ 5 .

Further let the Riemann hypotheses mentioned in (2.9) be satisfied. Then, there

exist infinitely many perfect one-error-correcting cyclic AN-codes in base r, y

and the same is true for negacyclic codes.

Proof. - We define the group multiplication * on V such that the following

maps are group isomorphisms : In cases (a) and (b), y

in case (c),

and in case (d)

Then ~~U ! ~c) clearly satisfies (2.4), condition (2.5) is easily checked, and

~2.6~ 9 (2.7) are proved by the quadratic reciprocity law. In case ~b~, notice that
r - 1 has no divisors which are 3 mod 4 . The proposition now follows from (2.9)
and (4.2).



Examples.

(a) r = 17 , y 4~. , 73 , 89 , 97 , , and infinitely many others ;

(b) r = 2 , 3 , g !.1 , ~ 59 , 83, 107 , and infinitely many others, cf. [7] ;

(c) r = 2 , 3 , s 7 , y 31, 37 , 9 ?~:l 9 97 , 9 and probably infinitely many others;

(d) r = 21 , 57 , p 471 , 597 , 9 687 , 1137 , 131? 9 1731 , and probably infinitely

many ~; 

Generators for perfect arithmetic codes in bases 2 and 3 are easily obtained

from the tables of WESTERN and MILLER [l3]. table 1 q one finds all primes
A  :L05 which generate a perfect one-error-correcting cyclic or negacyclic 
de in base 6 or 7 ! and all A  10 ~ 9 for bases 11 and 12 . In each case, the

word length n is given by n = (A - 1 ~ / ( 2r .- 2) .In table 2 , one finds , for all

r ~ 15 , not dealt with by densities (modulo the Riemann hypotheses) of
the sets S ~ and S’ defined in (2.9) and (4.2).

There are 9592 and 664579 primes less than 105 and 10~ , respectively. The
reader may decide for himself to which extent our results cast doubt on the validi-

ty of the Riemann hypotheses.

Table 1 : o Generators for perfect codes.

r cyclic negacyclic

6 18191 7741
20611 10831
22391 11171
25031 15161
27791 22741 .

37511 23431
38011 23531
40031 39971
50231 42131
50971 46381
53591 46471
56591 49261
56951 56081
59011 64451
’l6r? 1 65581
82031 75641
86491 79691
91291 81371

81401
93251

7 19237 56053
30013 67453
73453 98893



r cyclic negacyclic

11 1513021 4723981
5652421 7556701
6169021
9227221

12 5187359 1588423
8936159 3079627

4911941
5847029

Table 2 : Densities of S and S’ (modulo Riemann hypotheses)

r 

2 1.8698 x 10"~ 3.7396 x 10’~
3 3.7396 x 10"~ 3.7396 x 10’~
6 1.5116 x 3.0231 x 10’~
7 3.1608 x 10’~ 3.1608 x 10~~
11 6.1369 x 6.1369 x 10"
1.2 5.5774 x 10"~ 9.2956 x 10’~
14 3.8757 x 10"~ 7.7513 x 10"~
15 2.7936 x 10"~ 4.0724 x 10*~
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