@incollection{SB_2001-2002__44__103_0,
author = {Procesi, Claudio},
title = {On the $n!$-conjecture},
booktitle = {S\'eminaire Bourbaki : volume 2001/2002, expos\'es 894-908},
series = {Ast\'erisque},
note = {talk:898},
pages = {103--115},
year = {2003},
publisher = {Soci\'et\'e math\'ematique de France},
number = {290},
mrnumber = {2074052},
zbl = {1083.14006},
language = {en},
url = {https://www.numdam.org/item/SB_2001-2002__44__103_0/}
}
TY - CHAP AU - Procesi, Claudio TI - On the $n!$-conjecture BT - Séminaire Bourbaki : volume 2001/2002, exposés 894-908 AU - Collectif T3 - Astérisque N1 - talk:898 PY - 2003 SP - 103 EP - 115 IS - 290 PB - Société mathématique de France UR - https://www.numdam.org/item/SB_2001-2002__44__103_0/ LA - en ID - SB_2001-2002__44__103_0 ER -
%0 Book Section %A Procesi, Claudio %T On the $n!$-conjecture %B Séminaire Bourbaki : volume 2001/2002, exposés 894-908 %A Collectif %S Astérisque %Z talk:898 %D 2003 %P 103-115 %N 290 %I Société mathématique de France %U https://www.numdam.org/item/SB_2001-2002__44__103_0/ %G en %F SB_2001-2002__44__103_0
Procesi, Claudio. On the $n!$-conjecture, dans Séminaire Bourbaki : volume 2001/2002, exposés 894-908, Astérisque, no. 290 (2003), Exposé no. 898, 13 p.. https://www.numdam.org/item/SB_2001-2002__44__103_0/
[AB] & - A Lefschetz fixed point formula for elliptic differential operators, Bull. Amer. Math. Soc. 72 (1966), p. 245-250. | Zbl | MR
[BKR] , & - Mukai implies McKay: the McKay correspondence as an equivalence of derived categories, Electronic preprint, arXiv:math.AG/9908027, 1999.
[Ch] - Cellular decompositions for nested Hilbert schemes of points, Pacific J. Math. 183 (1998), p. 39-90. | Zbl | MR
[F] - Algebraic families on an algebraic surface, Amer. J. Math. 90 (1968), p. 511-521. | Zbl | MR
[GH] & - A graded representation model for Macdonald's polynomials, Proc. Nat. Acad. Sci. U.S.A. 90 (1993), no. 8, p. 3607-3610. | Zbl | MR
[GH1] _, A remarkable q - t-Catalan sequence and q-Lagrange inversion, J. Algebraic Comb. 5 (1996), no. 3, p. 191-244. | Zbl | MR
[GP] & - On certain graded Sn-modules and the q-Kostka polynomials, Adv. Math. 94 (1992), no. 1, p. 82-138. | Zbl | MR
[H] - Conjectures on the quotient ring by diagonal invariants, J. Algebraic Combin. 5 (1994), no. 1, p. 17-76. | Zbl | MR
[H1] _, MacDonald polynomials and geometry, in New perspectives in geometric combinatorics (Billera, Björner, Greene, Simion & Stanley, eds.), vol. 38, M.S.R.I. Publications, 1999, p. 207-254. | MR
[H2] _, Hilbert schemes, polygraphs, and the Macdonald positivity conjecture, Journal of the A.M.S. (to appear), 2001. | Zbl | MR
[H3] _, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, preprint, 2001.
[IN] & - McKay correspondence and Hilbert schemes, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), no. 7, p. 135-138. | Zbl | MR
[M] - A new class of symmetric functions, in Actes du 20ème séminaire lotharingien, vol. 372/S-20, Publ. I.R.M.A. Strasbourg, 1988, p. 131-171. | Zbl
[M1] _, Symmetric functions and Hall polynomials, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995. | Zbl | MR
[N] - Lectures on Hilbert schemes of points on surfaces, American Math. Society, Providence RI, 1999. | Zbl | MR







