@incollection{SB_1992-1993__35__87_0,
author = {Skandalis, Georges},
title = {Alg\`ebres de von {Neumann} de groupes libres et probabilit\'es non commutatives [d'apr\`es {Voiculescu} etc.]},
booktitle = {S\'eminaire Bourbaki : volume 1992/93, expos\'es 760-774},
series = {Ast\'erisque},
note = {talk:764},
pages = {87--102},
year = {1993},
publisher = {Soci\'et\'e math\'ematique de France},
number = {216},
mrnumber = {1246394},
zbl = {0797.46042},
language = {fr},
url = {https://www.numdam.org/item/SB_1992-1993__35__87_0/}
}
TY - CHAP AU - Skandalis, Georges TI - Algèbres de von Neumann de groupes libres et probabilités non commutatives [d'après Voiculescu etc.] BT - Séminaire Bourbaki : volume 1992/93, exposés 760-774 AU - Collectif T3 - Astérisque N1 - talk:764 PY - 1993 SP - 87 EP - 102 IS - 216 PB - Société mathématique de France UR - https://www.numdam.org/item/SB_1992-1993__35__87_0/ LA - fr ID - SB_1992-1993__35__87_0 ER -
%0 Book Section %A Skandalis, Georges %T Algèbres de von Neumann de groupes libres et probabilités non commutatives [d'après Voiculescu etc.] %B Séminaire Bourbaki : volume 1992/93, exposés 760-774 %A Collectif %S Astérisque %Z talk:764 %D 1993 %P 87-102 %N 216 %I Société mathématique de France %U https://www.numdam.org/item/SB_1992-1993__35__87_0/ %G fr %F SB_1992-1993__35__87_0
Skandalis, Georges. Algèbres de von Neumann de groupes libres et probabilités non commutatives [d'après Voiculescu etc.], dans Séminaire Bourbaki : volume 1992/93, exposés 760-774, Astérisque, no. 216 (1993), Exposé no. 764, 16 p.. https://www.numdam.org/item/SB_1992-1993__35__87_0/
[1] : Classification of injective factors, Annals of Math. 104 (1976) 73-115. | Zbl | MR
[2] : A factor of type II1 with countable fundamental group. J. Operator Theory 4 (1980) 151-153. | Zbl | MR
[3] et : Sur les relations entre l'espace dual d'un groupe et la structure de ses sous-groupes fermés. Sém. Bourbaki 343 (1968). | Numdam | Zbl | EuDML
[4] : Free products of free group factors with matrix algebras and the hyperfinite II1 factor; asymptotic freeness of non gaussian random matrices. preprint.
[5] : Interpolated free group factors. preprint. | MR
[6] : Free products of hyperfinite von Neumann algebras and free dimension. preprint. | MR
[7] and : T-property and nonisomorphic full factors of types II and III. J. Funct. Anal. 70 (1987) 80-89. | Zbl | MR
[8] : Connection of the dual space of a group and the structure of its closed subgroups. Funct. Anal. Appl. 1 (1967) 63-65. | Zbl | MR
[9] et : On rings of operators IV. Annals of Math. 44 (1943) 716-808. | Zbl | MR
[10] : The fundamental group of the von Neuman algebra of a free group with infinitely many generators is R+ \ {0}.J.A.M.S. à paraître | Zbl
[11] : A one parameter group of automorphisms of L(F∞) ⊗ B(H) scaling the trace. C.R.A.S. 314 Sér. I (1992) 1027-1032. | Zbl
[12] : Random matrices, amalgamated free products and subfactors of the von Neuman algebra of a free group. preprint I.H.E.S. (1991).
[13] : Symmetries of some reduced free product C*- algebras. In "Operator algebras and their connections with topology and ergodic theory". Lecture Notes in Math. 1132 Springer-Verlag (1985) 556-588. | Zbl | MR
[14] : Addition of certain non-commuting random variables. J.F.A. 66 (1986) 323-346. | Zbl | MR
[15] : Multiplication of certain non-commuting random variables. J. Operator Theory 18 (1987) 223-235. | Zbl | MR
[16] : Dual algebraic structures on operator algebras related to free products. J. Operator Theory 17 (1987) 85-98. | Zbl | MR
[17] : Limit laws for random matrices and free products. Invent. Math 104 (1991) 201-220. | Zbl | MR
[18] : Circular and semicircular systems and free product factors. Operator Algebras, Unitary Representations, Enveloping Algebras and Invariant Theory, Progress in Mathematics 92, Birkhäuser, Boston 1990. | Zbl | MR
[19] : Characteristic vectors of bordered matrices with infinite dimension. Ann. of Math. 62 (1955) 548-564. | Zbl | MR
[20] : On the distribution of the roots of certain symmetric matrices. Ann. of Math. 67 (1958) 325-327. | Zbl | MR







