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Iv.1

I1 est bien connu que les espaces c , 21 et 22 ont une unique
base inconditionnelle. Il est vraisemblable que si on ontroduit les
classes @n en posant ‘ae1= {Co,£1’£2} et :I)n

. 1 2 . .
sommes directes au sens ) £, £ des membres de gsn’ on a l'unicite

1 les espaces obtenus par

de la structure inconditionnelle pour tous ces espaces. Pourtant,méme
au niveau :£2, la question n'est pas encore completement résolue. En
usant essentiellement d'une technique de décomposition introduite

dans [3], J. Lindenstrauss et L. Tzafriri ont résolu le probleme affir-

2 2 ..
mativement pour les espaces @c 4% et @ 4% . Nous nous proposons ici

1 ° o!
de traiter le cas @c 47 . Donc
° 1
Théoreme 1 : Les espaces @C L et ® 1 %o ont la propriété d'unicité
o 4

de la structure inconditionnelle.

La démonstration du Th. 1 emploie entre autre la méthode des
"produits'" utilisée dans [1] afin de montrer que 1'espace @, L1 possede
la propriété de Dunford-Pettis.

L'espace @c ﬂi se comporte différemment de ﬁl. Par exemple, il existe
o
dans @c 11 des sous-espaces hilbertiens n-dimensionnels complémentés
o
de norme const. YLog n, ce qui suggere que la démonstration du Th. 1

sera assez délicate. Mentionnons encore qu‘une application plus quan-
titative de la méme technicue des '"produits" permet de montrer qu'en
fait YLog n donne la borne inférieure et donc que les sous-espaces
ﬂz(n) de @ 21 obtenus dans (2] par un argument probabiliste sont

. o p ) .
les mieux complémentés — (J. Lindenstrauss).

Le résultat étant établi pour @c z1, on 1'obtient pour

® o

11 Co par dualite.

Nous allons utiliser le résultat intermédiaire suivant, qui

se démontre comme dans le cas & £2 (voir [3], lemme 2).
o
une base inconditionnelle de @c ﬂl.
o
I1 existe alors 5> 0 et une partition (Dr) des entiers positifs telle

Lemme 1 : Soit (gi)i_1 9
—=7r° - =1,2,...

que

~

(i) 1la partition donne une décomposition au sens ¢ , c-a-d.
o
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= xr“ ~ s:p erH si x € [§i; ic Dr] .
(ii) Pour tout r, il existe une coordonnée k=k_ telle que

”gi(k)”1 26 pour i€D_ .

Afin de terminer la démonstration, il nous reste a montrer
que les espaces [§i; ie Dr] sont uniformément isomorphes a 21(Dr)-

Ceci sera une conséquence du fait suivant

~ ,
Lemme 2 : Soit §>0 et (Fi) une suite inconditionnelle dans & L1
telle que

1. [Fi, i=1,2,...] est complémenté dans ®_ L1 par une projection P

2. = a; Fi”2 6(z |ai|2)1/2 pour toute suite scalaire (a,).

Alors (Fi) est une suite o1,

o

Remarque : Sous "inconditionnel" nous entendons "K-inconditionnel"
pour une constante K< ®. Dans le lemme 2, la constante d'équivalence
ne dépend que de &5, K et HP”. On peut aussi formuler le lemme pour des

suites finies.

*
Soit (Gi) la suite image par P de la base duale de (Fi)'

Donc
3. <F,,G.>=6, .
1) 1)
4. ||F|~ sup <F,G> pour FE[F. ] et GE[G,] -
ll6l|<1
A tout F=% a, Fi de [Fi] nous associions la '"fonction carrée"

2 .2,1/2
S(F) = (2 a] F})

. s L1z 1
ce qui est a nouveau un élément de & _ L .

De méme pour les éléments G de [Gi]C@1 L=,

[Lemme 3 HF”1’m ~ ||S(F)H1,co et ”G”m,1 ~ HS(G)Hm,1 :

Démonstration : On obtient 2 par inconditionnalité. D'autre part,

’

par Cauchy-Schwarz et dualite

<F,G> s <S8(F),8(6)> < [[s(F)[|, _ [Is(&)], _ -
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Si F=(f',¢2

y---) dans ®_ L', dénotons [FJ) = Hf1!|1,l|f2||1,---)- On intro-
duit de maniere analogue [[G]] pour G dans @1 L.

Lemme 4 : Pour tout €>0, il existe M= M_<x et o=0_ dans ﬁi, tel

que Ho§11 <M et

LI - LGIAcll, <& pour tout G€[G,] tel que |[G]|<1 .

e

Démonstration : Supposons 1l'énoncé faux. Par un argument standard,

on obtient alors des sous-espaces Z1(r) de [Gi] complémentés dans ®, L’
pour r arbitrairement grand. Donc, en dualisant, [Fi] possederait des
sous-espaces L% de grande dimension. Nous allons montrer que cela n'est

pas possible. Soit donc éi""’ér dans [Fi] tel que
~ ) *
|z cq qul,w max ICSI ()
Soit pour tout s=1,...,r

¢ =3 a(s), F,

s . i i
i

et considérons aussi un élément

¥ = % b(s). G,
S i 1 1

de [GiJ’ tel que
v ] =1 et <@ ,¥>=13al(s), bls), ~f& |~ 1 .
] s''s i i s
Choisissons P> 0 petit, et introduisons pour s=1,...r 1'ensemble

k
A= {k=1,2,... 5 IS )7 >0}

. k. . s
ou . dénote la k-ieme composante.

Alors

1. Tals), bls), £ <FLE>+ £ 5als), bls), <Ff,G>
i KEA_ k€A _ i o

et, par Cauchy -Schwarz, le deuxieme terme est dominé par
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k k K,
kZZA <s(2 )7,8(¥ )™> < p 1 |Is(¥ )7, = ¢ HS(‘I’S)Hm’l <
5]

D'autre part, on a aussi X la(s)il |b(s)iL§ 1 par inconditionnalité.

Donc, il existe is tel que

2 ||G'i‘ l,= = <F'i‘ ,G'i‘ > > pr ()

k€A s k€A s s
s s

ou P' >0 est une constante.

Utilisons maintenant le fait que Ql,...ér est une base £ . On déduit

de (*) que
1
[ lIs(z e_ (@) Qs)|l1,w do < 1
Puisque
[8(z e (o) 8) dwn~ (z8(2)HY2
s s s ?
on trouve pour toute composante k
k2
z [[s(e )77 < 1
s
ce qui montre que
2
p< card {s:l,...,r;kEAs}.\g 1 . (#3)

Une dualisation de (2) dans 1'énoncé du Lemme 2 donne que
r
|
H z Gi dm 1'$ J;

s=1 s

Mais, en usant de (%) et (¥%¥)

Kk
”S(Z Gi )“m,1 = Z “S(Z Gi ) Hm
s s k s s
2 T Kk
290" z 3z |s(z6; )7,
t=1 kEAt s s
r
=0z oz | =2refer
t=1 keA, Tt

ce qui mene a une contradiction pour r-« .
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[%emme 5 [Fi] se plonge dans L! et est donc de cotype 2.

Démonstration : Choisissons €¢> 0 suffisamment petit et soient M et o

comme dans le lemme 4. Fixons F¢€ [Fi] et G€ [GiJ tel que ||Gl]|=1 et

<F,G>A-HF|. Si F= (fl,fz,...) et G= (gi,gz,...), on trouve

P ~ = <>
<z [l lleM,
<z oy £, + L6D - LD Acll, ¥
sz o 1M1, e ¥l

, 1 s ps s
L'opérateur T : ®_ L -*@1 L1 défini par T(F) = (o1f1,02f2,...) est de
norme “0”1 et induit un isomorphisme sur [Fi].

Le résultat suivant est un corollaire immédiat du lemme 5.

FLemme 6 : |= 95”1,00 % (= ||¢SH2)1/2

Iz vl , & (=2 )®"?

pour toutes bloc-sous-suites (QS) de (Fi) et (TS) de (Gi)-

Notre but suivant est d'améliorer les inégalités du Lemme 6.
Pour cela, nous utiliserons le lemme suivant (basé sur la technique des

"produits") et qui est essentiellement démontré dans [1].

[Lemme 7 : A tout B<w et t>0 correspond une fonction vy : N- N telle

que lim y(r) = et la propriété suivante est satisfaite :
T —®

. 1 )
Si Ql""’@n dans & L et Tl,...Yr dans @1 L sont tels que
1. <& ,¥ >=1
s’’'s
2. le =1
s

5.z e v < Bz 22

pour tous scalaires (cs) ’

il existe une partie D de {1,2,...,r} tel que card (D) >v(r) et

| £ 2> (cara 0)'"".
)

N s€D
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[Lemme 8 : I1 existe 1<p< 2 tel que

Iz 20l 2 (= e PP

Iz el s 2z DY @=p) -

Démonstration : Il suffit de montrer la premiere inégalité puisque

la deuxieme s'obtient par dualité. Celle-ci résultera des lemmes 6 et 7
par des arguments standard.
Si (QS) est une bloc-sous~suite normalisée de (Fi)’ on peut trouver une

bloc-sous-suite (¥_) de (G,) telle que <¢ ,¥ >=1~|¥
s i s''s s

La condition (3) du lemme 7 est réalisée par (2) du lemme 6 pour une

certaine constante B<x. Soit T7=1/4 et Y::yB . comme dans le Lemme 7.
9
On obtient donc une sous-famille (& ) ou
s s€D
card (D) = v(r) et HZ ) H > card (D)3/4 .
p S 1,®

Choisissons un entier t suffisamment grand et k> 0 tel que

1/4 k

vy(t/2) >> ¢ .

Supposons maintenant que (és)lssst est une bloc-suite de (Fi) et
HQSH;zK pour tout s=1,...,t. Par exhaustion, on peut introduire des

parties disjointes S_ de {1,2,...,t} telles que

card (U Sn) > t/2
T

et pour tout =

3/4 A

card S_ 2 y(t/2) et Hé: ¢ || 2 (card 8_)

T

On trouve en appliquant le lemme 6

1
Iz el >lz e |HY2 = v/ (/221
s=1 T STI'.
et donc
t
|z e | >tk .
s=1 °
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L'itération de cette minoration donne

tm

= el >
s=1

m(1/2 + k) A

On peut alors démontrer 1'inégalité pour tout p> en décomposant

2
1+ 2k
une suite (@S) abstraite en ces parties

-x-1 1 -X 1
s .= {s=1,2,...5277(z | |P /P < e ll = 277 (= JleIP) /Py
pour k=0,1,2,...
Remarque : Le raisonnement précédent permet d'obtenir le lemme 8 pour
n'importe quel p> 1, ce qui ne termine pourtant pas la démonstration du

lemme 2.

Fin de la démonstration du lemme 2 : Choisissons €> 0 suffisamment

petit et M et o comme dans le lemme 4. Nous remplag¢ons chaque Gi par
un H, €@, L tel que
i 1
. - <
1o flog-myll, <
2. la,|=>In,|
i i

3. [[Hi]] <0

pour tout i,

(| | dénote la valeur absolue dans le réticuléd).

On remarque que |/max IHiIHm 1= ||max EHijjuls Ho”1 < M.
i ’ i

Nous introduisons ensuite un réarrangement et une partition S1,52,...,Sr
de {1,2,...,n} (choisissant n arbitrairement grand) de telle maniere que
4. Si s=1,...,r et i€S , on a <|F.|, max [H.|> <‘1.
s i . s 2
jes_, i<i
S
5. Si 1<s<ts<r et i€S,, alors <|F,|, max |H.|>2-1- .
t . i €S J 2
I g
La construction de cette partition est tout a fait directe.
Montrons cue pour s fixé
lz a, F.| > ¢ la,l . (%)

On obtient en effet par (4) et (1)
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” z ai Fln ~ HS(Z ai Fi)“1 )
S ’

s

> <S(g a, F,),max [H,|>
1 1 1

S
s

z I Iail <lFi|, |Hi|— max [H.|>

. . <

IESS JESS,J i

1

>3 la,| <F,,H.>-= £ la,l

S i i’li 2 S i

s s

1
2(1-5—8) Zlail .

3 S 3
I1 nous reste maintenant a obtenir une borne sur r .

D'abord, en dualisant (*), on trouve pour s=1,...,r

1|Sz b, Gi“m,1“<' max |b. |
S
d'ou

e ll, 1§ 1 en posant ¥ - I
S

I1 découle alors du lemme 8 que
n l
q
“ifl Ginw,l = Hsf1 TS“w,l <r

3
Choisissons i € Sr' Alors, par (5)
r-1
<<lF , I, = max [H,I>
i s=1 jéSs

<ir <IF & I 1HY5

i i

r-1
2

1
2.1/2 BN
<r |z 16 1BV loq €7 .

Q2 |-

Puisque q > 2, on obtient une majoration de r .

(1] J. Bourgain, On the Dunford-Pettis property, Proc. A.M.S., a paraitre.
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[3] J. Lindenstrauss et L. Tzafriri, On the isomorphic classification

of injective Banach lattices, Advances in Math. (Supplementary
Studies) 1981, a paraltre.



