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IV.1

Il est bien connu que les espaces c , 1 et 2 ont une unique
o

base inconditionnelle. Il est vraisemblable que si on ontroduit les

classes TC en posant - =(c , 
1 
, J et TS les espaces obtenus paren c o ,1, 2 espaces obtenus par

sommes directes au sens c , 1, 2 des membres de  , on a l’unicité
o n

de la structure inconditionnelle pour tous ces espaces. Pourtant,même
au niveau  2, la question n’est pas encore complètement résolue. En

usant essentiellement d’une technique de décomposition introduite

dans [3], J. Lindenstrauss et L. Tzafriri ont résolu le problème affir-
22 ..

mativement pour les espaces 0153 et 0153 
gl 

2 . Nous nous proposons ici

1 
c 0 

de traiter le Donc
c
o

Théorème 1 : Les espaces EB Co il et 3 1 c 0 ont la propriété d’unicité

de la structure inconditionnelle.

La démonstration du Th. 1 emploie entre autre la méthode des

"produits" utilisée dans [1J afin de montrer que l’espace 0153 00 L1 possède
la propriété de Dunford-Pettis.

L’espace ae c 1 se comporte différemment de 2. Par exemple, il existe

dans des sous-espaces hilbertiens n-dimensionnels complémentés
o 

____
de norme const. ce qui suggère que la démonstration du Th. 1

sera assez délicate. Mentionnons encore qu’une application plus quan-

titative de la même technique des "produits" permet de montrer qu’en

fait VLog n donne la borne inférieure et donc que les sous-espaces

ae2(n) dé 66 
c 

~ 1 obtenus dans ~2] par un argument probabiliste sont

les mieux cÀmplémentés - (J. Lindenstrauss).

Le résultat étant établi pour 0153 c ~1, on l’obtient pour

0 . c par dualité. 
0

1 0
Nous allons utiliser le résultat intermédiaire suivant, qui

se démontre comme dans le cas 0153 ae2 (voir [3], lemme 2).
c
o

Lemme 1 : Soit (g.). 12 une base inconditionnelle de 0153 
co 

2~ .

Il existe alors 5&#x3E;0 et une partition (D ) des entiers positifs telle
r

que

(i) la partition donne une décomposition au sens c , c-à-d.
o
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(ii) Pour tout r, il existe une coordonnée k=k telle que
r

Afin de terminer la démonstration, il nous reste à montrer

que les espaces . ; iED ] sont uni f ormément i somorphes à . 1 ( D ) .
1 r r

Ceci sera une conséquence du fait suivant

Lemme 2 : Soit Õ&#x3E; 0 et ( F.) une suite inconditionnelle dans ? L1
20132013201320132013201320132013 1 oo

telle que

1. [F., i=l,2,...j est complémenté dans(B L1 par une projection P
1 

2 9/2 00 .

2. la.12)1/2 pour toute suite scalaire (a.).
i i i 1

Alors ( F, ) est une 
- 

1

Remarque : Sous "inconditionnel" nous entendons "K-inconditionnel"

pour une constante Dans le lemme 2, la constante d’équivalence
ne dépend que de b, K et On peut aussi formuler le lemme pour des

suites finies.

. Soit (G.) la suite image par P de la base duale de (F.).
1 1

Donc

A tout a. F. de rF. ’1 nous associions la "fonction carrée"
- 

1 1 
- 

i-

ce qui est à nouveau un élément L1.

De même pour les éléments G de 

Démonstration : On obtient p par inconditionnalité. D’autre part,
par Cauchy-Schwarz et dualité
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dans 3 L1, dénotons
00 

’

duit de manière analogue IGI pour G dans Q9 
1 
L .

Lemme 4 : Pour tout E &#x3E; 0, il existe M=M 00 et 0=0 
F- 
dans £1,  tel

201320132013201320132013 E c +

que 1Boill s M et

Démonstration : Supposons l’énoncé faux. Par un argument standard,

on obtient alors des sous-espaces ae1(r) de [G.] complémentés dans (B. L
i 1

pour r arbitrairement grand. Donc;, en dualisant, [F.] possèderait des
1

sous-espaces i 00 de grande dimension. Nous allons montrer que cela n’est

pas possible. Soit donc 1,...,r dans tel que
r 1 

-

Soit pour tout s = 1, ... , r

et considérons aussi un élément

de [G.J, tel que
1

Choisissons P &#x3E; 0 petit, et introduisons pour s= 1,...r l’ensemble

où -k dénote la k-ième composante.

Alors

et, par Cauchy-Schwarz, le deuxième terme est dominé par
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D’autre part, on a aussi E fa(s). 1 l par inconditionnalité.

Donc, il existe i 
s 

tel que

où P’ &#x3E; 0 est une constante.

Utilisons mai.ntenant le fait que ~1,...tr est une base .~ . On déduit

de que

Puisque

on trouve pour toute composante k

ce qui montre que

l’ T ....... · J.... l n B....... ’ "... - T - -- -- - n ..:JI - -- -- - -- - - -

Une aualisation de (2) dans l’énoncé du Lemme 2 UUIlne que

Mais, en usant de et (~~’~~~)

ce qu i mène à une contradi cti on pour r- - -
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Lemme 5 : [Fi] se plonge dans L1 et est donc de cotype 2.

Démonstration Choisissons E &#x3E; 0 suffisamment petit et soient M et c

comme dans le lemme 4. Fixons et tel que ))c!)=1 et

F, G&#x3E;- Il Fil. SI F = (f ’, f2...) et G = (g"g2 ... ), on trouve

L’opérateur défini par T(F) _ ( ~ 1 f 1 ~ , 2 f2 , . , , ) est de

norme 11511, et induit un isomorphisme sur 

Le résultat suivant est un corollaire immédiat du lemme 5.

pour toutes bloc-sous-suites ( ) de (Fi) et (Ys ) de (Gi).

Notre but suivant est d’améliorer les inégalités du Lemme 6.

Pour cela, nous utiliserons le lemme suivant (basé sur la technique des

"produits") et qui est essentiellement démontré dans [1].

Lemme ? : A tout et T&#x3E;0 correspond une fonction y : IN - Nielle

que lim et la propriété suivante est satisfait
r-4m

pour tous scalaires (cs) ,
s

il existe une partie D de (l,2,...,r) tel que card (D) &#x3E;~y(r) et
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Lemme 8 : Il existe 1  p  2 tel que

Démonstratïon : Il suffit de montrer la première inégalité puisque
la deuxième s’obtient par dualité. Celle-ci résultera des lemmes 6 et 7

par des arguments standard.

Si (16 ) est une bloc-sous-suite normalisée de (F i on peut trouver une
s 1

bloc-sous-suite (7 ’s de (G. ) telle que &#x3E; = 1 ÎI’ Il. .

s i s S " s

La condition (3) du lemme 7 est réalisée par (2) du lemme 6 pour une

certaine constante Soit T= 1/4 et comme dans le Lemme 7.

On obtient donc une sous-famille où

Choisissons un entier t suffisamment grand et k&#x3E; 0 tel que

Supposons maintenant que une bloc-suite de (Fi) et

s Il ~ À pour tout s = 1, ... , t. Par exhaustion, on peut introduire des

parties disjointes S n de [1,2,...,t} telles que

et pour tout n

On trouve en appliquant le lemme 6

et donc
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L’itération de cette minoration donne

On peut alors démontrer l’inégalité pour tout p &#x3E; 2 - en décomposant
une suite (~ ) abstraite en ces parties

pour k _ 0,1, 2, ... ,

Remarque : Le raisonnement précédent permet d’obtenir le lemme 8 pour

n’importe quel p &#x3E; 1, ce qui ne termine pourtant pas la démonstration du

lemme 2.

Fin de la démonstration du lemme 2 : Choisissons e&#x3E;0 suffisamment

petit et M comme dans le lemme 4. Nous remplaçons chaque Gi par
un que

pour tout i,

() ~ 1 dénote la valeur absolue dans le réticulé).’

On remarque que jjmax IH i 1 il", 1= M.

i 
~ ,1 i 

i 1 1

Nous introduisons ensuite un réarrangement et une partition S I’S2""’Sr
de [i,2,...,nl (choisissant n arbitrairement grand) de telle manière que

La construction de cette partition est tout à fait directe.

Montrons Que pour s fixé

On obtient en effet par (4) et (1)
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Il nous reste maintenant à obtenir une borne sur r .

D’abord, en dualisant (*) , on trouve pour s= 1,...,r

d’ o ù

Il découle alors du lemme 8 que

i~

Choisissons i E S . Alors, par (5)
r

Puisque q &#x3E; 2, on obtient une majoration de r.
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