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§ 1. INTRODUCTION.

On dénote n le cercle et m la mesure de Haar.

Soit H1 l’espace des fonctions intégrables f sur n telles
0 

111que f (n) = 0 pour n x 0. On considère l’application quotient q : L 1 ..... L 1/H .
A tout x de L1/H1 correspond un unique élément f de L1 tel que q(f) = x0

et Il fIl = Cette propriété définit un relèvement canonique
o: o a 

. plusieurs propriétés remarquables que0

le lecteur trouvera dans [1]. En particulier, si A est relativement fai-

blement compact dans il en est de même pour 0

Nous présenterons une version locale de ce résultat. Celle-ci

donnera de nouvelles informations concernant la structure fini-dimension-

nelle des espaces de fonctions analytiques ainsi que certaines propriétés
m 

, 

topologiques de H et duaux. Enfin, on obtiendra une caractérisation

assez surprenante des suites d’interpolation dans le disque.

§ 2. UNE PROPRIETE DE RELEVEMENT.

Nous avons démontré le résultat suivant

héorème 1 : Pour ô&#x3E; 0 donné, il existe S 1 &#x3E; 0 tel que si f1’... ,fn
1 dans L (n) vérifient les conditions suivantes 

In

00

il existe des fonctions gl,...,gn dans H telles que

On peut reformuler (ii) en disant que les f m ont une masse 46 Ilf ID Il 1
sur des ensembles disjoints de n.

Le Th. 1 entraine clairement la propriété suivante de relèvement
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Corollaire A tout ô&#x3E; 0 correspond 51&#x3E;0 tel que si x1’... ,xn sont
de norme 1 dans L1/Hl et0

1alors

Rademacher).

La démonstration du Th. 1 est assez longue et le lecteur la

trouvera dans [6] ainsi que la plupart des autres résultats présentés
ici.

Si (i) et (ii) sont vérifiées, on établit une inégalité

pour tout À 0 et h 
m m U

Les fonctions gl,...,gn s’obtiennent alors comme élément de (H ) 
(n)

par un argument de dualité.

L’ingrédient central dans la démonstration de (*) est une propriété
d’extraction

Proposition 1 : Pour tout T&#x3E;0, il existe C 1" 00 tel que si F1, ... , Fn
sont des fonctions intégrables positives sur n à supports 81,...,8n et

on peut trouver pour &#x3E; 0 une partie D de ~1,...,n~ et des fonctions

Hoo (gm)mED tel que

En fait, on n’utilise la Prop. 1 que pour une valeur de T

quelconque. L’énoncé plus précis a pourtant son intérêt dans l’étude

de questions plus quantitatives, ~ comme le problème du cotype de 
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Nous nous bornerons ici à mentionner qu’en utilisant directement la

Prop. 1 on peut montrer que si q &#x3E; 4 ~ alors est, de cotype q.

Nous terminerons cette section par quelques indications et
, 

00

lemmes concernant la démonstration de la Prop. 1. Les fonctions H

s’obtiennent par une méthode constructive. Le point de départ est le

résultat suivant, semblable à un lemme bien connu de Havin [1] : :

Lemme 1 : Soit A une partie mesurable de n et fixons c&#x3E; 0 et T&#x3E;0.
oe

I1 existe alors une fonction 1-P dans H telle que

Démonstration : Posons r = ET- 1] , 1 P = 1 - £L/2 et considérons la fonc-
m

tion de P XA. Soit f la fonction H définie sur le disque par la for-

mule

La limite radiale est alors la fonction f= ( 1 - a) eif3 où f3 est la

fonction conjuguée de Log( 1 - a ) .

Puisque

on obtient

d’ o ù
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Prenons

Puisque 1, la condition (i) est satisfaite.

Pour z E 1, on a

et donc

Finalement, puisque

on trouve

On obtient l’ensemble D de la Prop. 1 par un argument proba-

biliste. Un lemme central est le suivant :

Lemme 2 : Soient des parties mesurables de n et dénotonsÎw = ))r A- (( . Soient y, ;..;V des variables aléatoires indépendantes àw=!!y A- . Soient v , ... ,1 des variables aléatoires indépendantes à
1 n 

-

valeurs 0,1 et de moyenne &#x3E; 0. Pour F,&#x3E;O et T &#x3E; 0 fixés, il existe des

fonctions H aléatoires f...,f vérifiant les conditions suivantes :1 n

Démonstration : Afin d’obtenir des fonctions f qui satisfont à (i),
nous allons user d’une technique nouvelle. Considérons d’abord pour tout

oe

k_ 1,...,n une fonction telle que
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ce qui est possible par le Lemme 1.

Ensuite on introduit les fonctions aléatoires suivantes

la fonction Hco à la limite radiale
oe

la fonction H

par la définition des a.
k’

Passons maintenant à la vérification de (ii). Clairement

et

On a aussi

Donc

Puisque

on déduit par sommation
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Puisque pour tout les estimations précédentes
donnent

Ceci nous mène à (ii), en usant du fait que par construction 

et f sont indépendants comme fonctions de w .k

Revenons maintenant à la démonstration de la Prop. 1. Si

Fl,...,Fr sont des fonctions caractéristiques d’ensembles, le lemme 2

nous donne le résultat voulu. Dans le cas général, on découpe les fonc-

tions suivant les niveaux et on applique le lemme 2 pour chaque niveau.

Il reste ensuite à recombiner les fonctions obtenues aux différents

niveaux.

2 3. SOUS-ESPACES COMPLEMENTES DE L1/H 1 ET H .0

En usant des propriétés (1 -x ) des opérateurs sur l’algèbre
P P

du disque A, on montre dans [1] qu’un sous-espace complémenté E de

L1/H1 où Hoo de dimension n est à distance presque extrémale de 2(n),
0 

2 ’1/ nnotamment de d(E, (n»-,const -,201320132013 . Le résultat suivant montre
g n

qu’en fait la distance est extrémale.

Théorème 2 : Tout sous-espace n-dimensionnel bien complémenté E de

L /HO (resp. H ) contient un isomorphe où
0

n (la constante dépendant de la norme de la projection).

Démonstration : Par dualité, il suffit de considérer le cas en

exigeant que le sous-espace î 1(m) de E soit bien complémenté. Nous

allons montrer qu’il existe des vecteurs xl,...,xm de E et des fonctions

où m- n.

Des techniques standard nous permettent alors de terminer la démonstration.

Nous approchons le problème de la même façon que dans le cas des sous-

espaces complémentés de L1 (voir [2]).
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Dénotons i : E- L 1/Hl l’ in ’ection et P : la projection./ 0 0

En dualisant, on obtient le schéma

En usant de propriétés des opérateurs 2-sommants, on obtient (voir [3J)

(Ici JL 2,2 désigne la norme 2-sommante par rapport à n vecteurs).
2,2

L’interprétation de cette inégalité donne des vecteurs 
00

dans H tel que

où le sup est pris pour x E L 1/"1 0 et llxll = 1.
Prenons des vecteurs xl,...,xn dans E de norme 1 tel que

* 
n

Ili On peut trouver des scalaires positifs al,...,an tel
2

ue S a k = 1 et

En posant fk= c(xk ) pour k= 1,...,n le côté gauche est majoré par

d’ où

Puisque on trouve par Cauchy-Schwartz

max Ifk’ 2 const. n .

Un argument élémentaire nous permet d’extraire une partie D de 

tel que et
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pour tout B ~ 0.
Puisque le Th. 1 s’applique et termine clairement la

démonstration.

Il découle du Th. 2 que L 1/H1 ne contient pas d’espaces îoe(n)
et a donc un cotype. Comme nous l’avons déjà dit, une analyse plus fine

permet d’obtenir tout cotype q &#x3E; 4.

Le résultat suivant caractérise les sous-espaces complémentés
à base inconditionnelle.

Théorème 3 : Si E est un sous-espace n-dimensionnel à base incondi-

tionnelle complémenté de (resp. Hm), alors E est isomorphe à £~(n)
00 

0

(resp. 1 (n)) .

Démonstration : Il suffit évidemment de traiter le cas L 1/Hl - Soit

q un cotype de L 1/Hl - Dénotons i E - 11 l’injection et 
0

q  00 un cotype de L 1/H¿. Dénotons i : l’injection et

P: la projection. Soit x1’... ,xn la base inconditionnelle de
i i i if- if-

et la base duale. Posons finalement f k = a, (xk) et f*P 
pour k = 1,...,n.

On trouve par inconditionnalité pour tous scalaires 

d’ ou

Ceci entraine

Donc pour B &#x3E;0~ on obtient

Puisque on obtient

par HHlder
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00

En appliquant le Th. 1, on trouve des fonctions g1,...,gn dans H tel

que

ce qui montre que x 1 ,...,x n est équivalent à la base ~1(n).

Corollaire : Tout sous-espace complémenté dans A à base incondition-

nelle (de dimension infinie) est isomorphe à c .
o

Remarquons que A possède d’autres "petits" sous-espaces complé-
mentés que c . En effet, si (B ) est la suite des espaces de Bockariov

o r

(cf. [1]), alors fl9 c Br est complémenté dans A mais n’est pas isomorphe
o

"

a c .
o

§ 4. PROPRIETES TOPOLOGIQUES DE H Co ET DUAUX.

Les espaces A et L/H§ possède la propriété de Dunford-Pettis0 p p

et et faiblement séquentiellement complet . Ces propriétés sont0 
1 

p p

des conséquences du relèvement par c : des ensembles faible-
0

ment conditionnellement compacts. Les résultats locaux présentés au § 2

permettent d’étendre la propriété de relèvement aux ultra-puissances
de L/H§.0

Rappelons que si X est un Banach, 1 un ensemble et "A un ultra-

filtre sur I, l’ultra-puissance X est le quotient de ? 
1 ) 

X par son

sous-espace lim Ilx.11 = 01.2( 1 11 ’4 
1

Rappelons aussi que X 
7’’ 

est isométrique à un sous-espace 1-complémenté
d’une ultra-puissance de X. Pour plus de détails, nous renvoyons le

lecteur à [4,~ .
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Si (L1/H~)~ est une 1 ultra-puissance de et (L1)~ l’ultra-puissance
correspondante de L (n), on considère les extensions naturelles de q

et ~ à ces ultra-puissances

Il est clair que 51, est relèvement de norme minimale de 

La démonstration du résultat suivant est maintenant tout-à-

fait directe

Théorème 3 : : Soit (Sk) une suite dans (L 1/Hl) tel que la suite
k .1 1

Cr k) des relèvements est équivalente à la base z1 dans (L ). Alors

a une sous-suite (§’) équivalente à la base 1 dans et
k k ‘ 0 2

tel que [§’; kj est complémenté dans ( L1/H1 ) .0

Tout ultra-produit est un espace L(p) et possède donc

les propriétés énoncées en début de cette section. On trouve comme corol-

laire du Th. 3 :

Théorème 4 : Tout ultra-produit X de L1/H¿ est faiblement séquentiel-0

lement complet et possède la propriété de Dunford-Pettis. Toute suite

1 dans X a une sous-suite engendrant un sous-espace complémenté de X.

2013 "0

Corollaire : H et espaces duaux sont Dunford-Pettis. Les duaux impairs
co 

,de H °° sont faiblement séquentiellement complets.

2 5. APPLICATION AUX SUITES INTERPOLANTES.

Rappelons qu’une suite (zm) dans le disque unité ouvert D
m

est(universellement) interpolante si pour tout suite (am) de nombres
m

complexes, sup la m 1  -, il existe une fonction W dans H telle que

am pour tout m. Ceci est équivalent à dire que les noyaux de

Poisson P se comportent comme une suite ae dans L /HO.z 
p 0

m

Une suite (zm) dans D est interpolante ssi
m

où pour z, w E D
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est la distance hyperbolique.

On dit que (z ) est une suite de Carleson si la mesure -4 sur D définie
m

par

est une mesure de Carleson.

Proposition 2 (cf. [5]) :
1. Toute suite interpolante est une suite de Carleson ;

2. Inversement, si (z ) est une suite de Carleson et inf p(z ,z )&#x3E;0,
m 1. m n’ 

m/n 
" 

alors (z ) est interpolante.
m

Le lemme suivant se démontre par majoration de l’intégrale
de Cauchy

Lemme 3 : : Si il existe une suite (q ) dans H telle que
m

(i) g (z ) = 1 pour tout m
m m 

"

(ii) E tg 
alors (z ) est une suite de Carleson.

*- m

Théorème 5 : Si une suite (zm) dans D est interpolante par rapport

aux fonctions harmoniques, elle est interpolante.

Démonstration : Par hypothèse, (P ) est une suite £1 dans Puis-
z
m

que P 
z 

est une fonction positive, on a ))P z 111 = Ilq(p z )11. En combinant le

Th. 1 et le Lemme 3, on trouve donc que (z ) est une suite de Carleson.
m

Mais puisque

la Prop. 2 termine la démonstration.
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