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§ 1. INTRODUCTION.

On dénote © le cercle et m la mesure de Haar.

Soit Hé 1'espace des fonctions intégrables f sur 7m telles

. 1
que f(n) =0 pour n< 0. On considere 1'application quotient q: L1—¢L1/HO.
A tout x de L1/Hé correspond un unique élément f de L1 tel que q(f) =x

|
et [[£]] =[x

,. Cette propriété définit un relevement canonique

o L1/Hé«~»L1. L'application o a plusieurs propriétés remarquables que
le lecteur trouvera dans [1]. En particulier, si A est relativement fai-

blement compact dans L1/Hé, il en est de méme pour o(A).

Nous présenterons une version locale de ce résultat. Celle-ci
donnera de nouvelles informations concernant la structure fini-dimension-
nelle des espaces de fonctions analytiques ainsi que certaines propriétés
topologiques de H” et duaux. Enfin, on obtiendra une caractérisation

assez surprenante des suites d'interpolation dans le disque.

§ 2. UNE PROPRIETE DE RELEVEMENT.

Nous avons démontré le résultat suivant

[Théoreme 1 : Pour 5> 0 donné, il existe 6 >0 tel que si fl""’fn

1
dans Ll(n) vérifient les conditions suivantes

(i) Hq(fm)H > (1-°5) Hme1 pour 1smsr

(ii) f m;x A lfml > 45 ¢ Km Hfm”1 pour tout Am;zO ,

il existe des fonctions SERREEY dans H” telles que

(iii) lg1,+ |g2|+ eee + lgnl <1

| Gv) < ,e>=[f g > 5, £ I, pour tout m=1,...,n .

On peut reformuler (ii) en disant que les fm ont une masse 40 ||me1

sur des ensembles disjoints de 7.

Le Th. 1 entraine clairement la propriété suivante de relevement
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-borollaire ¢ A tout 5> 0 correspond 61>'0 tel que si xi,...,xn sont
1

de norme 1 dans L1/H0 et
|
f Iz g, (w) xkﬂ do < &, n
alors

[z g, (0) o(ak)H1 dw < 6m

(e, = Rademacher).

La démonstration du Th. 1 est assez longue et le lecteur la
trouvera dans [6] ainsi que la plupart des autres résultats présentés
ici.

Si (i) et (ii) sont vérifiées, on établit une inégaliteé

[max Ia_f +h | 26 =2 |f| ()
m m m m 1 m m'1
r tout A >0 et h €H.
pou ou m_. e m O-

Les fonctions Eirv18 s'obtiénnent alors comme élément de (H) 1
£7(n)
par un argument de dualité.

L'ingrédient central dans la démonstration de (¥*) est une propriété

d'extraction

%roposition 1 : Pour tout 1>0, il existe CT<im tel que si F1""’Fn

sont des fonctions intégrables positives sur m a supports Si""’sn et

v =z sl

on peut trouver pour > O une partie D de {1,...,n} et des fonctions

H (g ) tel
gm mED e que

. -1 -1,1+47
(i) g ||Fm||1 2C 7 (6w ) T l\Fm|]1

(ii) =z lgl sc

D m T

(iii) ngm lg -1l < g IFl, -

En fait, on n'utilise la Prop. 1 que pour une valeur de T
quelconque. L'énoncé plus précis a pourtant son intérét dans 1'étude

de questions plus quantitatives, comme le probleme du cotype de L1/H$.
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Nous nous bornerons ici a mentionner qu'en utilisant directement la

Prop. 1 on peut montrer que si q> 4, alors Ll/Hé est_de cotype q-.

Nous terminerons cette section par quelques indications et

lemmes concernant la démonstration de la Prop. 1. Les fonctions H”
s'obtiennent par une méthode constructive. Le point de départ est le
résultat suivant, semblable a un lemme bien connu de Havin [1]
Lemme 1 : Soit A une partie mesurable de m et fixons €>0 et T>0.
I1 existe alors une fonction 9 dans H . telle que

(1) lof| < 4

(ii)  ]e(2) -1] < € pour tout z€ A

R -1

(iii) H¢“1 < const_ & m(A) .

T/2

Démonstration : Posons r= [1-1]+ 1, P=1-¢ et considérons la fonc-

tion de p Xp Soit f la fonction H définie sur le disque par la for-

mule

eie+ 2
f(z) = exp f Log(1-a) T m(ae) .
n e

B

La limite radiale est alors la fonction f=(1-a) e © ou B est la
fonction conjuguée X(Log(1-a)) de Log(1-a).

Puisque
[Log(1-a)l < (1- o la - s-T/z O

on obtient

—'[/2 —T/2 m(A)1/2

HBH2 = ”LOg(l"“)”g = € ”“”2 < €

d'ou

- £, = {1+ 12122 Re£} V2,
- lfe®+ 201 - ) (1- cos p)}P,
< [lafl,+ 2 [Isin B/2|,
< laly+ ey s 2 /2 ma) /2 .
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Prenons

2r, 2

@ = (1-£7) .

Puisque |f]| <1, la condition (i) est satisfaite.

Pour z€ 1, on a

[£(2)] = 1-a(z) = et/2
et donc
l1-0(2)] = 1£(2) 1% 122 £(2)%7] <3 1£(2)1%F = 3 &7 < 3¢ .
Finalement, puisque
lol < ar® [1-1/2

on trouve

[ lel < ar? It - sz <16 r2 ¢ " m(A) = const_ e " m(A)
2 T

Q.E.D.

On obtient 1'ensemble D de la Prop. 1 par un argument proba-

biliste. Un lemme central est le suivant :

[Lemme 2 : Soient A JA_,...,A des parties mesurables de m et dénotons
e 172 n

w= ||z Ak”w‘ Soient vy ,.-.,v ~des variables aléatoires indépendantes a
k

valeurs 0,1 et de moyenne # > 0. Pour €¢>0 et 1>0 fixés, il existe des

. ® L, . w s e ps s 4 s .
fonctions H aléatoires f1,...,fg vérifiant les conditions suivantes

(i) 2 v, (w) 1£°] < 12 pour tout w
Kk k k

(ii) I {z Yk(w) I |fﬁ-—1|} dw < k(e+—constT e Wx) I m(Ak) .
k Ak k

Démonstration : Afin d'obtenir des fonctions f qui satisfont a (i),

nous allons user d'une technique nouvelle. Considérons d'abord pour tout

k=1,...,n une fonction ¢k6 telle que

(iii)  [je |l = 4

(iv) l@k- 1l < € sur L
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(v) ||

k”1 < const_ e’ m(Ak) ,

ce qui est possible par le Lemme 1.

Ensuite on introduit les fonctions aléatoires suivantes

k 2 Ak
i ¥(Log o)
. © . . w w k . °°

la fonction H a la limite radiale Yy =y e , la fonction H
w _ w Wy 2
f = L2y - (v 70,

. wp_ W W w Vo
Puisque IWkl—Cﬁ(Sl, on a |ﬂ(ls3 a |¢kl . D'ou

()] w
bX Yk(w) lfkl <33 Yk(w) Iwkl a) < 12

par la définition des aﬁ.

Passons maintenant a la vérification de (ii). Clairement
w ) 2
I -1l < lo, -1l +a 1y -1l
et
W w W
- < - ¥
lwk 1] lak 1] + |¥X(Log ak)l
On a aussi

w _ w
Log a) = Log{1+;2 v, (w) |€P£I}+Log{1+vk(w) ap 1o, 13 .

Donc

A k

w w 2
J‘k lfk-1l < z.:m(Ak)+8j’Ak [a® = 1]“+

+ 16 f [3(Log{1 + x v, (w) |¢Z|})|24-16 f Log2{1-+vk(w) l@kl} .
Ak
Puisque

2
la)? - 117 < z vy (w) o,

on déduit par sommation

¥ [f -1l = e sm(A ) +8 w [ {Sv,(w) lo,1}+
- J k k I g e y)

Ak k

16 w [ Log>{1+Z v,(w) 19,1 +16 5 [ Log®{1+v (w) lo |} .
k k k k
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Puisque log(1+ x) < Z’J; pour tout x>0, les estimations précédentes
donnent

f {E IA Ifi-ll} dw < € % m(Ak)+ constT et w [Ty m(Ak) .
k

Ceci nous mene a (ii), en usant du fait que par construction Yk(w)
et fﬁ sont indépendants comme fonctions de g -

Revenons maintenant a la démonstration de la Prop. 1. Si
Fi""’Fr sont des fonctions caractéristiques d'ensembles, le lemme 2
nous donne le résultat voulu. Dans le cas général, on découpe les fonc-
tions suivant les niveaux et on applique le lemme 2 pour chaque niveau.

I1 reste ensuite a recombiner les fonctions obtenues aux différents

niveaux.

§ 3. SOUS-ESPACES COMPLEMENTES DE L1/H(1) ET H .

En usant des propriétés (i - np) des opérateurs sur 1'algebre
du disque A, on montre dans [1] qu'un sous-espace complémenté E de
L1/Hi oi H® de dimension n est a distance presque extrémale de ﬂz(n),
notamment de d(E,ﬂz(n)) > const Vn

log n
qu'en fait la distance est extrémale.

. Le résultat suivant montre

Théoreme 2 : Tout sous-espace n-dimensionnel bien complémenté E de
L1/Hé (resp. H”) contient un isomorphe de ﬂi(m) (resp. £°(m)), ou

m 2 const. n (la constante dépendant de la norme de la projection).

Démonstration : Par dualité, il suffit de considérer le cas Ll/Hé en
exigeant que le sous-espace 21(m) de E soit bien complémenté. Nous
allons montrer qu'il existe des vecteurs XqoeeoaX de E et des fonctions

@
H Byrre18 tel que
(1) ”X.H:l
i
(ii) = |gi|s const.
(iii) <x;.8;>= 1,

ou m~ n.
Des techniques standard nous permettent alors de terminer la démonstration.
Nous approchons le probleme de la méme fagon que dans le cas des sous-

espaces complémentés de L' (voir [2])-
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Dénotons i : E-oL1/Hé l'injection et P: L1/H3-»E la projection.

En dualisant, on obtient le schéma
E —————9 E
En usant de propriétés des opérateurs 2-sommants, on obtient (voir [(3])

const- JE n;?;(i*) > HP*H n2’2(i*) > n2,2(id.) - %;

(Ici né ; désigne la norme 2-sommante par rapport a n vecteurs).

L'interprétation de cette inégalité donne des vecteurs @1,@2,...,@n

dans H” tel que

n n
(= ”1 (¢ )H2 1/2 > const. J; sup ( & |<@k,x>|2)1/2
k=1

k=1

ou le sup est pris pour x€ L1/H1O et ||x|| = 1.
Prenons des vecteurs x yee g X dans E de norme 1 tel que

1
*
Hi (@k)H=‘<¢k,x > . On peut trouver des scalaires positifs a REEEL tel

k 1

2
que X a, = 1 et

% a, <0,x> > const. Vn ||z 1o 1%)Y3|

En posant f = o(xk) pour k=1,...,n le coté gauche est majoré par

k

a [l 0 Tl s [z 1o 1Bz a2 15, 1%

d'ou

2 2)1/2 > const. Vn .
f (2 ay lfkl

|2s(nmx lfkl). = ai [ £ |, on trouve par Cauchy-Schwartz

. 2
Puisque X ap lfk Kk

f max lfkl > const. n .

Un argument élémentaire nous permet d'extraire une partie D de {1,...,n},

tel que ID|~n et
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max A, |f | = const. & A
I D k k D k
pour tout Kkz 0.
Puisque Hq(fk)Hz kaH, le Th. 1 s'applique et termine clairement la

démonstration.

I1 découle du Th. 2 que Ll/Hé ne contient pas d'espaces zw(n)
et a donc un cotype. Comme nous 1l'avons déja dit, une analyse plus fine
permet d'obtenir tout cotype q> 4.

Le résultat suivant caractérise les sous-espaces complémentés

a base inconditionnelle.
Théoréme 3 : Si E est un sous-espace n-dimensionnel a base incondi-
tionnelle complémenté de L1/Hé (resp. H ), alors E est isomorphe a ﬂi(n)

(resp- 2w(n)) .

Démonstration : Il suffit évidemment de traiter le cas Ll/Hé. Soit

qg<« un cotype de L1/Hé. Dénotons i : E~0L1/Hé l'injection et
P: Ll/Hé—‘E la projection. Soit L SERRERE N la base inconditionnelle de
*

#* 3* #%*
et X ,...,x_ 1la base duale. Posons finalement sz:d(xk) et f = P (xk)

pour k=1,...,n.

On trouve par inconditionnalité pour tous scalaires akGEE
1/q

la 19

ay )

Iz a | = const (%

Kk xkl

d' ou

2 oy 1l = const |z a x| < const (= 1a, 191/

Ceci entraine
1z 151D Y Y| < const

Donc pour xk:zo, on obtient

¥*

B q' q',\1/q"
> < const [ (= My lfk| )

ZA = DA <f,f

. ! '“1/q' 1 1/q'
Puisque (I KE |fk|q ) /4 < (max M lfkl) /4 (z M |fk|) /a on obtient
par HBlder
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r - .
J max Kk I'kl > const X Kk -

En appliquant le Th. 1, on trouve des fonctions Byr-raB dans H” tel

que
(i) |g1|+ cee + lgn, < const.

(ii) <fk,gk>= 1 (1<ksn) .

a

Pour akeﬂl et ay = k , on trouve

la, |
HE a, xk” > const. I <z ek(w) a, X z sk(w) oy gk> = const X lakl ’
ce qui montre que X 9eeeaX  est équivalent a la base 21(n).
Corollaire : Tout sous-espace complémenté dans A a base incondition-
nelle (de dimension infinie) est isomorphe a c,

Remarquons que A possede d'autres 'petits" sous-espaces complé-
mentés que c, - En effet, si (Br) est la suite des espaces de Bockariov

(cf. [1]), alors ®, B, est complémenté dans A mais n'est pas isomorphe
o
ac .
o

§ 4. PROPRIETES TOPOLOGIQUES DE H” ET DUAUX.

Les espaces A et L1/Hé possede la propriété de Dunford-Pettis
et L1/Hé et faiblement séquentiellement complet . Ces propriétés sont
des conséquences du relevement par o: Ll/Héfv~9L1 des ensembles faible-
ment conditionnellement compacts. Les résultats locaux présentés au § 2
permettent d'étendre la propriété de relevement aux ultra-puissances

1,.1
de L /HO.

Rappelons que si X est un Banach, I un ensemble et Y un ultra-

filtre sur I, 1'ultra-puissance Xu est le quotient de O X par son
£ (1)
sous-espace Mu= {(xi)iEI; lim “xi”= 0}.

3 N
Rappelons aussi que X est isometrique a un sous-espace 1-complémenté

d'une ultra-puissance de X. Pour plus de détails, nous renvoyons le

lecteur a [4].
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Si (L1/Hé)u est une ultra-puissance de L1/Hé et (Ll)u 1'ultra-puissance
correspondante de L1(n), on considere les extensions naturelles de q

et 0 a ces ultra-puissances
1 1,.,1 1 1
G+ (L) —> (LM, et oy i (L /Hé)uw‘*(L oy -
I1 est clair que ou est relevement de norme minimale de qu.

La démonstration du résultat suivant est maintenant tout-a-

fait directe

eoreme . 01l une suite ans e que a sulite
Théoreme 3 Soit (g,) ite d (Ll/H(l))u tel 1 it

ou(gk) des relevements est équivalente a la base 4  dans (Li)u- Alors

. . . 1
(gk) a une sous-suite (gk) éguivalente a la base 21 dans (L1/H0)u et

tel que [§£; k] est complémenté dans (Ll/Hé)u .

Tout ultra-produit (Ll)u est un espace L1(u) et possede donc
les propriétés énoncées en début de cette section. On trouve comme corol-
laire du Th. 3 :

[Théoréme 4 : Tout ultra-produit X de L1/H(1) est faiblement séquentiel-
lement complet et possede la propriété de Dunford-Pettis. Toute suite
ﬂl dans X a une sous-suite engendrant un sous-espace complémenté de X.

L

Corollaire : H et espaces duaux sont Dunford-Pettis. Les duaux impairs

| de H°° sont faiblement séquentiellement complets.

§ 5. APPLICATION AUX SUITES INTERPOLANTES.

Rappelons qu'une suite (zm) dans le disque unité ouvert D

est universellement) interpolante si pour tout suite (am) de nombres

complexes, sup |am|<im, il existe une fonction ¢ dans H telle que
@(zm)= a  pour tout m. Ceci est équivalent a dire que les noyaux de

Poisson Pz se comportent comme une suite 21 dans Ll/Hé.
m
Une suite (zm) dans D est interpolante ssi

inf l l p(zm,zn) > 0

m nxm

ou pour z, wé€D
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1-2zw

est la distance hyperbolique.

On dit que (zm) est une suite de Carleson si la mesure 1 sur D définie

par

=23 (1- lzml) 52
m m

est une mesure de Carleson.

Proposition 2 (cf. [5]) :

1. Toute suite interpolante est une suite de Carleson ;

2. Inversement, si (zm) est une suite de Carleson et inf p(zm,zn)>>0,

m#£n

i alors (Zm) est interpolante.

Le lemme suivant se démontre par majoration de 1'intégrale

de Cauchy

[Lemme 3 : Si il existe une suite (qm) dans H” telle que
(i) gm(zm)= 1 pour tout m

(ii) 3 lgmlswnst.,

| alors (zm) est une suite de Carleson.

[Théoréme 5 : Si une suite (zm) dans D est interpolante par rapport

laux fonctions harmoniques, elle est interpolante.

Démonstration : Par hypothese, (PZ ) est une suite £' dans L1(E)- Puis-
m
. Ly
que PZ est une fonction positive, on a HPZH1= ”q(Pz)

« En combinant le

Th. 1 et le Lemme 3, on trouve donc que (zm) est une suite de Carleson.
Mais puisque

inf p(z_,z ) ~ inf ||[P_ - P >0 ,
m n z Z

Il
m£n m#£n m n

la Prop. 2 termine la démonstration.
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