

SÉMINAIRE D'ANALYSE FONCTIONNELLE ÉCOLE POLYTECHNIQUE

N. GHOUSSOUB

On operators fixing copies of c_o and ℓ_∞

Séminaire d'analyse fonctionnelle (Polytechnique) (1980-1981), exp. n° 12, p. 1-11

http://www.numdam.org/item?id=SAF_1980-1981___A12_0

© Séminaire d'analyse fonctionnelle
(École Polytechnique), 1980-1981, tous droits réservés.

L'accès aux archives du séminaire d'analyse fonctionnelle implique l'accord avec les conditions générales d'utilisation (<http://www.numdam.org/conditions>). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

*Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/*

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

91128 PALAISEAU CEDEX - FRANCE

Tél. : (1) 941.82.00 - Poste N°

Télex : ECOLEX 691596 F

S E M I N A I R E

D ' A N A L Y S E F O N C T I O N N E L L E
1980-1981

ON OPERATORS FIXING COPIES OF c_0 AND ℓ_∞

N. GHOUSSOUB

(University of British Columbia, Vancouver)

In this seminar, we report on a part of a joint work with W.B. Johnson and T. Figiel [1] concerning the structure of non-weakly compact operators on Banach lattices. First, we recall the following two fundamental theorems.

Theorem (A) : (A. Pełczyński [4]) . A non-weakly compact operator from a $C(K)$ -space into any Banach space must preserve a copy of c_0 ; that is there exists a subspace of $C(K)$, isomorphic to c_0 , on which T acts as an isomorphism.

Theorem (B) : (H. Rosenthal [5]). If K is a σ -Stonian compact space, then every non-weakly compact operator from $C(K)$ into any Banach space must preserve a copy of ℓ_∞ .

Our goal is to see to which extent, one can replace $C(K)$ in theorems (A) and (B) by a larger class of Banach spaces.

§ I. NON WEAKLY COMPACT OPERATORS :

The existence of the James space [2] eliminates the possibility of replacing $C(K)$ in theorem (A) by any Banach space not containing a subspace isomorphic to ℓ_1 , since c_0 and ℓ_1 do not embed in this space and yet it is not reflexive. However, the result does hold for the identity operator acting on a Banach lattice since if the latter is not reflexive, then it must contain a sublattice isomorphic either to ℓ_1 or c_0 [3]. A natural problem is then to check if the result holds for any operator or equivalently if whether in theorem (A), $C(K)$ can be replaced by any Banach lattice not containing ℓ_1 .

Surprisingly, Pełczyński's theorem does not extend even to this case as we show in the following counterexample.

Example (1) : For every p , $1 \leq p < \infty$, there exists a Banach lattice

XII.2

X_p and a lattice homomorphism T_p from X_p onto c_0 so that

- (i) T_p is strictly singular for each p , $1 \leq p < \infty$
- (ii) X_p contains no subspace isomorphic to ℓ_1 for p , $1 < p < \infty$.

We first give the idea. Let c be the space of converging sequences and set $X = \ell_1(c)$; that is the space of doubly-indexed sequences $a = (a_{i,j})$, where $i = 1, 2, \dots$; $j = 1, 2, \dots, \omega$ such that

$$\lim_{j \rightarrow \infty} a_{i,j} = a_{i,\omega} \text{ for } i = 1, 2, \dots$$

and

$$\|a\|_X = \sum_{i=1}^{\infty} \sup_j |a_{i,j}| < \infty$$

Define the norm one operator $T : X \rightarrow c_0$ by

$$Ta = (a_{i,\omega})_{i=1}^{\infty}.$$

Clearly, T is weakly compact and X contains lots of sublattices isomorphic to ℓ_1 . However, we can turn T into a non-weakly compact operator by adding to the unit ball of X vectors (f_n) for which (Tf_n) is not weakly compact in c_0 and taking for the new unit ball in X the absolute convex solid hull of the old unit ball and the f_n 's, in order to get a normed lattice. The completion of the resulting space probably still contains ℓ_1 complementably, but we can kill them by taking the p -convexification of the space for some $1 < p < \infty$.

Letting X and T be defined as above we define $f_n \in X$ by

$$(f_n)_{i,j} = \begin{cases} 1 & , \text{ if } i \leq n \leq j \\ 0 & , \text{ otherwise} \end{cases}.$$

Clearly

$$Tf_n = \sum_{i=1}^n e_i$$

where $(e_i)_{i=1}^{\infty}$ is the unit vector basis for c_0 .

Let X_0 be the dense sublattice of X consisting of those vectors $a = (a_{i,j})$ whose rows are eventually zero; i.e., for some n , $a_{i,j} = 0$ for all $i \geq n$ and all $j = 1, 2, \dots, \omega$.

XII.3

Let $\|\cdot\|_1$ be the greatest lattice norm on X_0 such that

$$\|f_n\|_1 \leq 1, \quad \|x\|_1 \leq \|x\|$$

for $n = 1, 2, \dots$ and all $x \in X_0$. That is, $\|\cdot\|_1$ is the gauge of the closed absolutely convex solid hull of the unit ball of X_0 and the sequence (f_n) . Thus $\|x\|_1 < 1$ if and only if there are $g \in X_0^+$ and eventually zero sequence s_1, s_2, \dots in \mathbb{R}^+ so that

$$\begin{aligned} |x| &\leq g + \sum_{i=1}^{\infty} s_i f_i \text{ and} \\ \|g\|_X + \sum_{i=1}^{\infty} s_i &< 1. \end{aligned}$$

Let $(X_1, \|\cdot\|_1)$ be the completion of $(X_0, \|\cdot\|_1)$ and for $1 < p < \infty$, let $(X_p, \|\cdot\|_p)$ be the completion of the p -convexification of $(X_0, \|\cdot\|_1)$; that is, for $x \in X_0$,

$$\|x\|_p = \| |x|^p \|_1^{1/p}.$$

(See chapter 1.e in [3] for a discussion of p -convexity.)

We claim that $\|T\|_p = 1$ for every $1 \leq p < \infty$; i.e., T has norm one as an operator from $(X_0, \|\cdot\|_p)$ into c_0 . This claim is a consequence of the observation that for each i and j , the coordinatewise evaluation functional on X_0 defined by $a \mapsto a_{i,j}$ has $\|\cdot\|_p$ -norm one. (For $p=1$ this is clear, because $|f_n| \leq 1$ for each n , the general case then follows from the definition of $\|\cdot\|_p$.)

Since X_0 is dense in X_p , T extends to a norm one operator, T_p , from X_p into c_0 . Note also that T_p is a lattice homomorphism and for every choice of signs \pm and $n = 1, 2, \dots$; there is $g \in X_0$, $|g| \leq f_n$, so that $Tg = \sum_{i=1}^{\infty} \pm e_i$ which shows that T_p is a quotient map.

In the sequel, we shall say that a sequence $(x_n)_{n=1}^{\infty}$ in X_p is a special c_0 -sequence if there exist $K < \infty$ and integers $i_1 < i_2 < \dots$ such that for every $n = 1, 2, \dots$,

$$x_n \geq 0, \quad \|x_n\|_p = 1$$

$$(x_n)_{i,j} = 0 \text{ if } i \neq i_n$$

XII.4

$$\left\| \sum_{k=1}^n x_k \right\|_p < K.$$

Note that if $1 \leq i < \infty$ and $x \in X_0$ with

$$x_{\ell, j} = 0 \text{ for } \ell \neq i,$$

then

$$\|x\|_X = \sup_j |x_{i,j}| ;$$

consequently,

$$\|x\|_p = \sup_j |x_{i,j}|$$

for $p = 1$ and hence for all $1 \leq p < \infty$. In particular, all the terms of a special c_0 -sequence lie in X_0 .

We now show that X_1 contains no special c_0 -sequence.

If such a sequence $(x_n)_{n=1}^\infty$ exists in X_1 , pick for each n an index $j_n < \omega$ so that

$$(x_n)_{i_n, j_n} \geq 1/2 \sup_j (x_n)_{i_n, j} = 1/2 \|x_n\|_1 = 1/2 .$$

By passing to a subsequence, we may assume that $i_{n+1} > j_n$ for each n .

Given an integer N , find $g \in X_0^+$ and $(s_i)_{i=1}^\infty \subseteq \mathbb{R}^+$ so that

$$\sum_{n=1}^N x_n \leq g + \sum_{i=1}^\infty s_i f_i ,$$

$$\|g\|_X + \sum_{i=1}^\infty s_i < \left\| \sum_{n=1}^N x_n \right\|_1 + 1.$$

Evaluating both sides of the first inequality at (i_n, j_n) , we get

$$1/2 \leq (g)_{i_n, j_n} + \sum_{i=i_n}^{j_n} s_i \text{ for } n = 1, 2, \dots, N.$$

It follows that

$$N/2 \leq \sum_{n=1}^N (g)_{i_n, j_n} + \sum_{n=1}^N \sum_{i=i_n}^{j_n} s_i \leq$$

XII.5

$$\leq \|g\|_{X_p} + \sum_{i=1}^{\infty} s_i < \left\| \sum_{n=1}^N x_n \right\|_1 + 1$$

which for large N contradicts the inequality

$$\left\| \sum_{n=1}^N x_n \right\|_1 < K.$$

To prove (i), suppose that $T_p : X_p \rightarrow c_0$ is an isomorphism on an infinite dimensional subspace E of X_p which we may assume is isomorphic to c_0 . Let $(z_n)_{n=1}^{\infty}$ be a normalized basis for E which is K -equivalent to the unit vector basis of c_0 ; since X_0 is dense in X_p , we can assume that each z_n lies in X_0 .

Since

$$\|T_p z_n\| = \max_i |(z_n)_{i,\omega}| \text{ and}$$

$$\lim_{n \rightarrow \infty} (z_n)_{i,\omega} = 0 \text{ for each } i \in \mathbb{N},$$

we can find a sequence $i_1 < i_2 < \dots$ and $\delta > 0$ such that for all n ,

$$|(z_n)_{i_n,\omega}| > \delta.$$

Define the band projection $P_n : X_p \rightarrow X_p$ by

$$(P_n x)_{i,j} = \begin{cases} x_{i,j} & \text{if } i = n \\ 0 & \text{if } i \neq n. \end{cases}$$

By the diagonal principle (cf. p.20 in [2]) it follows that the disjoint sequence $(P_{i_n} z_n)_{n=1}^{\infty}$ is K/δ -equivalent to the unit vector basis of c_0 . Consequently,

$$y_n = \|P_{i_n} z_n\|_p^{-1} |P_{i_n} z_n|$$

is a special c_0 -sequence in X_p and hence the sequence $x_n = y_n^p$ is a special c_0 -sequence in X_1 , which is a contradiction.

To prove (ii), note that if E is a subspace of X_p isomor-

phic to ℓ_1 , and if $S_m X_p = \sum_{i=1}^m p_i X_p$ determines the natural Schauder decomposition of X_p , then $S_m|_E$ cannot be an isomorphism for any m because $S_m X_p$ is isomorphic to c_0 . Thus there exists a normalized sequence $(x_n)_{n=1}^\infty$ in E which is equivalent to the unit vector basis for ℓ_1 and a disjoint sequence $(y_n)_{n=1}^\infty$ in X_0 so that

$$\lim_{n \rightarrow \infty} \|x_n - y_n\|_p = 0.$$

It follows that the sublattice of X_p generated by $(y_n)_{n=1}^\infty$ is isomorphic to ℓ_1 , which is impossible for $p > 1$ because X_p is p -convex. \square

§ II. OPERATORS WHOSE ADJOINT ARE NOT W^{*} -SEQUENTIALLY COMPACT :

To study the extensions of theorem (B), we note first that if K is σ -Stomian, then $C(K)$ is a Grothendieck space, that is the weak-star sequential convergence in its dual coincide with the weak convergence. The problem then reduces to the study of the structure of operators whose adjoints are not weak-star sequentially compact and whose domain is a Banach lattice which contains no complemented copy of ℓ_1 . The first theorem reduces the problem to $C(K)$ -spaces, where much is known.

Given any u in the positive cone L^+ of a Banach lattice L , denote by L_u the (not necessarily closed) ideal generated by u . The canonical injection from L_u into L is denoted by j_u or just j if there is no ambiguity. If we put the natural norm on L_u , defined by

$$\|x\|_u = \inf \{\lambda > 0 : |x| \leq \lambda u\}$$

then $(L_u, \|\cdot\|_u)$ is an abstract M -space with unit u and hence is isometrically isomorphic to a $C(K)$ space by Kakutani's Theorem. The operator $j_u : (L_u, \|\cdot\|_u) \rightarrow L$ obviously has norm $\|u\|$.

Theorem 2 : Let L be a Banach lattice which does not contain a copy of ℓ_1 as a sublattice and let T be an operator from L into a Banach space X such that $T^* \text{Ball}(X^*)$ is not weak * sequentially compact. Then there exists $u \in L^+$ so that $(Tj_u)^* \text{Ball}(X^*)$ is not weak * sequentially compact.

tially compact.

To prove the theorem we will need a few lemmas. Given an infinite subset of \mathbb{N} , denote by $[\mathbb{M}]$ the set of all infinite subsets of \mathbb{M} . Given a Banach space L and a bounded sequence (f_n) in L^* , we define for $x \in L$ and $M \in [\mathbb{N}]$

$$\alpha_M(x) = \limsup_{m \in M} f_m(x) - \liminf_{m \in M} f_m(x) .$$

Note that

$$\alpha_M(x) \leq 2 \sup_{m \in M} \|f_m\| \|x\|$$

and there exists $P \in [\mathbb{M}]$ so that

$$\left| \lim_{p \in P} f_p(x) \right| \geq 1/2 \alpha_M(x) .$$

Given $A \subseteq L$, define

$$\alpha_M(A) = \sup \{ \alpha_M(x) : x \geq 0, \|x\| \leq 1, x \in A \}$$

$$\beta_M(A) = \inf \{ \alpha_P(A) : P \in [\mathbb{M}] \} .$$

Lemma (3) : Let L be a Banach space and let (f_n) be a bounded sequence in L^* . If $A \subseteq \text{Ball}(L)$ and $M \in [\mathbb{N}]$, then either $\beta_p(A) > 0$ for some $P \in [\mathbb{M}]$ or there exists $P \in [\mathbb{M}]$ such that $(f_p)_{p \in P}$ converges pointwise on A .

Proof : If $\beta_p(A) = 0$ for all $P \in [\mathbb{M}]$, we can recursively define infinite sets $M \supseteq P_1 \supseteq P_2 \supseteq \dots$ so that $\alpha_{P_n}(A) < \frac{1}{n}$. If P is a diagonal sequence with respect to the P_n 's, then $\alpha_P(A) = 0$; i.e., $(f_p)_{p \in P}$ converges on A .

From lemma (3) it follows that if L is a Banach lattice and $(f_n) \subseteq \text{Ball}(L^*)$ has no weak* convergent subsequence, then we may assume, by passing to a subsequence of (f_n) that $\beta_{\mathbb{N}}(L^+) > 0$.

To prove Theorem 2, we fix a sequence $(f_n) \subseteq T^* \text{Ball}(X^*)$ with $\sup_n \|f_n\| \leq 1$ so that $\beta_{\mathbb{N}}(L^+) > 0$. We assume that $\beta_M(L_x) = 0$ for

all $x \in L^+$ and $M \in \mathbb{N}$ since this is the case if $(j_x^* r_m)_{m \in M}$ has a subsequence which converges weak* in L_x^* . The conclusion that this set-up implies that L must contain a disjoint positive sequence equivalent to the unit vector basis of ℓ_1 is an immediate consequence of the next two lemmas. Lemma (4), produces an "almost disjoint" sequence in $\text{Ball}(L^+)$ which, by Lemma (5), has a subsequence which is a small perturbation of a disjoint ℓ_1 sequence.

Lemma (4) : Suppose that L is a Banach lattice, $(r_n) \subseteq \text{Ball}(L^*)$, $\alpha_{\mathbb{N}}(L^+) > \delta > 0$, $\beta_M(L_x) = 0$ for all $M \in \mathbb{N}$ and $x \in L^+$, and $\varepsilon_n \downarrow 0$. Then there exists $f \in \text{weak* closure } (r_n)$ and $(y_n) \subseteq \text{Ball}(L^+)$ so that for each $n = 1, 2, \dots$,

$$(i) \quad \left\| \left(\sum_{i=1}^{n-1} y_i \right) \wedge y_n \right\| < \varepsilon_n$$

$$(ii) \quad |f(y_n)| \geq \delta/2 .$$

Proof : By induction we construct a sequence $(y_n) \subseteq \text{Ball}(L^+)$ and $(M_n) \subseteq \mathbb{N}$ to satisfy for each $n = 1, 2, \dots$ condition (i) and

$$(iii) \quad M_{n+1} \subseteq M_n$$

$$(iv) \quad |f_m(y_n)| > \delta/2 \text{ for all } m \in M_n .$$

Having done this, we simply let f be any element of $\text{Ball}(L^*)$ which is a weak* cluster point of $(r_k)_{k \in M_n}$ for each $n = 1, 2, \dots$.

Choosing $y_1 \in \text{Ball}(L^+)$ so that $\alpha_{\mathbb{N}}(y_1) > \delta$, we have that

$$\limsup_{m \in \mathbb{N}} |f_m(y_1)| > \delta/2$$

so that we can choose $M_1 \in \mathbb{N}$ to satisfy (iv) for $n = 1$.

Having defined $(M_n)_{n=1}^N$ and $(y_n)_{n=1}^N$ to satisfy (i), (iii), and (iv) for $n \leq N$, we pick $M \in [M_N]$ so that

$$\alpha_M([0, \sum_{i=1}^N y_i]) = 0$$

and choose $z \in \text{Ball}(L^+)$ so that $\alpha_M(z) > \delta$. Define

$$y_{N+1} = z - z \wedge \left(\varepsilon_{N+1}^{-1} \sum_{i=1}^N y_i \right).$$

Since

$$\alpha_M \left(z \wedge \varepsilon_{N+1}^{-1} \sum_{i=1}^N y_i \right) = 0.$$

we have that

$$\alpha_M(y_{N+1}) = \alpha_M(z) > \delta.$$

Thus we can choose $M_{N+1} \in [M]$ so that for all $m \in M_{N+1}$,

$$|f_m(y_{N+1})| > \delta/2.$$

To check (i), just note that if $z, x \in L^+$ and $\lambda \in \mathbb{R}^+$, then

$$(z - z \wedge \lambda x) \wedge x = (z - \lambda x)^+ \wedge x \leq \lambda^{-1} z.$$

□

Lemma (5) : Suppose that L is a Banach lattice, $f \in \text{Ball}(L^*)$, $(y_n) \subseteq \text{Ball}(L^+)$, and $0 < \delta < \delta + \varepsilon$. Suppose that for each $n = 1, 2, \dots$, $f(y_n) \geq \delta + \varepsilon$ and $\lim_{k \rightarrow \infty} \left\| \left(\sum_{i=1}^n y_i \right) \wedge y_k \right\| = 0$. Then there is a subsequence $(y_{n(i)})$ of (y_n) and a disjoint sequence (x_i) in L^+ with $x_i \leq y_{n(i)}$ so that for each $i = 1, 2, \dots$

$$\|y_{n(i)} - x_i\| < 4^{-i+1} \varepsilon.$$

Consequently, $|f(x_i)| > \delta$ for each $i = 1, 2, \dots$, and hence (x_i) is $1/\delta$ -equivalent to the unit vector basis for ℓ_1 and $[x_i]$ is $1/\delta$ -complemented in L .

Proof : Assume, by passing to a subsequence of (y_n) , that for $n = 1, 2, \dots$

$$(a) \left\| y_{n+1} \wedge \sum_{i=1}^n y_i \right\| < 4^{-n} \varepsilon$$

We define by recursion a double sequence $(y_{n,k})_{n=1}^{\infty} \subseteq \text{Ball}(L^+)$ to satisfy

(b) $(y_{n,k})_{n=1}^k$ is disjoint for $k = 1, 2, \dots$

(c) $y_{n,k+1} \leq y_{n,k} \leq y_n$ for $1 \leq n \leq k$.

$$(d) \|y_n - y_{n,n}\| < 4^{-n}\varepsilon \text{ for } n = 1, 2, \dots .$$

$$(e) \|y_{n,k} - y_{n,k+1}\| < 4^{-k}\varepsilon \text{ for } 1 \leq n \leq k.$$

Once this is done, we can in view of (e) set

$$x_n = \lim_{k \rightarrow \infty} y_{n,k} ;$$

from (b) and (c) we have that $(x_n)_{n=1}^{\infty}$ is disjoint and $0 \leq x_n \leq y_n$ for each $n = 1, 2, \dots$. From (d) and (e) we infer that

$$\|y_n - x_n\| < 4^{-n+1}\varepsilon.$$

We turn now to the construction of the $y_{n,k}$'s. Set $y_{1,1} = y_1$.

Suppose that $(y_{n,k})_{n=1}^N _{k=n}^N$ has been defined. Let

$$y_{N+1, N+1} = y_{N+1} - y_{N+1} \wedge \left(\sum_{k=1}^N y_{N,k} \right)$$

and, for $1 \leq n \leq N+1$, set

$$y_{n, N+1} = y_{n, N} - y_{n, N} \wedge y_{N+1} .$$

We leave the verification of (b) - (e) to the reader. \square

By applying Theorem (B) we obtain the following two corollaries of Theorem (2).

Corollary (6) : Let L be a σ -complete Banach lattice which does not contain a copy of ℓ_1 as a sublattice. If T is an operator from X into some Banach space Y and $T^* \text{Ball}(Y^*)$ is not weak* sequentially compact, then T preserves a copy of ℓ_∞ .

Proof : By Theorem (2) there is $u \in L^+$ so that $(Tj_u)^* \text{Ball}(Y^*)$ is not weak* sequentially compact and hence not weakly compact. When L_u is represented as $C(K)$ space, K is σ -Stonian because L is σ -complete. Therefore, by Theorem (B) Tj_u , hence also T , preserves a copy of ℓ_∞ . \square

Corollary (7) : If L is a σ -complete Grothendieck Banach lattice, then every non-weakly compact operator from L into any Banach space preserves a copy of ℓ_∞ .

Proof : A Grothendieck space cannot contain ℓ_1 (or any other non-reflexive separable space) as a complemented subspace, and non-weakly compact operators from a Grothendieck space have adjoints which are not weak* sequentially compact, and hence Corollary (6) can be applied to any non-weakly compact operator from a σ -complete Grothendieck Banach lattice. \square

Problem : It is still unknown whether every non-weakly compact operator from a Grothendieck space into any Banach space preserves a copy of ℓ_∞ .

References :

- [1] T. Figiel, N. Ghoussoub, W. Johnson : "On the structure of non-weakly compact operators on Banach lattices". (To appear) (1981).
- [2] J. Lindenstrauss, L. Tzafriri : "Classical Banach spaces - I". Springer-Verlag". (1977).
- [3] J. Lindenstrauss, L. Tzafriri : "Classical Banach spaces-II". Springer-Verlag (1979).
- [4] A. Pełczyński : "Banach spaces on which every unconditionally converging operator is weakly compact". Bull. Acad. Polon. 10, 641-648 (1962).
- [5] H.P. Rosenthal : "On relatively disjoint families of measures, with some applications to Banach space theory". Studio, Math. T XXXVII (1970).

◆◆