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XII.1

In this seminar, we report on a part of a joint work with
W.B. Johnson and T. Figiel (1] concerning the structure or non-weakly
compact operators on Banach lattices. First, we recall the rollowing

two fundamental theorems.

e
Theorem (A) : (A. Pelczynski (4]) . A non-weakly compact operator

trom a C(K)-space into any Banach space must preserve a copy of C, 3
that is there exists a subspace of C(K), isomorphic to c,» on which T

fcts as an isomorphism.

/
Theorem (B) : (H. Rosenthal [5]). Ir K is a o-Stonian compact space,

then every non-weakly compact operator rfrom C(K) into any Banach space

Mmust preserve a copy oI Lo .

Our goal is to see to which extent, one can replace C(K)

in theorems (A) and (B) by a larger class or Banach spaces.

§ I. NON WEAKLY COMPACT OPERATORS !

The existence orf the James space [2] eliminates the

possibility of replacing C(K) in theorem (A) by any Banach space

not containing a subspace isomorphic to 21, since ¢ and 21 do not
embed in this space and yet it is not reflexive. However, the result
does hold for the idendity operator acting on a Banach lattice since
if the latter is not reflexive, then it must contain a sublattice
isomorphic either to 11 or c (3]. a natural problem is then to check
if the result holds for any operator or equivalently if whether in

theorem (A), C(K) can be replaced by any Banach lattice not containg 4
1

Surprisingly, Petczynski's theorem does not extend even

to this case as we show in the following counterexample.

Example (1) : For every p , 1 € p < », there exists a Banach lattice




XII.2

Xp and a lattice homomorphism Tp from Xp onto ¢, SO that
(i) Tp is strictly singular for each p, 1 < p < »

(ii) Xp contains no subspace isomorphic to £, for p, 1 < p < o .

1

We first give the idea. Let ¢ be the space of converging sequences

and set X = 31(0) 3 that is the space of doubly-indexed sequences

a = (ai j)’ where i = 1,2,... 3 j = 1,2,..., W such that
?
%1m ai,j = ai,w for i = 1,244
J-o
[ee)
and “a“X =X supla. .I < »
. . i,
i=1 j

Define the norm one operator T : X______?co by
Ta = (a, ) .

Clearly, T is weakly compact and X contains lots of sublattices iso-
morphic to 21. However, we can turn T into a non-weakly compact operator
by adding to the unit ball of X vectors (fn) for which (Tfn) is not
weakly compact in <, and taking for the new unit ball in X the absolute
convex solid hull of the old unit ball and the f;s, in order to get

a normed lattice. The completion of the resulting space probably still
contains £1 complementably, but we can kill them by taking the p-conve-

xification of the space for some 1 < p < » -

Letting X and T be defined as above we define fn € X by

1 , if i S n = j
, (fn)i . ={ .
*J 0 , otherwise
Clearly
n
Tfn = X e1
i=1
(=]
where (e.). is the unit vector basis for c .
ii=1 o
Let Xo be the dense sublattice of X consisting of those
vectors a = (ai j) whose rows are eventually zero ; i.e., for some
b
n, a. . = 0 for all i 2 n and all j = 1,2,...,%.

1s9]
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Let be the greatest lattice norm on XO such that

4

”fnﬂl <1, HxH1 < lxll

for n = 1,2,... and all x € Xo- That is, H.I is the gauge of the

i1
closed absolutely convex solid hull of the unit ball of XO and the

sequence (fn)- Thus HxH1 < 1 if and only if there are g € X; and

eventually zero sequence Sy185000 in R" so that

2

IX| S g+ X sifi and

i=1
[ee)
N
Hg“x +.Z S5 < 1.
i=1
Let (X1, . 1) be the completion of (XO,H “1) and for 1 < p < », let
(Xp,”- p) be the completion of the p-convexification of (XoaH-Hl) )

that is, for x € Xo ,
Il = 1 Il 2/P

(See chapter 1.e in (3] for a discussion of p-convexity.)

We claim that “T“p = 1 for every 1 = p < ® 3 i.e.y, T has

norm one as an operator from (Xo, p) into ¢ . This claim is a
o

consequence of the observation that for each i and j, the coordinatewise

evaluation functional on Xo defined by a____aai’j has

(For p=1 this is clear, because lfnl = 1 for each n, the general case

-)
P

.|l -norm one.
Y

then follows from the definition of ||.

Since Xo is dense in Xp, T extends to a norm one operator,
Tp, from Xp into cye Note also that Tp is a lattice homomorphism and
for every choice of signs + and n = 1,2,... ; there is g € Xo, lgl s fn,

so that Tg = Z + e, which shows that Tp is a quotient map.

i=1
o]
In the sequel, we shall say that a sequence (xn)n_1 in X
is a special c,sequence if there exist K < , and integers il < 12 < ee

such that for every n = 1,2,...,
z 0 i =
x ENIES

(x ). . =0 if i £ i
J n



n
| £ x
k=1

ka < K.

Note that ir 1 < i < » and x € Xo with

XE’j = O I’Ol" l’ £ i,

then
Ixly = suplx, .l
X . i, !
J
consequently,
HXHP = sgp lxi,jl

Tor p = 1 and hence for all 1 < p < » . In particular, all the terms

of a special c,~Sequence lie in Xo .

We now show that X, contains no special c,~Sequence.

1

[oe)
IT such a sequence (x ) _, exists in X , pick for each

1 1’
n an index jn < w so that
= = = .
(g L5 = /2 sup(x)); 1/2lx |l = 1/2
n’'“n J n
By passing to a subsequence, we may®assume that in+1 > jn for each n.

. . L s PR ® 4 o
Given an integer N, rind g € X_ and (Si)i—i SR so that

N

L x <g=+
=1 °

s.T.
iti?

™M 8

n i=

1

® N
Hg”x +.2 s; < | = an1 + 1.
i=1 n=1

Evaluating both sides of the rirst inequality at (in,jn), we get

J

n
1/2 < (g). . + s. for n = 1,2,...4N.
i sj . . i
n’“n i=i
n
It follows that
N N In
N/2=< 2 (g). . + % z s; =
n=1 1n’Jn n=1 i=i



XII.5

® N
Sl + 2 sy < w1
1= n=

which for large N contradicts the inequality

N
s <, <k
n=1
| To prove (i), suppose that Tp : Xp____9 c, 1s an isomor-
phism on an inrinite dimensional subspace E of Xp which we way assume

©

is isomorphic to c . Let (z ) _, be a normalized basis for E which

is K-equivalent to the unit vector basis of Cy since Xo is dense

in XP, we can assume that each zn lies in XO .
Since
”szn“ = max I(Zn)i,wl and

1

lim (zn). = 0 for each i €N ,

l’w
N

we can find a sequence i1 < i2 < +.. and 6 > O such that for all n,

l(zn)i ,wl > 6 .
n

Derine the band projection Pn : Xp_) Xp by

0 if i #Z n.

By the diagonal principle (cf. p.-20 in [2]) it follows that the disjoint

=]
sequence (Iﬁ zn)n_1 is K/b6-equivalent to the unit vector basis or c,t

Consequently,

-1
Yn ° “Ikn zn”p lPin zn

is a special c ~sequence in Xp and hence the sequence x, = yﬁ is a

special c,~sequence in Xl, which is a contradiction.

To prove (ii), note that if E is a subspace of Xp isomor-
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m
and ir SmX = 2 P,X determines the natural Schauder

i=1
decomposition of Xp, then Sm

phic to Ll’

E cannot be an isomorphism for any m

because SmX is isomorphic to e Thus there exists a normalized

(x )"
sequence Xn n=1

for 11 and a disjoint sequence (yn)z_

in E which is equivalent to the unit vector basis

in X so that
1 o

1i - - 0.
Lin Ix, yn”p

It follows that the sublattice of Xp generated by (yn):_ is isomorphic

1
to 11, which is impossible for p > 1 because Xp is p-convex. U

§ II. OPERATORS WHOSE ADJOINT ARE NCT WEAKW—SEQUENTIALLY COMPACT

To study the extensions of theorem (B), we note first
that if K is o-Stomian, then C(K) is a Grothendieck space, that is
the weak~-star sequential convergence in its dual coincide with the
weak convergence. The problem then reduces to the study of the structure
of operators whose adjoints are not weak-star sequentially compact
and whose domain is a Banach lattice which contains no complemented
copy of 21. The first theorem reduces the problem to C(K)-spaces,

where much is known.

Given any u in the positive cone L" of a Banach lattice
L, denote by L the (not necessarily closed) ideal generated by u.
The canonical injection from Lu into L is denoted by ju or just j

if there is no ambiguity. If we put the natural norm on Lu, defined

by
<l = int (x> 0: x| < Au}
then (Lu,l- u) is an abstract M-space with unit u and hence is isometric-
ally isomorphic to a C(K) space by Kakutani's Theorem. The operator
., | .
i, ¢ (Lu, o u)____%ﬁL obviously has norm |ju

Theorem 2 : Let L be a Banach lattice which does not contain a
copy of £1 as a sublattice and let T be an operator from L into a
Banach space X such that T% Ball(X¥) is not weak® sequentially compact.

Then there exists u € L¥ so that (Tju)* Ball(X*) is not weak¥® sequen-
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]
[}
(tially compact.

To prove the theorem we will need a few lemmas. Given an
infinite subset of N , denote by [M] the set of all inrinite subsets
of M. Given a Banach space L and a bounded sequence (fn) in L*, we

derine for x € L and M € [IN]
aM(x) = 1lim sup f (x) - lim inf fm(x) .
m €M m m €M
Note that
o (x) < 2 sup e i i
M II’IEM m

and there exists P € [M] so that

[1im fP(x)l z 1/2 aM(x) .

pEP

Given A E L, define
aM(A) = sup{aM(x) : x =0, |ix]] £1, x € A}

By(a) = infla,(a) : P [M]} .

’

Lemma (3) : Let L be a Banach space and let (fn) be a bounded
sequence in L¥. Ir A C Ball (L) and M € [IN], then either B_(A) > 0
for some P € [M] or there exists P € [M] such that (fp)pEP converges

pointwise on A.

\

Proof : If BP(A) = 0 for all P € [M], we can recursively define
1 .
infinite sets M 2 P1 2 P2 2 .. so that ap (4) < o If P is a
- - - ]
diagonal sequence with respect to the Pds, then aP(A) =03 i.e.,

(fp)pEP converges on A.

From lemma (3) it follows that if L is a Banach lattice
and (fn) C Ball(L#) has no weak® convergent subsequence, then we may

assume, by passing to a subsequence of (fn) that %N(L+) > 0.

To prove Theorem 2, we fix a sequence (fn) ¢ T¥%Ball (X*)

with sup”f H < 1 so that %N(L+) > 0. We assume that B, (L ) = 0 for
n n M "x
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all x € L* and M € [IN] since this is the case if (jifm)mEM has

a subsequence which converges weak® in Li- The conclusion that this
set-up implies that L must contain a disjoint positive sequence equi-
valent to the unit vector basis of 21 is an immediate consequence

of the next two lemmas. Lemma (4), produces an "almost disjoint"
sequence in Ball(L+) which, by Lemma (5), has a subsequence which

is a small perturbation of a disjoint £1 sequence-.

v’
Lemma (4) : Suppose that L is a Banach lattice, (fn) SiBall(L*),
%N(L+) > &> 0, By(L ) = 0 ror all M € {N} and x € L*, and et oO.
Then there exists f € weak¥ closure (fn) and (yn) C Ball(L") so that

fOI‘ each n = 1,2,0-0,
N\

n-1

(i) I ( Z yi) A ynH <e,
i=1

(ii) If(yn)l > 5/2 .

Proof : By induction we construct a sequence (yn) CBall (L*) and

(Mn) — [N] to satisfy for each n = 1,2,... condition (i) and

. -
(iii) Mn+1 < Mn

(iv) Ifm(yn)l > 8/2 for all m € Mn-

Having done this, we simply let f be any element of Ball(L¥) which

is a weak¥ cluster point of (fk) for each n = 1,2,... .

kEM
n
Choosing y, € Ball(L") so that %N(yl) > &, we have that

lim sup |f (y)| > o2
m €N m

so that we can choose M1 € (N] to satisfy (iv) for n = 1.

. . N N . . ..
Having defined (Mn)nzl and (yn)n=1 to satisry (i), (iii),
and (iv) for n < N, we pick M € [MN] so that

n M2

GM([O,

yiJ) =0
i

1

and choose z € Ball(L') so that aM(z) > 8. Derfine



Since

we have that
aM(yN+1) = aM(z) > 5 .

Thus we can choose M € [M] so that for all m € M

N+1 N+1 ?

lfm(yN+1) | > &/2 .

To check (i), just note that ir z, x € L' and A € RY, then

(z - zAAX) Ax = (z = Ax)"Ax < K-lz- a

&emma (5) : Suppose that L is a Banach lattice, f € Ball(L¥),
(y ) © Ball(L"), and 0 < 6 < & + €. Suppose that for each n = 1,2,....,

f(y ) 2 6 + € and lim | ( 2 Y4 ) A ka 0. Then there is a subsequence
ko i=1

. . . . + . <
(yn(i)) of (yn) and a disjoint sequence (xi) in L” with x; Ya(i)
so that for each i = 1,2,...

Hyn(i) - xi“ < 47i¥1

Consequently, |f(xi)| > o for each i = 1,2,...., and hence (xi) is

1/6-equivalent to the unit vector basis for 21 and fxi] is 1/6-com-

plemented in L.
\

Proof : Assume, by passing to a subsequence of (yn), that for
n=131,2y¢..
-n

(a) lly_,,4 z ¥ | < 4™
i=1

We define by recursion a double sequence (y_ ) _, E—n CBall(L")
,k’n=1 k=n —

to satisfy

(b) (3, n

n=1 is disjoint for k = 1,2,...

< < < < k.
n,k+1 yn,k yn for 1 n k
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1 -Nn
- =1 PP .
(d) Hyn yn,n” <4 € for n 92,

‘ -k_ - < <
(e) Hyn,k - yn,k+1“ <4 g for 1 < n < k.

Once this is done, we can in view of (e) set

x = lim yn,k 3
k—oo

[ee]

from (b) and (c¢) we have that (xn)n=1 is disjoint and 0 < x_ <y for
each n = 1,2,... . From (d) and (e) we inrer that
—n+1
Hy - X ” < 4 n+le.
n n
X i i 's. = .
We turn now to the construction of the yn,k s. Set yi’1 Yq
N .-
Suppose that (yn,k) ne1 k—p Das been derined. Let
N
= - 2
IN+1,N+1 = INs+1 yN+1"(k_1 yNJ{)
and,for 1 = n = N + 1, set
= - N .
YnoN+1 = Yn,N = Yn,N " IN+1
We leave the verirication of (b) - (e) to the reader. o

By applying Theorem (B) we obtain the following two corollaries of

Theorem (2).

Corollary (6) : Let L be a og~complete Banach lattice which does

not contain a copy of £1 as a sublattice. Ir T is an operator from
X into some Banach space Y and T% Ball(¥¥) is not weak® sequentially

compact, then T preserves a copy of 4o .

Proor : By Theorem (2) there is u € L' so that (Tj )*Ball (Y¥) is

o

not weak®

v
v

sequentially compact and hence not weakly compact. When Lu
is represented as C(K) space, K is o-Stonian because L is o-complete.
Theretore, by Theorem (B) Tj,» hence also T, preserves a copy of £, .
O
Corollary (7) : 1Ir L is a o-complete Grothendieck Banach lattice,
then every non-weakly compact operator from L into any Banach space

preserves a copy of 4_ .
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Proor : A Grothendieck space cannot contain 11 (or any other non-
reflexive separable space) as a complemented subspace, and non-weakly
compact operators rrom a Grothendieck space have adjoints which are
not weak® sequentially compact, and hence Corollary (6) can be
applied to any non-weakly compact operator from a o-complete

Grothendieck Banach lattice. =

Problem : It is still unknown whether every non-weakly compact
operator from a Grothendieck space into any Banach space preserves

a copy orf zm .
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