On Siegel’s problem for E-functions
Rendiconti del Seminario Matematico della Università di Padova, Tome 148 (2022), pp. 83-115
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Siegel defined in 1929 two classes of power series, the E-functions and G-functions, which generalize the Diophantine properties of the exponential and logarithmic functions respectively. He asked whether any E-function can be represented as a polynomial with algebraic coefficients in a finite number of E-functions of the form p F q (λz q-p+1 ), qp1, with rational parameters. The case of E-functions of differential order less than or equal to 2 was settled in the affirmative by Gorelov in 2004, but Siegel's question is open for higher order. We prove here that if Siegel's question has a positive answer, then the ring 𝐆 of values taken by analytic continuations of G-functions at algebraic points must be a subring of the relatively “small” ring 𝐇 generated by algebraic numbers, 1/π and the values of the derivatives of the Gamma function at rational points. Because that inclusion seems unlikely (and contradicts standard conjectures), this points towards a negative answer to Siegel's question in general. As intermediate steps, we first prove that any element of 𝐆 is a coefficient of the asymptotic expansion of a suitable E-function, which completes previous results of ours. We then prove (in two steps) that the coefficients of the asymptotic expansion of a hypergeometric E-function with rational parameters are in 𝐇. Finally, we prove a similar result for G-functions.

Accepté le :
Publié le :
DOI : 10.4171/rsmup/107
Classification : 33, 11, 41
@article{RSMUP_2022__148__83_0,
     author = {Fischler, St\'ephane and Rivoal, Tanguy},
     title = {On {Siegel{\textquoteright}s} problem for $E$-functions},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {83--115},
     year = {2022},
     volume = {148},
     doi = {10.4171/rsmup/107},
     mrnumber = {4542374},
     zbl = {1512.33011},
     language = {en},
     url = {https://www.numdam.org/articles/10.4171/rsmup/107/}
}
TY  - JOUR
AU  - Fischler, Stéphane
AU  - Rivoal, Tanguy
TI  - On Siegel’s problem for $E$-functions
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2022
SP  - 83
EP  - 115
VL  - 148
UR  - https://www.numdam.org/articles/10.4171/rsmup/107/
DO  - 10.4171/rsmup/107
LA  - en
ID  - RSMUP_2022__148__83_0
ER  - 
%0 Journal Article
%A Fischler, Stéphane
%A Rivoal, Tanguy
%T On Siegel’s problem for $E$-functions
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2022
%P 83-115
%V 148
%U https://www.numdam.org/articles/10.4171/rsmup/107/
%R 10.4171/rsmup/107
%G en
%F RSMUP_2022__148__83_0
Fischler, Stéphane; Rivoal, Tanguy. On Siegel’s problem for $E$-functions. Rendiconti del Seminario Matematico della Università di Padova, Tome 148 (2022), pp. 83-115. doi: 10.4171/rsmup/107

Cité par Sources :