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Extensions of uniserial modules

Gabriella D’Este (�) – Fatma Kaynarca (��) –

Derya Keskı̇n Tütüncü (���)

Abstract – Let R be any ring and let 0 ! A ! B ! C ! 0 be an exact sequence

of R-modules which does not split with A and C uniserial. Then either B is indecom-

posable or B has a decomposition of the form B D B1 ˚ B2 where B1 and B2 are

indecomposable and at least one of them is uniserial.
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1. Introduction

Let us start by recording the third open problem which has been asked in [1,

Problem 3, p. 411]. Let A and C be uniserial modules. Give a method for deciding

if there are exact sequences 0 ! A ! B ! C ! 0 with the property that B is

also uniserial.

To see that B is not uniserial in general, it suffices to consider the direct sum of

two simple modules. We can consider also the Dynkin diagram A3 with subspace
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orientation �
1
! �

2
! �

3
and the Auslander–Reiten sequence

0 �!
2

3
�!

1

2

3

˚ 2 �!
1

2
�! 0:

This will also serve as an example to our Remark 2.2. On the other hand if we

consider the two other orientations

�
2
 � �

1
�! �

3
and �

1
�! �

3
 � �

2

we see that B may be the indecomposable module 1
2 3 or the indecomposable

module 1 2
3 .

Moreover, given an exact sequence 0 ! A ! B ! C ! 0 of finitely

generated modules over a left artinian ring with A and C uniserial, we know from

[3, Proposition 1.1.2] or [4, Theorem 6.1] that B is either indecomposable or the

direct sum of two uniserial modules. On the other hand, the well known Four

Terms in the Middle Theorem of Bautista and Brenner [2] (which is generalized

in [7] and [8]) states that if A is of finite representation type, then the middle term

of an almost split sequence in the category of finitely generated left A-modules has

at most four indecomposable summands, and the number four occurs only in the

case where one indecomposable summand is projective-injective. Exact sequences

of the form 0 ! A ! B ! C ! 0 with A and C uniserial modules have been

object of recent studies. See, for instance [5].

Inspired by the above motivations, as a first result of our paper (Theorem 2.1),

we characterize the middle term of an exact sequence of R-modules (over any

ring R) which does not split and has uniserial end terms. In this way, we may

view this result as the analogue of the “Four terms in the middle theorem” which

is described above, by replacing four by two, projective-injective by uniserial

and Auslander–Reiten sequences by non split exact sequences. We also note

(Proposition 2.5) that Z [ ¹C1;�1º, N [ ¹C1º, and .Z n N/ [ ¹�1º are

the lattices of the submodules of uniserial modules A and C such that there is

a short exact sequence 0 ! A ! B ! C ! 0 with B is indecomposable.

Finally, we construct (Example 2.6 and Example 2.7) uniserial modules A and C

such that there exist non split exact sequences 0 ! A ! X ! C ! 0, where

either X is uniserial or X is an indecomposable module with a decomposable

socle and/or a decomposable top. However (Corollary 2.10) subquotients of the

extensions of two uniserial modules are again extensions of two uniserial modules.

On the other hand extensions of uniserial modules are not necessarily closed under

extensions (Example 2.11).
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A module M is said to be uniserial if the lattice of its submodules is a chain.

As usual we say that a module M is uniform if the intersection of two nonzero

submodules of M is different from zero. A module M is called a hollow (or

couniform) module if M DM1 CM2 implies M1 DM or M2 DM .

Let x be a vertex of a quiver Q. Then S.x/ will denote the simple representation

corresponding to the vertex x. On the other hand, P.x/ (resp. I.x/) will denote

the indecomposable projective (resp. injective) representation corresponding to

the vertex x. Sometimes, for short, S.x/ is replaced by x. As in [9], pictures of

the form
1

2
;

2

2
;

1

2 3
;

1 2

3
;

1 3 5 7

2 4 6 8
; : : :

denote the composition series of indecomposable modules. Our convention for the

composition of paths p; q in the path algebra is as in [1], namely qp stands for q

after p whenever the concatenation is defined. For more background on quivers

we refer to [1] and [9].

Throughout this paper all modules will be unitary left R-modules over any

ring R.

2. Results

We start with the main result of this paper.

Theorem 2.1. Let R be any ring and let 0! A! B ! C ! 0 be an exact

sequence of R-modules which does not split with A and C uniserial. Then either

B is indecomposable or B has a decomposition of the form B D B1 ˚ B2 with

the following properties:

i. B2 is uniserial;

ii. B1 is indecomposable;

iii. there is an exact sequence of the form 0 ! U ! B1 ! C ! 0 with U

uniserial;

iv. there is an exact sequence of the form 0 ! A ! B1 ! W ! 0 with W

uniserial;

v. A and C are not simple.

Proof. Suppose B D B1 ˚ B2 with B1 ¤ 0 and B2 ¤ 0. Then there exist

morphisms fi WA! Bi and gi WBi ! C such that f D
�

f1

f2

�

and g D .g1 g2/.
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Since A and C are uniserial, Ker f1 \ Ker f2 D 0 and Im g1 C Im g2 D C , we

have

1. Ker fi D 0 for some i and Im gj D C for some j .

Suppose Kerf1 D 0. Since f1 is not an isomorphism, it follows that

2. f1 is injective but not surjective.

Consequently we deduce from [1, Corollary 5.7, page 22] that

3. g2 is injective but not surjective.

Putting (1) and (3) together, we conclude that

4. g1 is surjective but not injective.

Applying again [1, Corollary 5.7, page 22], we deduce from (4) that

5. f2 is surjective but not injective.

This implies that B2 D f2.A/ is uniserial. Hence (i) holds. Assume by contradic-

tion that (ii) does not hold. Then we have B1 D X ˚ Y with X ¤ 0 and Y ¤ 0.

Consequently f1 D
�

h
l

�

with hWA ! X and l WA ! Y . Since Ker h \ Ker l D 0

and A is uniserial, we have Ker h D 0 or Ker l D 0. Assume Kerh D 0. Then we

have B D B 0

1 ˚ B 0

2 with B 0

1 D X , B 0

2 D Y ˚ B2 and f D
�

h
lCf2

�

with h is

injective. Hence the first part of the proof shows that B 0

2 D Y ˚ B2 is uniserial.

This contradiction proves that B1 is indecomposable, and so (ii) holds. Moreover,

by [1, Proposition 5.6, page 22], we have

6. Ker g1 Š Ker f2 and CoKer f1 Š CoKer g2.

Since Ker f2 � A, we deduce from (6) that Ker g1 is a uniserial module. Hence

the sequence 0 ! Ker g1 ,! B1

g1

�! C ! 0 satisfies (iii). Finally, since

CoKer g2 D C=g2.B2/, we deduce from (6) that CoKer f1 is a uniserial module.

Consequently the sequence 0! A
f1

�! B1 ! CoKer f1 ! 0 satisfies (iv). Since

B2 ¤ 0, we deduce from (5) and (3) that 0 ¤ Ker f2 ¤ A and 0 ¤ Im g2 ¤ C .

Hence (v) holds. The proof is complete. �

Remark 2.2. In Theorem 2.1, B2 may be simple. To see it, it suffices to

consider the Auslander–Reiten sequence

0 �!
2

3
�!

1

2

3

˚ 2 �!
1

2
�! 0:
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Let A; B1; B2; C be finitely generated modules as in Theorem 2.1, defined

over a left artinian ring R. As we recall in the introduction, this implies ([3,

Proposition 1.1.2] or [4, Theorem 6.1]) that also the summand B1 of B is uniserial.

Hence B is the direct sum of two uniserial modules.

With the notation and the hypotheses of Theorem 2.1 we show that A and C

can have any finite length > 1.

Example 2.3. Let r; s; m be positive integers with r > m and s > m.

Then there are a K-algebra R and an exact sequence of R-modules 0 ! A !

B1˚B2 ! C ! 0 such that A; B1; B2; C are uniserial and r; s; m are the lengths

of A; C; B2, respectively.

Construction. Let n D r C s � m and let R be the K-algebra given by the

quiver 1! 2! � � � ! n. Then the R-modules

A D P.s �mC 1/ D

s �mC 1
:::

n

;

B1 D P.1/ D

1
:::

n

;

B2 D P.s �mC 1/=P.s C 1/ D

s �mC 1
:::

s

;

C D I.s/ D P.1/=P.sC 1/ D

1
:::

s

have all the desired properties.

In the sequel L.M/ denotes the lattice of the submodules of a module M .

Moreover vertices denote the elements of a basis of a module M defined over a

K-algebra, while arrows describe obvious linear maps.

Lemma 2.4. There exist uniserial modules V; U; W with the following proper-

ties:

a. L.V / ' N [ ¹C1º;

b. L.U / ' .Z nN/ [ ¹�1º;

c. L.W / ' Z[ ¹C1;�1º.
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Proof. First of all � � � ! �
f
�! �

f
�! �

f
�! �

f
�! � describes a module V

satisfying (a), and defined over the subalgebra of EndK V generated by the linear

map f . Next, �
f1

��! �
f2

��! �
f3

��! � �! � � � describes a module U satisfying (b),

and defined over the subalgebra of EndKU generated by the linear maps fn with

n � 1. Finally, as in [6, Example 2.12], � � � �! �
f

�1

���! �
f0

��! �
f1

�! � �! � � �

describes a module W satisfying (c), and defined over the subalgebra of EndK W

generated by the maps fi with i 2 Z. �

With all the previous notation and conventions, we can now prove the following

result.

Proposition 2.5. There exist K-algebras R and R-modules A and B with

A � B such that A and B=A are uniserial, B is indecomposable and one of the

following conditions hold:

1. L.A/ ' L.B=A/ ' N[ ¹C1º;

2. L.A/ ' L.B=A/ ' .Z nN/ [ ¹�1º;

3. L.A/ ' .Z nN/ [ ¹�1º and L.B=A/ ' N[ ¹C1º;

4. L.A/ ' Z [ ¹C1;�1º and L.B=A/ ' N[ ¹C1º;

5. L.A/ ' .Z nN/ [ ¹�1º and L.B=A/ ' Z[ ¹C1;�1º;

6. L.A/ ' L.B=A/ ' Z[ ¹C1;�1º;

7. L.A/ ' Z [ ¹C1;�1º and L.B=A/ ' .Z nN/ [ ¹�1º;

8. L.A/ ' N [ ¹C1º and L.B=A/ ' Z [ ¹C1;�1º;

9. L.A/ ' N [ ¹C1º and L.B=A/ ' .Z nN/ [ ¹�1º.

Proof. (1) Let B be the module described by the picture

� � � �! �
f
�! �

f
�! �

v

g
 � �

g
 � �  � � � �

and let R be the subalgebra of EndKB generated by the linear maps f and g. Next

let A be the submodule of B generated by v and by all the vectors on the left of v.

Then B is uniform and (1) follows from condition (a) of Lemma 2.4.

(2) The picture

� � �  � �
f2

 � �
v

f1

 � �
g1

�! �
g2

�! � �! � � �
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describes a module B defined over the subalgebra R of EndKB generated by the

linear maps f1; g1; f2; g2; : : : . Let A be the submodule Rv. Then B is a hollow

module and (2) follows from condition (b) of Lemma 2.4.

(3) The picture

� � � �! �
f
�! �

f
�! �

v

g1

�! �
g2

�! � �! � � �

describes a module B defined over the subalgebra R of EndKB generated by the

linear maps f; g1; g2; : : : . Let A be the submodule Rv. Then B is uniform and (3)

follows from conditions (a) and (b) of Lemma 2.4.

(4) Let B be the module described by the picture

:::

�

�

� � � �
v

�1

�
v0

�
v1

�
v2

�
v3

� � �

 
!

 
!

g

 
!

g

 
!

 
!

f
�1  

!
f0  

!
f1  

!
f2  

!

defined over the subalgebra R of EndKB generated by the linear maps g and fi

with i 2 Z. Let A be the submodule generated by all the vectors vi with i 2 Z. If

X and Y are two nonzero submodules of B , then we clearly have Rvn � X\Y for

n large enough. Hence B is uniform and (4) follows from conditions (a) and (c)

of Lemma 2.4.

(5) Let B be the R-module described by the picture

� � � �
w3

�
w2

�
w1

�
w0

�
w

�1

�
w

�2

� � �

v �

�

:::

 

!

 

!
g3  

!
g2  

!
g1

 

!

f0

 

!
g0  

!
g

�1  

!

 

!

f1

 

!

defined over the subalgebra R of EndKB generated by the linear maps fn and gi

with n 2 N and i 2 Z. Let A D Rv and assume B D X C Y with X ¤ 0 and
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Y ¤ 0. Without loss of generality we may assume that X contains a vector x of

the form x D wnCx0, where n � 1 and x0 belongs to the submodule generated by

wn�1. Then we clearly have .g1 ıg2 ı : : :ıgn/.x/ D w0. Since Rw0 is an essential

submodule of B , we conclude that X\Y ¤ 0. Hence B is indecomposable and (5)

follows from conditions (b) and (c) of Lemma 2.4.

(6) The fully commutative quiver

� � � � � � � � � � �

� � � � � � � � � � �

 

!
 ! h

 

!
g1  

!
g0

 ! h

 

!
g

�1

 ! h

 

!

 ! h

 

!

 

!

 

!
f1

 

!
f0

 

!
f

�1

 

!

 

!

describes a module B defined over the subalgebra R of EndKB generated by

the linear maps h; f0; g0; f1; g1; f�1; g�1; : : : . Let A be the submodule of B

generated by the vectors belonging to the lower copy of A1
1

, containing the arrows

fi with i 2 Z. Then the intersection of two nonzero submodules of B contains a

nonzero submodule of A. Hence B is uniform and (6) follows from condition (c)

of Lemma 2.4.

(7) Let B be the submodule described by the following fully commutative

quiver

� � � � � � � �

� � � � � � � � � � � � �

 ! h

 

!
g1  

!
g2

 ! h

 

!
g3

 ! h

 

!

 ! h

 

!

 

!
f

�1

 

!
f0

 

!
f1

 

!
f2

 

!
f3

 

!

 

!

 

!

and defined over the subalgebra R of EndKB generated by the linear maps fi ; gn; h

with i 2 Z and n � 1. Let A be the submodule of B generated by the vectors

belonging to the copy of A1
1

, containing the arrows fi with i 2 Z. Since B is a

submodule of a uniform module used to prove (6), it follows that also in this case

B is uniform. Hence (7) follows from conditions (b) and (c) of Lemma 2.4.

(8) Let B be the module described by the picture

� � � �
w3

�
w2

�
w1

�
w0

�
w

�1

�
w

�2

� � �

� � � �
u3

�
u2

�
u1

�
u0

 

!

 

!
g3  

!
g2  

!
g1

 ! h

 

!
g0  

!
g

�1  

!

 

!

 

!
f  

!
f  

!
f

and defined over the subalgebra R of EndKB generated by the linear maps f; gi ; h

with i 2 Z. Let A be the submodule of B generated by the vectors u0; u1; u2; : : : .
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Suppose B D X C Y with X ¤ 0 and Y ¤ 0. Without loss of generality we

may assume that X contains a vector x of the form x D wn C x0, where n � 1

and x0 belongs to the subspace generated by ¹wi ; um j i < n and m � 0º. Since

Rw0 is an essential submodule of B and .g1 ı : : : ı gn/.x/ D w0, we conclude

that X \ Y ¤ 0. Hence B is indecomposable and (8) follows from conditions (a)

and (c) of Lemma 2.4.

(9) Let B be the module described by the quiver

�
v

�
u1

�
u2

�
u3

� � �

� � � �
u

�3

�
u

�2

�
u

�1

�
u0

 ! h

 

!
g1  

!
g2  

!
g3  

!

 

!

 

!
f  

!
f  

!
f

and defined over the subalgebra R of EndKB generated by the linear maps f; gn; h

with n � 1. Let A be the submodule generated by u0; u�1; u�2; : : : . Assume

B D XCY with X ¤ 0 and Y ¤ 0. Without loss of generality we may assume that

X contains a vector x of the form x D vC x0, where x0 belongs to the submodule

generated by the ui with i 2 Z. Then X contains u0; u1; u2; : : : . Since these

elements generate an essential submodule of B , we have X \ Y ¤ 0. Hence B is

indecomposable and (9) follows from conditions (a) and (b) of Lemma 2.4. �

It suffices to consider modules over finite dimensional algebras to see that the

indecomposable extensions of two uniserial modules may be quite different even

in very special cases.

Example 2.6. There exist K-algebras R and indecomposable R-modules

A; B; U with the following properties:

i. A � B , A � U , and B=A is isomorphic to U=A;

ii. B is not uniserial;

iii. U is uniserial;

iv. there exist a simple module S , an indecomposable projective (resp. injective)

module P (resp. I ) and two exact sequences of the form 0 ! S ! P !

B ! 0 and 0 ! S ! P ! U ! 0 (resp. 0 ! B ! I ! S ! 0 and

0! U ! I ! S ! 0).

Construction. Let R be the algebra given by the extended Dynkin diagram
zA3 with orientation

�
1

�
2

�
3 !

c

 

!
a  

!
b
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Assume first

A D S ' P.3/; B D P.1/=baP.1/; U D P.1/=cP.1/; P D P.1/:

Then the modules P; B , and U are described by the following pictures respec-

tively:

� 1

� 2 � 3

� 3

  a  

 
c

  b

� 1

� 2 � 3

  a  

 
c

� 1

� 2

� 3

 

 

a

 

 

b

Since baP.1/ ' cP.1/ ' S , conditions (i)–(iv) clearly hold. Assume now

A ' P.2/; S ' I.1/; I D I.3/ and let B and U be the maximal submodules

of I satisfying baB D 0 and cU D 0. Then I; B and U are described by the

following pictures respectively:

� 1

� 2 � 1

� 3

 
 a

 

 
b

  

c

� 2 � 1

� 3

 

 
b

  

c

� 1

� 2

� 3

 

 

a

 

 

b

Since I=B ' I=U ' S , also in this case conditions (i)–(iv) hold.

Example 2.7. There exist a K-algebra R and indecomposable R-modules

A; B; U with the following properties:

i. A � B , A � U , and B=A is isomorphic to U=A;

ii. U is uniserial;

iii. Soc B and B= Soc B are the direct sum of two simple modules.

Construction. Let R be the algebra given by the extended Dynkin diagram
zA4 with orientation

�
1

�
2

�
3

�
4 !

d

 

!
a  

!
b  

!
c
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Let A; B and U be the modules described by the following pictures respectively:

� 3

� 4

 

 

c

� 1 � 3

� 2 � 4

 

 

a

 

 
d

 

 

c

� 1

� 2

� 3

� 4

 

 

a

 

 

b

 

 
c

Then conditions (i)–(iii) clearly hold.

Corollary 2.8. There exist K-algebras R and uniserial R-modules A, and

C with the following properties:

a. if 0 ! A ! B ! C ! 0 is a non split exact sequence, then B is

indecomposable;

b. if 0 ! A ! B ! C ! 0 is a non split exact sequence, then B is

decomposable;

c. neither (a) nor (b) holds.

Proof. (a) If either A or C is simple, this follows from condition (v) of

Theorem 2.1.

(b) Let R; A and C be as in Example 2.3. Then dim A D r , dim C D s, and

dim M < r C s for every indecomposable R-module M . Hence B is decompos-

able.

(c) Let R be the algebra given by the quiver

�
1

�
2

�
3

 

!
a

 !

b

 

!
c

with relation b2 D 0. Let A D 2
3 and let C D 1

2 . Then both modules

1

2

2

3

and

1

2

3

˚ 2

are possible choices for B . �
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In order to obtain new extensions of uniserial modules, we may use the follow-

ing theorem.

Theorem 2.9. Let B be the extension of two uniserial modules, and let X be

a submodule of B . Then X and B=X are extensions of uniserial modules.

Proof. Let A be a submodule of B such that A and B=A are uniserial. Next

let A1 D A \ X and let A2 D
ACX

X
. Then we have A1 � A and X

A1
' XCA

A
� B

A
.

Hence X has the desired property. On the other hand we have A2 '
A

A\X
and

B=X
A2
' B

ACX
. Hence also B=X is the extension of two uniserial modules. �

We can now state a positive result on subquotients.

Corollary 2.10. Let B be the extensions of two uniserial modules and let C

be a subquotient of B . The following facts hold:

a. C is the extension of two uniserial modules;

b. either C is indecomposable or C D C1 ˚ C2 with C1 indecomposable and

C2 uniserial.

Proof. (a) This follows from two applications of Theorem 2.9.

(b) This follows from condition (a) and Theorem 2.1. �

The next example points out a negative result on extensions.

Example 2.11. There exist an extension B of two uniserial modules and a non

split exact sequence 0! S ! E ! B ! 0 (resp., 0! B ! E ! S ! 0) such

that S is simple and E is not the extension of two uniserial modules.

Construction. Over the algebras given by the Dynkin diagram D4 with ori-

entations
�

� � �

 !  

!  

! and
� � �

�

 

!  

!  !

we have non split exact sequences of the following form:

0 �! 2 �!
1

2 3 4
�!

1

3 4
�! 0;(1)

0 �!
1 2

4
�!

1 2 3

4
�! 3 �! 0:(2)
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Since 1
3 4 and 1 2

4 are extensions of two uniserial modules, the conclusion fol-

lows from the sequences (1) and (2) and from condition (b) of Corollary 2.10.

We may roughly speaking say that some extensions of two uniserial modules

A and C of finite length are “strings”obtained by “glueing together" the socle or

the top of A with the socle or the top of C .

Example 2.12. For any r; s � 1 there exist a K-algebra R and uniserial

R-modules A and C of length r and s such that there are extensions of A and

C of Loewy length rC s, r C s� 2, max¹rC 1; sº, and max¹r; sC 1º respectively.

Construction. Let R be the algebra given by the quiver

1� � � � s� 1 � � � r

 

!

 

!

 !

 

!

 

!

 

! 

!

 

!

Next let

A D

1
:::

r

and C D

1�

:::

s�

:

By glueing together i 2 ¹1�; s�º and j 2 ¹1; rº in all possible ways, we obtain four

indecomposable extensions with the desired properties described by the following

pictures:

1

s

1

r

1

1
r

s

1

1

s

r

1

s

1

r
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