RenD. SEM. MAT. UN1v. Pabova, Vol. 144 (2020), 73-86
DOI 10.4171/RSMUP/57

Extensions of uniserial modules
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ABsSTRACT — Let R be any ring and let 0 - A — B — C — 0 be an exact sequence
of R-modules which does not split with 4 and C uniserial. Then either B is indecom-
posable or B has a decomposition of the form B = By & B, where B; and B are
indecomposable and at least one of them is uniserial.
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1. Introduction

Let us start by recording the third open problem which has been asked in [1,
Problem 3, p. 411]. Let A and C be uniserial modules. Give a method for deciding
if there are exact sequences 0 - A — B — C — 0 with the property that B is
also uniserial.

To see that B is not uniserial in general, it suffices to consider the direct sum of
two simple modules. We can consider also the Dynkin diagram A3 with subspace
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orientation *—>9e—e and the Auslander—Reiten sequence

1
00—  — 22—  —0.

3

This will also serve as an example to our Remark 2.2. On the other hand if we
consider the two other orientations

oe<—o—>e0 and e—e<— e
2 1 3 1 3 2

we see that B may be the indecomposable module ,!; or the indecomposable
module 2.

Moreover, given an exact sequence 0 —- A — B — C — 0 of finitely
generated modules over a left artinian ring with A and C uniserial, we know from
[3, Proposition 1.1.2] or [4, Theorem 6.1] that B is either indecomposable or the
direct sum of two uniserial modules. On the other hand, the well known Four
Terms in the Middle Theorem of Bautista and Brenner [2] (which is generalized
in [7] and [8]) states that if A is of finite representation type, then the middle term
of an almost split sequence in the category of finitely generated left A-modules has
at most four indecomposable summands, and the number four occurs only in the
case where one indecomposable summand is projective-injective. Exact sequences
of the foorm 0 - A — B — C — 0 with A and C uniserial modules have been
object of recent studies. See, for instance [5].

Inspired by the above motivations, as a first result of our paper (Theorem 2.1),
we characterize the middle term of an exact sequence of R-modules (over any
ring R) which does not split and has uniserial end terms. In this way, we may
view this result as the analogue of the “Four terms in the middle theorem” which
is described above, by replacing four by two, projective-injective by uniserial
and Auslander—Reiten sequences by non split exact sequences. We also note
(Proposition 2.5) that Z U {400, —oo}, IN U {400}, and (Z \ IN) U {—o0} are
the lattices of the submodules of uniserial modules A and C such that there is
a short exact sequence 0 - 4 — B — C — 0 with B is indecomposable.
Finally, we construct (Example 2.6 and Example 2.7) uniserial modules 4 and C
such that there exist non split exact sequences 0 - A — X — C — 0, where
either X is uniserial or X is an indecomposable module with a decomposable
socle and/or a decomposable top. However (Corollary 2.10) subquotients of the
extensions of two uniserial modules are again extensions of two uniserial modules.
On the other hand extensions of uniserial modules are not necessarily closed under
extensions (Example 2.11).
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A module M is said to be uniserial if the lattice of its submodules is a chain.
As usual we say that a module M is uniform if the intersection of two nonzero
submodules of M is different from zero. A module M is called a hollow (or
couniform) module if M = My + M, implies My = M or M, = M.

Let x be a vertex of aquiver Q. Then S(x) will denote the simple representation
corresponding to the vertex x. On the other hand, P (x) (resp. /(x)) will denote
the indecomposable projective (resp. injective) representation corresponding to
the vertex x. Sometimes, for short, S(x) is replaced by x. As in [9], pictures of

the form
1 2 1 12 1357

27 27 237 37 24687
denote the composition series of indecomposable modules. Our convention for the
composition of paths p, ¢ in the path algebra is as in [1], namely gp stands for ¢
after p whenever the concatenation is defined. For more background on quivers
we refer to [1] and [9].
Throughout this paper all modules will be unitary left R-modules over any
ring R.

2. Results

We start with the main result of this paper.

THEOREM 2.1. Let R be any ring and let0 - A — B — C — 0 be an exact
sequence of R-modules which does not split with A and C uniserial. Then either
B is indecomposable or B has a decomposition of the form B = By & Bj with
the following properties:

i. By is uniserial,
ii. By is indecomposable;

iii. there is an exact sequence of the form 0 — U — B; — C — O with U
uniserial,

iv. there is an exact sequence of the form 0 — A — By — W — 0 with W
uniserial,

v. A and C are not simple.

Proor. Suppose B = B; & B, with B; # 0 and B, # 0. Then there exist
morphisms f;: A — B; and g;: B; — C such that f = (2) and g = (g1 £2).
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Since A and C are uniserial, Ker 1 N Ker f = 0 and Img; + Img, = C, we
have

1. Ker f; = 0 for some i and Img; = C for some ;.

Suppose Ker f1 = 0. Since f; is not an isomorphism, it follows that
2. fi is injective but not surjective.

Consequently we deduce from [1, Corollary 5.7, page 22] that
3. g, is injective but not surjective.

Putting (1) and (3) together, we conclude that
4. g is surjective but not injective.

Applying again [1, Corollary 5.7, page 22], we deduce from (4) that
5. f» is surjective but not injective.

This implies that B, = f»(A) is uniserial. Hence (i) holds. Assume by contradic-
tion that (ii) does not hold. Then we have B; = X & Y with X # Oand Y # 0.
Consequently f; = (#) with i: A — X and [: 4 — Y. Since Kerh N Ker/ = 0
and A is uniserial, we have Ker s = 0 or Ker/ = 0. Assume Kers = 0. Then we
have B = B @ B, with By = X, B, =Y ®@ B and f = (l+hf2) with 7 is
injective. Hence the first part of the proof shows that B, = Y @ B, is uniserial.
This contradiction proves that B; is indecomposable, and so (ii) holds. Moreover,
by [1, Proposition 5.6, page 22], we have

6. Kerg; =~ Ker f> and CoKer f; =~ CoKer g».

Since Ker f> < A, we deduce from (6) that Ker g; is a uniserial module. Hence
the sequence 0 — Kerg; — B LN C — 0 satisfies (iii). Finally, since
CoKer g» = C/g2(B>), we deduce from (6) that CoKer f; is a uniserial module.
Consequently the sequence 0 — A4 £> B; — CoKer f; — 0 satisfies (iv). Since
B, # 0, we deduce from (5) and (3) that 0 & Ker f, &S Aand 0 & Img, & C.
Hence (v) holds. The proof is complete. |

Remark 2.2. In Theorem 2.1, B, may be simple. To see it, it suffices to
consider the Auslander—Reiten sequence

1
00—  —2 62—  —0.

3
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Let A, By, B2, C be finitely generated modules as in Theorem 2.1, defined
over a left artinian ring R. As we recall in the introduction, this implies ([3,
Proposition 1.1.2] or [4, Theorem 6.1]) that also the summand B; of B is uniserial.
Hence B is the direct sum of two uniserial modules.

With the notation and the hypotheses of Theorem 2.1 we show that A and C
can have any finite length > 1.

ExampLE 2.3. Let r,s,m be positive integers with r > m and s > m.
Then there are a K-algebra R and an exact sequence of R-modules 0 — A —
B ® B, — C — 0O suchthat A, By, By, C are uniserial and r, s, m are the lengths
of A, C, B,, respectively.

ConsTrUcTION. Letn = r 4+ s —m and let R be the K-algebra given by the
quiver | — 2 — --- — n. Then the R-modules

s—m+1
A=P(s—m+1)= ,
n
1
By =P()=":,
n
s—m+1

By=P(s—m+1)/P(s+1)= s

1
C=1I(s)=P()/P(s+1)=":

N

have all the desired properties.

In the sequel L(M) denotes the lattice of the submodules of a module M.
Moreover vertices denote the elements of a basis of a module M defined over a
K-algebra, while arrows describe obvious linear maps.

LemMma 2.4. There exist uniserial modules V, U, W with the following proper-
ties:

a. L(V) ~ NU {+o0};
b. L(U) ~ (Z\ N) U {—oo};
c. L(W)~7ZU{+o00,—00}.
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Proor. Firstof all --- — e L> ° L> ° L) ° i> e describes a module V

satisfying (a), and defined over the subalgebra of Endg V' generated by the linear

map f. Next, e f—1> . f—2> . f—3> e —> ... describes a module U satisfying (b),

and defined over the subalgebra of Endx U generated by the linear maps f, with

n > 1. Finally, as in [6, Example 2.12], --- —> o f_—1> ° f—0> ° £> *« —> .-
describes a module W satisfying (c), and defined over the subalgebra of Endx W
generated by the maps f; withi € Z. O

With all the previous notation and conventions, we can now prove the following
result.

ProposiTion 2.5. There exist K-algebras R and R-modules A and B with
A C B such that A and B/ A are uniserial, B is indecomposable and one of the
Jollowing conditions hold:

1. L(A) ~ L(B/A) ~ N U {+00};

L(A) ~ L(B/A) ~ (Z\ IN) U {—o0};

L(A) ~ (Z\N)U{—oc}and L(B/A) ~ N U {+o00};
L(A) ~Z U {+00,—c0}and L(B/A) ~ N U {+00};
L(A) ~ (Z\N)U{—oc}and L(B/A) >~ Z U {+00, —o};
L(A) ~ L(B/A) ~ Z U {400, —c0};

L(A) ~Z U {+00,—0c0}and L(B/A) ~ (Z\ IN) U {—o0};
L(A) ~ INU {400} and L(B/A) ~ Z U {+00, —c0};
L(A) ~ NU {+oo}and L(B/A) ~ (Z\ N) U {—o0}.

N A o

Proor. (1) Let B be the module described by the picture

S S g g
e > 0> 0> 0 <— @ — @ — -
v
and let R be the subalgebra of Endg B generated by the linear maps f and g. Next
let A be the submodule of B generated by v and by all the vectors on the left of v.

Then B is uniform and (1) follows from condition (a) of Lemma 2.4.

(2) The picture

12 N g1 g2
i— 00— 00— 0 —>0—> -
v
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describes a module B defined over the subalgebra R of Endx B generated by the
linear maps f1, g1, f2, &2, . ... Let A be the submodule Rv. Then B is a hollow
module and (2) follows from condition (b) of Lemma 2.4.

(3) The picture

f g1 g2
> e > e >0 >0 >0 —>---
v

describes a module B defined over the subalgebra R of Endx B generated by the
linear maps f, g1, g2, - - . - Let A be the submodule Rv. Then B is uniform and (3)
follows from conditions (a) and (b) of Lemma 2.4.

(4) Let B be the module described by the picture

°
l#
J—1 fo f1 f2
° ° ° ° °

v_q vo v1 vy v3

defined over the subalgebra R of Endg B generated by the linear maps g and f;
with i € Z. Let A be the submodule generated by all the vectors v; withi € Z. If
X and Y are two nonzero submodules of B, then we clearly have Rv, € X NY for
n large enough. Hence B is uniform and (4) follows from conditions (a) and (c)
of Lemma 2.4.

(5) Let B be the R-module described by the picture

g3 82 &1 80 g—-1

[ ) [ ] [ [ [ [ )
w3 w2 w] wo w— w_>
lfo
Ve

defined over the subalgebra R of Endg B generated by the linear maps f, and g;
withn € Nandi € Z. Let A = Rv and assume B = X + Y with X # 0 and
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Y # 0. Without loss of generality we may assume that X contains a vector x of
the form x = w, + x’, where n > 1 and x’ belongs to the submodule generated by
wy—1. Then we clearly have (g1 0g20...0g,)(x) = wy. Since Rwy is an essential
submodule of B, we conclude that X NY # 0. Hence B is indecomposable and (5)
follows from conditions (b) and (c) of Lemma 2.4.

(6) The fully commutative quiver

81 g0 g—1
. ° ° ° °
I N A
° ° ° ° °
f1 Jo J=1

describes a module B defined over the subalgebra R of Endgx B generated by
the linear maps 4, fo, go, f1, 81, f~1,8-1,-... Let A be the submodule of B
generated by the vectors belonging to the lower copy of A, containing the arrows
fi with i € Z. Then the intersection of two nonzero submodules of B contains a
nonzero submodule of A. Hence B is uniform and (6) follows from condition (c)
of Lemma 2.4.

(7) Let B be the submodule described by the following fully commutative
quiver

° ° ° ° °
I N
. ° ° ° ° ° ° °
J-1 Jo f1 f2 /3

and defined over the subalgebra R of Endg B generated by the linear maps f;, g», &
with i € Z and n > 1. Let A be the submodule of B generated by the vectors
belonging to the copy of A, containing the arrows f; with i € Z. Since B is a
submodule of a uniform module used to prove (6), it follows that also in this case
B is uniform. Hence (7) follows from conditions (b) and (c¢) of Lemma 2.4.

(8) Let B be the module described by the picture

g3 g2 81 8o 8—1
[ ] [} [} [} [} [ ]
w3 wo wi wo w_1 w—_p
I
S S S
[ ] [} [} [ ]
us3 us 231 uo

and defined over the subalgebra R of Endg B generated by the linear maps f, g;, #
with i € Z. Let A be the submodule of B generated by the vectors ug, u1, Uz, . ...
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Suppose B = X + Y with X # 0 and Y # 0. Without loss of generality we
may assume that X contains a vector x of the form x = w, + x’, where n > 1
and x’ belongs to the subspace generated by {w;, u,, | i < n and m > 0}. Since
Rwy is an essential submodule of B and (g1 o ... 0 g,)(x) = wyp, we conclude
that X N'Y # 0. Hence B is indecomposable and (8) follows from conditions (a)
and (c) of Lemma 2.4.

(9) Let B be the module described by the quiver

81 82 £3

and defined over the subalgebra R of Endg B generated by the linear maps f, gn, 1
with n > 1. Let A be the submodule generated by ug,u—_;,u—3,.... Assume
B = X+Y with X # 0and Y # 0. Without loss of generality we may assume that
X contains a vector x of the form x = v 4+ x’, where x’ belongs to the submodule
generated by the u; with i € Z. Then X contains ug,u;, us,.... Since these
elements generate an essential submodule of B, we have X N'Y # 0. Hence B is
indecomposable and (9) follows from conditions (a) and (b) of Lemma 2.4. O

It suffices to consider modules over finite dimensional algebras to see that the
indecomposable extensions of two uniserial modules may be quite different even
in very special cases.

ExampLE 2.6. There exist K-algebras R and indecomposable R-modules
A, B, U with the following properties:
i. AC B,ACU,and B/A is isomorphic to U/A4;

ii. B is not uniserial;

iii. U is uniserial;

iv. there exist a simple module S, an indecomposable projective (resp. injective)
module P (resp. /) and two exact sequences of the foom 0 — § — P —
B—-0and0 >SS P —->U —-0(esp.0 > B -1 - S — 0and
0—->U—>1—S—0).

ConstrucTION. Let R be the algebra given by the extended Dynkin diagram
A3 with orientation

0<.
we
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Assume first
A=S>~P3), B=P)/baP(l), U=P)/cP(l), P=PQ).

Then the modules P, B, and U are described by the following pictures respec-
tively:

o1 o1
a C

o1 a

02/ \ 3 y X lz

b/ o2 o3 L

o3 3

Since baP(1) >~ cP(l) ~ S, conditions (i)—(iv) clearly hold. Assume now
A~ P2),S ~ I(1),I = I(3) and let B and U be the maximal submodules
of I satisfying haB = 0 and cU = 0. Then I, B and U are described by the
following pictures respectively:

®1 ®1]

N

o2 ®1 Ia
. . SO A .
b\ / 3

3 3

Since I/B ~ I/U ~ §, also in this case conditions (i)-(iv) hold.

ExampLE 2.7. There exist a K-algebra R and indecomposable R-modules
A, B, U with the following properties:

i. AC B,AC U, and B/A is isomorphic to U/ A;
ii. U is uniserial;

iii. Soc B and B/ Soc B are the direct sum of two simple modules.

ConstrucTION. Let R be the algebra given by the extended Dynkin diagram
24 with orientation
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Let A, B and U be the modules described by the following pictures respectively:

®1
|a
®3 e ®3 o2
oo e
®4 e2 ®4 3
|e
®4

Then conditions (i)—(iii) clearly hold.

CoroLLARY 2.8. There exist K-algebras R and uniserial R-modules A, and
C with the following properties:

a. if0 > A - B — C — 0 is a non split exact sequence, then B is
indecomposable;

b.if0 > A - B — C — 0 is a non split exact sequence, then B is
decomposable;

c. neither (a) nor (b) holds.

Proor. (a) If either A or C is simple, this follows from condition (v) of
Theorem 2.1.

(b) Let R, A and C be as in Example 2.3. Then dimA4 = r, dimC = s, and
dim M < r + s for every indecomposable R-module M. Hence B is decompos-
able.

(c) Let R be the algebra given by the quiver

b

C )

.L).;.
1 2 3

with relation b = 0. Let A = 3 and let C = }. Then both modules

(ST (SR (SR

are possible choices for B. O



84 G. D’Este — F. Kaynarca — D. Keskin Tiitiincii

In order to obtain new extensions of uniserial modules, we may use the follow-
ing theorem.

THEOREM 2.9. Let B be the extension of two uniserial modules, and let X be
a submodule of B. Then X and B/ X are extensions of uniserial modules.

Proor. Let A be a submodule of B such that A and B/A are uniserial. Next
let Ay = AN X and let A, = AJFTX.ThenwehaveAl C A and Ail ~ XTTA < %

Hence X has the desired property. On the other hand we have A, ~ ﬁ and
IZ—; ~ /HLX. Hence also B/ X is the extension of two uniserial modules. |

We can now state a positive result on subquotients.

CoroLLARY 2.10. Let B be the extensions of two uniserial modules and let C
be a subquotient of B. The following facts hold:

a. C is the extension of two uniserial modules;

b. either C is indecomposable or C = Cy; & C, with Cy indecomposable and
C, uniserial.

Proor. (a) This follows from two applications of Theorem 2.9.
(b) This follows from condition (a) and Theorem 2.1. O

The next example points out a negative result on extensions.

ExampLE 2.11. There exist an extension B of two uniserial modules and a non
split exact sequence 0 - S — E — B — 0 (resp.,0 - B — E — S — 0) such
that S is simple and E is not the extension of two uniserial modules.

ConstrucTION. Over the algebras given by the Dynkin diagram D4 with ori-
entations

[ ] [ ] [ ] [ ]
/ l \ and \ l /
[ ] [ ] [ ] [ ]
we have non split exact sequences of the following form:

(D 0—2— — — 0,

2) 0—>142—>li3—>3—>0.



Extensions of uniserial modules 85

Since 5!, and ! 2 are extensions of two uniserial modules, the conclusion fol-
lows from the sequences (1) and (2) and from condition (b) of Corollary 2.10.

We may roughly speaking say that some extensions of two uniserial modules
A and C of finite length are “strings”obtained by “glueing together" the socle or
the top of A with the socle or the top of C.

ExampLE 2.12. For any r,s > 1 there exist a K-algebra R and uniserial
R-modules A and C of length r and s such that there are extensions of A and
C of Loewy length r + s, r + 5 — 2, max{r + 1, s}, and max{r, s + 1} respectively.

ConstrucTiON. Let R be the algebra given by the quiver

Next let
1 1*
A= and C = :
r s*

By glueing togetheri € {1*,s*} and j € {1, r}in all possible ways, we obtain four
indecomposable extensions with the desired properties described by the following
pictures:

. 1
1 //
s
I 7
| ’
| * //
N RLY
N 4 r
L,/
1 L,
| s
| */
| S
1
r
1* 1*\
s
/7 1 AN 1
’ N \ 4
7 N N ’
’ N N 4
’ N \ 7
’ N \ 4
* AN e L,/
s \ ,
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