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P1-covers over commutative rings

Silvana Bazzoni (�) – Giovanna Le Gros (��)

Abstract – In this paper we consider the class P1.R/ of modules of projective dimension
at most one over a commutative ring R and we investigate when P1.R/ is a covering
class. More precisely, we investigate Enochs’ Conjecture, that is the question of whether
P1.R/ is covering necessarily implies that P1.R/ is closed under direct limits. We
answer the question affirmatively in the case of a commutative semihereditary ring R.
This gives an example of a cotorsion pair .P1.R/;P1.R/?/ which is not necessarily
of finite type such that P1.R/ satisfies Enochs’ Conjecture. Moreover, we describe the
class lim

�!
P1.R/ over (not necessarily commutative) rings which admit a classical ring

of quotients.
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1. Introduction

Approximation theory in module categories was studied in the setting of finite di-
mensional algebras by Auslander, Reiten, and Smalø and independently by Enochs
and Xu for modules over arbitrary rings using the terminology of preenvelopes and
precovers.

An important problem in approximation theory is when minimal approxima-
tions, that is covers or envelopes, exist. In other words, for a certain classC, the aim
is to characterise the rings over which every module has a minimal approximation
provided by C and furthermore to characterise the class C itself. Bass proved in [2]
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that projective covers rarely exist, that is he introduced and characterised the class
of perfect rings which are exactly the rings over which every module admits a pro-
jective cover. This motivated the study of minimal approximations for an arbitrary
class C.

Among the many characterisations of perfect rings, the most important from
the homological point of view is the closure under direct limits of the class of
projective modules. A famous theorem of Enochs says that for a class C in Mod-R,
if C is closed under direct limits, then any module that has a C-precover has a
C-cover, see [10] and [19, Theorem 2.2.6 and 2.2.8].

The converse problem, that is the question of when C is covering implies that
C is closed under direct limits, is still an open problem which is known as Enochs’
Conjecture.

In 2018, Angeleri Hügel, Šaroch, and Trlifaj in [1] proved that Enochs’ Conjec-
ture holds for a large collection of left-hand classes of cotorsion pairs. Explicitly,
they proved that for a cotorsion pair .A;B/ such thatB is closed under direct limits,
A is covering if and only if it is closed under direct limits. To prove this, Angeleri
Hügel, Šaroch, and Trlifaj used methods developed in Šaroch’s paper [18], which
uses sophisticated set-theoretical methods in homological algebra.

In this paper we are interested in Enochs’ Conjecture for the class P1.R/.
The question naturally splits into two cases: the case that the cotorsion pair
.P1.R/;P1.R/?/ is of finite type (which occurs if and only if P1.R/? is closed
under direct sums, or equivalently when .P1.R/;P1.R/?/ is a 1-tilting cotorsion
pair), and the case when it is not of finite type.

In a forthcoming paper [4] we consider 1-tilting cotorsion pairs .A;B/ over
commutative rings R and characterise the rings over which A is covering using a
purely algebraic approach.

In this paper we consider the case that the cotorsion pair .P1.R/;P1.R/?/ is
not necessarily of finite type (see Proposition 5.3). To the best of our knowledge,
up until now there are no positive results for this question. Thus this paper provides
a first positive result in the case of non-finite type.

In the investigation of when P1.R/ is covering, the class lim
�!

P1.R/ plays an
important role, although it is not always well understood. Unlike the case of the
projective modules, where their direct limit closure is the class of flat modules, it is
not necessarily true that the direct limit closure of P1.R/ coincides with the class
F1.R/, of the modules of weak dimension at most 1. The inclusion lim

�!
P1.R/ �

F1.R/ always holds, however an example of rings where lim
�!

P1.R/ ¨ F1.R/

can be found in [13, Example 9.12]. For certain nice rings, such as commutative
domains, the two classes lim

�!
P1.R/ and F1.R/ coincide ([13, Theorem 9.10]).
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This paper is structured as follows. We begin in Section 2 with some prelimi-
naries.

The aim of Section 3 is to give a characterisation of the class lim
�!

P1.R/ for a
not necessarily commutative ring R which has a classical ring of quotients Q. This
generalises a result from [3] which was proved under the additional assumption
that the little finitistic dimension of Q is zero. The main result of Section 3 is
Proposition 3.4, which states that lim

�!
P1.R/ is exactly the intersection of F1.R/

with the left TorR
1 -orthogonal of the minimal cotilting class of cofinite type of

Q-Mod (see the definitions in Section 3).
After an overview of some useful results for commutative rings in Section 4, in

Section 5 we assume that P1.R/ is a covering class, and state some consequences
of this assumption for the total ring of quotients Q of R or for localisations of R.

The main result of this paper is a positive solution of Enochs’ Conjecture for
the class P1.R/ over a commutative semihereditary ring R. In Theorem 5.11 we
show that in this case P1.R/ is covering if and only if the ring is hereditary, which
clearly implies that P1.R/ is closed under direct limits. This provides us with an
example of a class of rings for which P1.R/ satisfies Enochs’ Conjecture even
though .P1.R/;P1.R/?/ may not be of finite type.

2. Preliminaries

R will always denote an associative ring with unit and Mod-R (R-Mod) the
category of right (left) R-modules.

For a ring R, mod-R will denote the class of right R-modules admitting a
projective resolution consisting of finitely generated projective modules.

Let C be a class of right R-modules. The right Ext1R-orthogonal and right
Ext1R -orthogonal classes of C are defined as follows:

C
?1 D ¹M 2 Mod-R j Ext1R.C; M/ D 0 for all C 2 Cº;

C
? D ¹M 2 Mod-R j ExtiR.C; M/ D 0 for all C 2 C; for all i � 1º:

The left Ext-orthogonal classes ?1C and ?
C are defined symmetrically. For C

a class in Mod-R, the right TorR
1 -orthogonal and right TorR

1
-orthogonal classes

are classes in R-Mod defined as follows:

C
|1 D ¹M 2 R-Mod j TorR

1 .C; M/ D 0; for all C 2 Cº;

C
| D ¹M 2 R-Mod j TorR

i .C; M/ D 0 for all C 2 C; for all i � 1º:

The left TorR
1 -orthogonal and left TorR

1
-orthogonal classes |1C, |

C are classes in
Mod-R which are defined symmetrically for a class C in R-Mod.
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If the class C has only one element, say C D ¹Xº, we write X?1 instead
of ¹Xº?1 , and similarly for the other Ext-orthogonal and Tor-orthogonal classes.

We denote by Pn.R/, (Fn.R/) the class of right R-modules of projective (flat)
dimension at most n and by P1.mod-R/ the class P1.R/\mod-R, that is the class
of finitely presented right R-modules of projective dimension at most 1.

The projective dimension (weak or flat dimension) of a right R-module M is
denoted p: dimR M (w: dimR M ). We will omit the R when the ring is clear from
context.

Given a ring R, the right big finitistic dimension, F: dim R, is the supremum
of the projective dimension of right R-modules with finite projective dimension
and the right big weak finitistic dimension, F: w: dim R is the supremum of the
flat dimension of right R-modules with finite flat dimension. The right little

finitistic dimension, f: dim R, is the supremum of the projective dimension of right
R-modules in mod-R with finite projective dimension.

For any class C of modules we recall the notion of a C-precover, a special

C-precover and of a C-cover (see [19]).

Definition 2.1. Let C be a class of modules, M a right R-module and C 2 C.
A homomorphism � 2 HomR.C; M/ is called a C-precover (or right approxima-
tion) of M if for every homomorphism f 0 2 HomR.C 0; M/ with C 0 2 C there
exists a homomorphism f W C 0 ! C such that f 0 D �f .

A C-precover, � 2 HomR.C; M/ is called a C-cover (or a minimal right
approximation) of M if for every endomorphism f of C such that � D �f , f is
an automorphism of C . So a C-cover is a minimal version of a C-precover.

A C-precover � of M is said to be special if � is an epimorphism and
Ker � 2 C

?1 .

The notions ofC-preenvelope (left approximations), specialC-preenvelope and
C-envelope (minimal left approximations) are defined dually.

The relation between C-precovers and C-covers is provided by the following
results due to Xu.

Proposition 2.2 ([19, Corollary 1.2.8]). Let C be a class of modules and

assume that a module M admits a C-cover. Then a C-precover �W C ! M is a

C-cover if and only if Ker � does not contain any non-zero direct summand of C .

A class C of R-modules is called covering (precovering, special precovering)
if every module admits a C-cover (C-precover, special C-precover).

In approximation theory of modules, one is interested in when certain classes
provide minimal approximations. Enochs and Xu [19, Theorem 2.2.8], proved
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that a precovering class closed under direct limits is covering. Enochs posed the
question to see if the closure under direct limits of a classC is a necessary condition
for the existence of C-covers. Our aim is to investigate this problem for the class
P1.R/.

We consider precovers and preenvelopes for particular classes of modules, that
is classes which form a cotorsion pair.

A pair of classes of modules .A;B/ is a cotorsion pair provided that A D ?1B

and B D A
?1 . A cotorsion pair .A;B/ is called hereditary if A D ?

B and
B D A?.

A cotorsion pair .A;B/ is complete provided that every R-module M admits
a special B-preenvelope or equivalently, every R-module M admits a special
A-precover ([16]).

A hereditary cotorsion pair .A;B/ is of finite type if there is a set S � mod-R
such that S? D B:

Examples of complete cotorsion pairs in Mod-R include .P0.R/; Mod-R/,
.F0.R/;F0.R/?/, .P1.R/;P1.R/?/ (see [13, Theorem 8.10]).

A useful result for covers is given by the following.

Proposition 2.3. Let A be a class of R-modules. Assume that A
�
! M is an

A-cover of the R-module M . Let ˛ be an automorphism of M and let ˇ be an

endomorphism of A such that �ˇ D ˛�. Then ˇ is an automorphism of A.

Proof. Since ˛ is an automorphism of M , it is immediate to see that A
˛�
! M

is an A-cover of M .

Let ˇ be as assumed and consider an endomorphism g of A such that ˛�g D �.
Then �ˇg D � and thus ˇg is an automorphism of A, since � is an A cover of M .
This implies that ˇ is an epimorphism.

To see that ˇ is a monomorphism, note that ˛�gˇ D �ˇgˇ D �ˇ D ˛�, thus
by the cover property of ˛�, gˇ is an automorphism, thus ˇ is an automorphism
as required. �

Corollary 2.4. Let R be a commutative ring, RŒS�1� be the localisation of

R at a multiplicative subset S . Let .A;B/ be a cotorsion pair in Mod-R. Suppose

(�) 0 �! B �! A
�

�! M �! 0

is an A-cover of an RŒS�1�-module M . Then .�/ is a short exact sequence in

Mod-RŒS�1�.
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Proof. Let M and � be as assumed. The multiplication by an element of S

is an automorphism of M . Therefore by Proposition 2.3, A is an RŒS�1�-module.
Thus the sequence .�/ is an exact sequence in Mod-RŒS�1� since R ! RŒS�1�

is a ring epimorphism, hence the embedding Mod-RŒS�1� ! Mod-R is fully
faithful. �

3. The direct limit closure of P1.R/

From now on, R will always be a ring such that †, the set of regular elements of
R, satisfies both the left and right Ore conditions. The classical ring of quotients

of R, denoted Q D Q.R/ is the ring RŒ†�1� D Œ†�1�R which is flat both as a
right and a left R-module. Additionally, we recall that an ideal I of R is called
regular if I contains a regular element of R, that is I \ † ¤ ;.

Recall that P1.R/ denotes the class of right R-modules with projective dimen-
sion at most 1 and P1.mod-R/ is the set P1.R/ \ mod-R.

A 1-cotilting class of cofinite type is the TorR
1 -orthogonal of a set of modules

in P1.mod-R/. Thus the minimal 1-cotilting class of cofinite type is P1.mod-R/|,
which we will denote by C.R/.

The purpose of this section is to describe the class lim
�!

P1.R/ generalising a re-
sult in [3, Theorem 6.7 (vi)] which was proved under the assumption f: dim QD0.
We begin by recalling the following corollary, which states that one can consider
only the finitely presented modules in P1.R/ to find its direct limit closure.

Theorem 3.1 ([13, Corollary 9.8]). Let R be a ring. Then

lim
�!

P1.R/ D lim
�!

P1.mod-R/ D |.P1.mod-R/|/

and

P1.mod-R/| D P1.R/| D .lim
�!

P1.R//|:

Following the nomenclature of [3], in this chapter D will denote the class
¹D 2 Mod-R j Ext1R.R=rR; D/ D 0; r 2 †º of divisible right R-modules.

TF will denote the class ¹N 2 R-Mod j TorR
1 .R=rR; N / D 0; r 2 †º

of torsion-free left R-modules. The analogous statements hold for the divisible
modules in R-Mod and the torsion-free modules in Mod-R.

By [3, Lemma 5.3], for a ring R with a classical ring of quotients Q and
any torsion-free left R-module RN , TorR

1 .Q=R; N / D 0. Analogously, for every
torsion-free right R-module NR, TorR

1 .N; Q=R/ D 0.
Additionally, [3, Lemma 6.2] establishes that for a ring R with classical ring

of quotients Q, a right Q-module V is in P1.Q/ if and only if there is a right
R-module M in P1.R/ such that V D M ˝R Q.
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The following lemma is a sort of analogue to [3, Lemma 6.2] for the finitely
presented case.

Lemma 3.2. Let R be a ring with classical ring of quotients Q. If CQ 2

P1.mod-Q/, then there exist PQ 2 P0.mod-Q/ and NR 2 P1.mod-R/ such that

CQ ˚ PQ Š N ˝R Q.

Proof. First one applies [3, Lemma 6.4], then the argument is the same as in
the proof of [3, Lemma 6.2] using that R is contained in Q. �

Recall that C.R/ D P1.mod-R/| D P1.R/| D .lim
�!

P1.R//|.

Lemma 3.3. Let R be a ring with classical ring of quotients Q. Then the

following hold:

i. C.R/ \ Q-Mod D C.Q/;

ii. If Z 2 C.R/, then Q ˝R Z 2 C.Q/.

Proof. (i) By well-known homological formulas, the flatness of Q implies
that for each M 2 Mod-R and N 2 Q-Mod, there is an isomorphism

TorR
1 .M; N / Š TorQ

1 .M ˝R Q; N /:

Suppose M 2 P1.R/. Then N 2 C.R/ \ Q-Mod if and only if the left-hand
side in the above isomorphism vanishes for every M 2 P1.R/. On the other
hand, N 2 C.Q/ if and only if N 2 P1.Q/| which in view of [3, Lemma 6.2]
amounts to the right-hand side in the above isomorphism vanishing. Therefore
N 2 C.R/ \ Q-Mod if and only if N 2 C.Q/, which proves C.R/ \ Q-Mod D

C.Q/.
For (ii), we first note that C.R/ is closed under direct limits as Tor commutes

with direct limits. As Q is both left and right flat, one can write Q as a direct
limit of finitely generated free right R-modules lim

�!˛
Rn˛ . Fix a Z 2 C.R/. Then

Q ˝R Z Š lim
�!˛

Zn˛ which must be in C.R/ as C.R/ is closed under direct limits.

Moreover, Q ˝R Z 2 Q-Mod, thus since C.R/ \ Q-Mod D C.Q/ from (i),
Q ˝R Z 2 C.Q/. �

Proposition 3.4. Let R be a ring with classical ring of quotients Q. Then

lim
�!

P1.R/ D F1.R/ \ |
C.Q/;

where |
C.Q/ represents the left TorR

1 -orthogonal of C.Q/ in Mod-R.

In particular, if f: dim Q D 0, lim
�!

P1.R/ D F1.R/ \ |Q-Mod.



34 S. Bazzoni – G. Le Gros

Proof. First we suppose that M 2 lim
�!

P1.R/ and show that M 2 F1.R/ \
|C.Q/. The inclusion lim

�!
P1.R/ � F1.R/ always holds so it remains to show

that M 2 |
C.Q/. By Theorem 3.1, if M 2 lim

�!
P1.R/, then M 2 |

C.R/. As

C.Q/ � C.R/ by Lemma 3.3(i), it follows that |
C.R/ � |

C.Q/, so M 2 |
C.Q/

as required.
For the converse, fix M 2 F1.R/ \ |

C.Q/. We will show M 2 |
C.R/, thus the

conclusion follows as lim
�!

P1.R/ D |
C.R/ by Theorem 3.1.

The class C.R/ is contained in ¹R=sR j s 2 †º|, so it consists of torsion-
free left R-modules, thus by [3, Lemma 5.3], TorR

1 .Q=R; N / D 0 for every
N 2 C.R/. Therefore for every N 2 C.R/ there is a short exact sequence in
R-Mod, 0 ! N ! Q ˝R N ! Q=R ˝R N ! 0: Apply M ˝R � to this
sequence to get the following exact sequence

TorR
2 .M; Q=R ˝R N / �! TorR

1 .M; N / �! TorR
1 .M; Q ˝R N /:

The left-most term vanishes as M 2 F1.R/ and the right-most term vanishes as
M 2 |

C.Q/ and N 2 C.R/ implies Q˝R N 2 C.Q/ by Lemma 3.3(ii). Therefore
the central term vanishes for every N 2 C.R/, that is M 2 |

C.R/.
The final statement follows since, if f: dim Q D 0, then P1.mod-Q/ D

P0.mod-Q/. Therefore C.Q/ D P0.mod-Q/| D Q-Mod. �

We denote by B.R/ the right Ext1R-orthogonal class P1.R/? in Mod-R. This
notation is particularly useful because we often change between the ring R and its
localisation Q and their module categories.

Recall that by [3, Proposition 4.1], the cotorsion pair .P1.R/;B.R// is of finite
type if and only if B.R/ is closed under direct sums.

Lemma 3.5. Let R be a ring with classical ring of quotients Q. Then B.R/ \

Mod-Q D B.Q/.

Proof. Fix some P 2 P1.R/ and B 2 Mod-Q. Then there is a natural
isomorphism, Ext1R.P; B/ Š Ext1Q.P ˝R Q; B/: If B 2 B.R/, then the left-hand
side in the isomorphism vanishes, thus B 2 B.Q/, as every module in P1.Q/

is of the form P ˝R Q for some P 2 P1.R/ by [3, Lemma 6.2]. Conversely, if
B 2 B.Q/, then the right-hand side vanishes, so we conclude that B 2 B.R/. �

From now on all rings will be commutative.

When R is commutative, its classical ring of quotients is also called the total
ring of quotients.
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Recall that a commutative ring R is perfect if and only if F: dim R D 0. In [7]
and [11], a commutative ring R is called almost perfect if its total ring of quotients
Q is a perfect ring and for every regular non-unit element r in R, R=rR is a perfect
ring.

If R is a ring and ¹a1; a2; : : : ; an; : : : º is a sequence of elements of R, a Bass

right R-module is a flat module of the form

F D lim
�!

�

R
a1

�! R
a2

�! R
a3

�! � � �
�

:

All Bass R-modules have projective dimension at most one. Thus the class of
Bass R-modules is contained in F0.R/ \ P1.R/. In [2], Bass noticed that a (not
necessarily commutative) ring R is right perfect if and only if every Bass right
R-module is projective.

Proposition 3.6. Let R be a commutative ring with total ring of quotients Q.

Consider the following conditions:

i. P1.R/ D F1.R/;

ii. P1.R/ is closed under direct limits;

iii. for every regular non-unit element of R, R=rR is a perfect ring;

iv. R is an almost perfect ring.

Then (i) H) (ii) H) (iii) and (iv) H) (iii).
If F: w: dim Q D 0, then (i) and (ii) are equivalent; if moreover Q is a perfect

ring, then all the four conditions are equivalent.

Proof. The implications (i) H) (ii) and (iv) H) (iii) are straightforward.
The implication (ii) H) (iii) is a slight generalisation of [5, Proposition 8.5],

where (i) H) (iii) is proved. Suppose P1.R/ is closed under direct limits, fix an
element r 2 † and a Bass R=rR-module N . We will show that N is projective
as an R=rR-module, so that we conclude that R=rR is a perfect ring. As r is
regular, R=rR 2 P1.R/ so all projective R=rR-modules are in P1.R/. N is a
flat R=rR-module, so N 2 lim

�!
P0.R=rR/ � lim

�!
P1.R/ D P1.R/, where the last

equality holds by assumption. Moreover, N 2 P1.R=rR/ so we can apply the
Change of Rings Theorem obtaining p: dimR N D p: dimR=rR N C 1: It follows
that p: dimR=rR N D 0, as required.

If F: w: dim Q D 0, then (i) and (ii) are equivalent by [3, Corollary 6.8]. If Q is
a perfect ring, the equivalence of the four conditions is proved in [11, Theorem 6.1]
or [5, Proposition 8.7]. �



36 S. Bazzoni – G. Le Gros

The examples below show that the condition P1.R/ D F1.R/ doesn’t imply
that the total ring of quotients Q is a perfect ring.

The first example was kindly suggested by the anonymous referee.

Example 3.7. (i) Let R be the countable boolean ring

R D ¹A � N j A is finite or N n A is finiteº

where addition is the symmetric difference and the multiplication is the intersec-
tion. R is a commutative von Neumann regular ring and hereditary (since R is
countable). The only regular element is 1 D N hence R coincides with its own
total ring of quotients and P1.R/ D F0.R/ D Mod-R. The ring R is not semisim-
ple since the ideal ¹A 2 R j A is finiteº is not finitely generated. Thus, R is not a
perfect ring.

(ii) In [8, 5.1] it is shown that there is a totally disconnected topological space
X with a ring R of continuous functions which is von Neumann regular and
hereditary. R coincides with its own total ring of quotients and P1.R/ D F0.R/ D

Mod-R, but R is not perfect, since it is not semisimple.

4. Properties of some classes of commutative rings

We recall now the characterisations of some classes of commutative rings.
Recall that a commutative ring R is semihereditary if every finitely generated

ideal is projective.
By [12, Corollary 4.2.19] R is semihereditary if and only if Q.R/ is von Neu-

mann regular and for every prime ideal p, Rp is a valuation domain. In particular,
by [12, Theorem 4.2.2], R is reduced, that is R contains no nilpotent elements.

The following proposition is modelled on Cohen’s Theorem, which states that
if all prime ideals are finitely generated, then all ideals are finitely generated, see
for example [14, Theorem 8] or [15, Theorem 3.4]. In the following we consider
only the regular ideals.

Proposition 4.1. Let R be a commutative ring. If every regular prime ideal is

finitely generated, then every regular ideal is finitely generated.

Proof. The arguments we use are exactly as in Cohen’s Theorem, but we
repeat the proof to outline the steps in which regularity is used.

Let ‚ be the collection of regular ideals which are not finitely generated with
a partial order by inclusion. Assume, by way of contradiction that ‚ is not empty.
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Let ˆ be a totally ordered subset of ‚ and let I WD
S

J 2ˆ J . We claim that I is
in ‚ so that it is an upper bound of ˆ in ‚. Clearly I contains a regular element,
so it remains to show that I is not finitely generated. Suppose for contradiction
that I has a finite set of generators ¹a1; : : : ; anº. Then there exists a J0 2 ˆ such
that I D ha1; : : : ; ani � J0 � I , therefore J0 is finitely generated which is a
contradiction.

Thus by Zorn’s Lemma, ‚ has a maximal element. We will show that such a
maximal element is prime, obtaining a contradiction. Fix a maximal element L of
‚, and suppose it is not prime, that is there exist two elements a; b 2 R n L such
that ab 2 L. Then both L C aR and L C bR strictly contain L, so they are both
finitely generated. Therefore, there exist x1; : : : ; xn 2 L and y1; : : : ; yn 2 R so
that ¹x1 C ay1; : : : ; xn C aynº is a generating set of L C aR.

Consider the ideal H WD .L W a/ D ¹r j ra 2 Lº. Then L ¨ L C bR � H ,
therefore also H is finitely generated, and so also aH is finitely generated. We
now will show that L D hx1; : : : ; xni C aH so L is finitely generated. An element
r 2 L ¨ L C aR can be written as follows:

r D s1.x1 C ay1/ C � � � C sn.xn C ayn/ D †isixi C a.†isiyi /;

where †isiyi 2 H as a.†isi yi / D r � †isi xi 2 L.

Therefore L � hx1; : : : ; xni C aH . The converse inclusion is clear, so
L D hx1; : : : ; xni C aH which implies that L is finitely generated as H is, a
contradiction. Therefore L is prime, and so by the assumption that every prime
ideal is finitely generated, ‚ must be empty. �

Lemma 4.2. Let R be a reduced commutative ring with total ring of quotients

Q of Krull dimension 0 ( for example when R is semihereditary). An ideal I of R

is contained in a minimal prime ideal of R if and only if I is not regular.

Proof. First suppose that I � p where p is a minimal prime ideal of R. Since
R is reduced it is an easy exercise to show that the set of zero divisors of R

coincides with the union of the minimal prime ideals (see [14, Exercise 2.2.13,
page 63]).

For the converse, suppose that I is not regular. Let L be an ideal maximal with
respect to the properties I � L, L \ † D ;. Then as in [14, Theorem 1.1], L is a
prime ideal. Assume there is a prime ideal p � L. Since p and L are not regular,
pQ � LQ Œ Q. By assumption Q has Krull dimension 0, hence pQ D LQ,
which implies p D L, that is L is a minimal prime. �
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We also have the following proposition from a paper of Vasconcelos.

Proposition 4.3 ([17, Proposition 1.1]). Let R be a commutative ring with a

projective ideal I . If I is not contained in any minimal prime ideal it is finitely

generated.

5. When P1.R/ is covering

In this section we collect some facts about when P1.R/ is a covering class, and in
particular we state some consequences for the total ring of quotients Q of R or for
localisations of R.

Lemma 5.1. Let R be a commutative ring and suppose P1.R/ is covering in

Mod-R. Then the following hold:

i. P1.R/ \ Mod-Q D P1.Q/;

ii. P1.Q/ is covering in Mod-Q.

Proof. (i) The inclusion P1.R/\Mod-Q � P1.Q/ is clear. For the converse,

take M 2 P1.Q/ and consider a P1.R/-cover of M , 0 ! B ! A
�
! M ! 0:

Then B 2 B.R/ and by Corollary 2.4, A; B 2 Mod-Q. From Lemma 3.5,
B 2 B.Q/, so � splits and M must be in P1.R/.

(ii) Fix a Q-module M and let 0 ! B ! A
�

! M ! 0 be a P1.R/-cover
of M . Then again by Corollary 2.4, by (1) and by Lemma 3.5, A 2 P1.Q/ and
B 2 B.Q/ so � must be a P1.Q/-precover of M . To see that � is a cover, any
endomorphism f of A in Mod-Q is also a homomorphism in Mod-R, therefore
by the minimality property of � as a P1.R/-cover, � is also a P1.Q/-cover. �

Remark 5.2. If the class P1.R/? is closed under direct sums, then by [1,
Theorem 5.2], or by [6, Remark 7.4], P1.R/ is covering if and only if it is closed
under direct limits.

When R is a commutative domain, then by [3, Corollary 8.1], the classP1.R/?

is closed under direct sums (and it coincides with the class of divisible modules)
and the four conditions in Proposition 3.6 are equivalent.

We characterise the class of semihereditary commutative rings such that the
cotorsion pair .P1.R/;B.R// is of finite type, or equivalently such that B.R/

is closed under direct sums or equivalently B.R/ D P1.mod-R/? (see [3,
Lemma 4.1]).
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Proposition 5.3. Let R be a commutative semihereditary ring. The following

statements are equivalent:

i. the cotorsion pair .P1.R/;B.R// is of finite type;

ii. the total quotient ring Q of R is semisimple;

iii. R is a finite direct product of Prüfer domains.

Proof. (i) H) (ii). By assumption, B.R/ is closed under direct sums, thus
alsoB.Q/ is closed under direct sums by Lemma 3.5. ThusB.Q/ D P1.mod-Q/?.
By assumption Q is von Neumann regular, hence P1.mod-Q/ D P0.mod-Q/

as every Q-module is flat. Therefore B.Q/ D Mod-Q and we conclude that
P1.Q/ D P0.Q/, that is Q is a perfect ring. Thus, Mod-Q D F0.Q/ D P0.Q/,
which means that Q is semisimple.

(ii) H) (iii). Follows by [9, Corollary, page 117] as a semihereditary ring R

has weak global dimension at most one.

(iii) H) (i). Obvious by Remark 5.2. �

By the above proposition we conclude that the class of semihereditary com-
mutative rings such that the cotorsion pair .P1.R/;B.R// is of not of finite type
is rather big.

The following holds also for not necessarily commutative rings.

Lemma 5.4. Suppose R is a semihereditary ring. Then P1.R/ is closed under

direct limits if and only if R is hereditary.

Proof. Sufficiency is clear, since R is hereditary if and only if P1.R/ D

Mod-R. The converse follows immediately since every R-module is a direct limit
of finitely presented modules and if R is semihereditary, every finitely presented
module is in P1.R/. �

We first consider the case of a von Neumann regular commutative ring.

Proposition 5.5. Let R be a von Neumann regular commutative ring. Then

P1.R/ is covering if and only if R is a hereditary ring.

Proof. Sufficiency is clear. For the necessary condition, note that R is semi-
hereditary, so it remains to show that every infinitely generated ideal I of R is
projective. Consider a P1.R/-cover of R=I

(�) 0 �! B �! A �! R=I �! 0:
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The ideal I is the sum of its finitely generated ideals which are all of the form
eR, for some idempotent element e 2 R. For every idempotent element e 2 I , we
have Ae � B , hence by Proposition 2.2 Ae D 0. We conclude that AI D 0. On
the other hand, A D B C xR for some element x 2 A such that xR \ B D xI .
Thus B \ xR D 0, since AI D 0 and we infer that the sequence .�/ splits, thus
p.dim R=I � 1 and I is projective. �

We pass now to the case of semihereditary commutative rings.

Lemma 5.6. Let R be a commutative semihereditary ring. Then the following

statements hold.

i. for every M 2 P1.R/, M ˝R Rp 2 P1.Rp/;

ii. for every N 2 B.R/, N ˝R Rp 2 B.Rp/;

iii. if P1.R/ is covering then P1.Rp/ is covering.

Proof. (i) Clear as Rp is flat.

(ii) As Rp is a commutative domain, the cotorsion pair .P1.Rp/;B.Rp// is
of finite type, and B.Rp/ coincides with the class of divisible modules by [3,
Theorem 7.2]. Thus it is sufficient to show that for every N 2 B.R/,

Ext1Rp
.Rp=aRp; N ˝R Rp/ D 0

for each a 2 Rp. Without loss of generality, we can assume that a 2 R. As R

is commutative and R=aR 2 P1.mod-R/ since R is semihereditary, there is the
following isomorphism.

Ext1R.R=aR; N /p Š Ext1Rp
.Rp=aRp; Np/:

As R=aR 2 P1.R/, the left-hand side vanishes as required.

(iii) Let

(��) 0 �! B �! A
�

�! M �! 0

be a P1.R/-cover of M 2 Mod-Rp. Then A; B 2 Mod-Rp by Corollary 2.4,
and by (ii), B 2 B.Rp/. Therefore, .��/ is also a P1.Rp/-precover of M in
Mod-Rp. Moreover, since any Rp-module homomorphism is also an R-module
homomorphism, .��/ is a P1.Rp/-cover of M . �

Lemma 5.7. Let R be a commutative semihereditary ring such that P1.R/

is covering. Then for each prime p, the ring Rp is a discrete valuation domain.

Moreover, Mod-Rp � P1.R/.

As a consequence, every maximal ideal m in R is projective.
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Proof. First note that as Rp is a valuation domain, it is also semihereditary. By
Lemma 5.6(iii), P1.Rp/ is covering. Therefore by Remark 5.2, P1.Rp/ is closed
under direct limits, so by Lemma 5.4 we conclude that Rp is hereditary, hence a
discrete valuation domain.

To see that Mod-Rp � P1.R/, let 0 ! B ! A
�
! M ! 0 be a P1.R/-cover

of an Rp-module M . As in the proof of Lemma 5.6, the sequence is also a
P1.Rp/-cover of M in Mod-Rp. We have just shown that Rp is hereditary, so
M 2 P1.Rp/, hence � is an isomorphism. Since A 2 P1.R/, also M 2 P1.R/

for any Rp-module M .
For the second statement, let m be a maximal ideal of R. Once one observes

that R=m is an Rm-module, it follows that m is projective as Mod-Rm � P1.R/

by what is proved above. �

Lemma 5.8. Let R be a commutative semihereditary ring such that P1.R/ is

covering. Then every regular prime ideal is maximal.

Proof. Take p to be a regular prime ideal of R. Then by Lemma 4.2, p cannot
be minimal. Fix a maximal ideal m such that p � m. Then by Lemma 5.7 in
the localisation Rm, there are exactly two prime ideals, 0 and mm, which are in
bijective correspondence with the prime ideals of R contained in m. As p cannot
be minimal, one concludes that p D m, therefore p is maximal. �

The following corollary follows easily.

Corollary 5.9. Let R be a commutative semihereditary ring such that P1.R/

is covering. Then every regular prime (hence maximal) ideal is finitely generated.

Proof. Let p be a regular prime ideal of R. By Lemma 5.8 and Lemma 5.7
p is a projective ideal. Hence by Lemma 4.2 and Proposition 4.3 p is finitely
generated. �

We will use the following characterisation of hereditary rings.

Theorem 5.10 ([12, Corollary 4.2.20] and [17, Theorem 1.2]). Let R be a

commutative ring. Then R is hereditary if and only if Q.R/ is hereditary and any

ideal of R that is not contained in any minimal prime ideal of R is projective.

We now can state the main result of this paper.

Theorem 5.11. Let R be a commutative semihereditary ring such that P1.R/

is covering. Then R is hereditary. Therefore P1.R/ is closed under direct limits.
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Proof. We use Theorem 5.10 to show that R must be hereditary. First we
show that the classical ring of quotients, Q, is hereditary. From Lemma 5.1 and the
assumption that P1.R/ is covering, we know that P1.Q/ is covering. Additionally,
by [12, Corollary 4.2.19] Q is von Neumann regular. Therefore, Q must be
hereditary by Proposition 5.5.

Now we show that any ideal not contained in a minimal prime ideal is pro-
jective. By Lemma 4.2, it is enough to show that any regular ideal is projective,
which follows if any regular ideal is finitely generated as R is semihereditary. By
Proposition 4.1, it is sufficient to show that the regular prime ideals are finitely
generated, which follows from Corollary 5.9. We conclude that all ideals not con-
tained in a minimal prime ideal are finitely generated, and hence are projective as
R is semihereditary. �
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