REenD. SEM. MAT. UN1v. PaDpova, Vol. 144 (2020), 253-270
DOI 10.4171/RSMUP/68

Density of indecomposable locally finite groups
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ABsTRACT — We prove that for any locally finite group there is an extension of the same
cardinality which is indecomposable for almost all regular cardinals smaller than its
cardinality. Note that a group G is called 8-indecomposable when for every increasing
sequence (G;:i < 0) of subgroups with union G there is i < 6 such that G = G;.
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1. Introduction

We are interested here in the class Kjr of locally finite groups; the subject naturally
uses finite group theory and infinite combinatorics, see e.g. the book by Kegel and
Wehfritz [6].

Wehrfritz asked about the categoricity of the class K¢y of existentially closed,
locally finite groups (exIf) in any cardinality A > ®,. This was answered by
Macintyre and Shelah [8] who proved that for every A > R, there are 2* non-
isomorphic members of Ki’df. This was disappointing in some sense: for Xy the
class is categorical, so the question was perhaps motivated by the hope that also
general structures in the class can be understood to some extent.
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A natural and frequent question on a class of structures is the existence of
rigid members, i.e. ones with no non-trivial automorphism. Now, any exIf group
G € Kir has non-trivial automorphisms—the inner automorphisms (recalling
that it has a trivial center). So the natural question is about complete members
where a group is called complete if and only if it has no non-inner automorphism.

Concerning the existence of a complete, locally finite existentially closed group
of cardinality A, Hickin [5] proved that it exists for 8; (and more generally, he
even finds a family of 2% such groups which are pairwise far apart in the sense
that no uncountable group is embeddable in two of them). Thomas [24] assumed
G.C.H. and built one in every successor cardinal (and moreover he showed that
it has no Abelian or just solvable subgroup of the same cardinality). Related
results can be found in Macintyre [7], Giorgetta and Shelah [3], and Shelah and
Ziegler [23], which investigate the class of groups Kg,; recall that if G, is a
countable existentially closed group then Kg, is the class of groups such that
every finitely generated subgroup is embeddable into G.

On the existence and non-existence of universal members see Grossberg and
Shelah [4].

The paper [22] investigates the group of permutation of the natural numbers,
and asks: what can be the set of regular cardinals 6 such that the group is 8-in-
decomposable (denoted there 8§ € CF(G)); the result is that essentially there are
some so-called “pcf restrictions” and those essentially are all the restrictions (for
more details on pcf theory see [13]).

Lately [15] has appeared which connects to stability theory, in particular
though the class Kejf is very unstable it has many definable complete quantifier
free types. One application was to use this to build canonical extensions of a locally
finite group which are existentially closed and of the same cardinality. Another
application was to build so-called “complete extensions” in many cardinals.

Here we deal more specifically with the density of so-called “8-indecompos-
able extensions” of the same cardinality, working simultaneously for almost all rel-
evant regular cardinals 6 obtaining essentially best possible results. Observe that
for a regular cardinal 6, a group G of cardinality A is trivially 8-indecomposable
if 6 > A andis notso if & = A or just 6 is equal to the cofinality of A. Those are al-
most the only restrictions. The problematic case is when 6 # cf(u) < w, ut = A
but other cases causing difficulties are dealt with in Theorem 3.5 and Claim 3.7.

We prove that essentially for every locally finite group G there is a locally
finite group H extending G of the same cardinality which is «-indecomposable
for every regular «k # cf(|G|); it is possible in some cases to handle the situation
where k # cf(u) when cf (1) < p, ut = A.
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In addition to being of self interest, this helps in [21], in proving that for
strong limit singular of cofinality R, there is a universal locally finite group of
cardinality u if and only if there is a canonical such group. The results apply to
many other classes (in general for so-called “abstract elementary classes’) which
have enough indecomposable members.

The result here also helps in [19], in proving results of the form “any locally
finite group of cardinality A > N can be extended to a complete one of the same
cardinality (not just its successor).”

The current work and [21] were originally part of [19] and were separated
by requests. In 2019, the existence of f-indecomposables in A (see 3.5) was
considerably improved after Corson and Shelah [1] dealt with indecomposable
groups (while here we are dealing with locally finite groups). The improvement
was that earlier it was for many rather than all cardinals. The aim of [1] was to
prove the existence of strongly bounded groups.

It is fitting that this work is dedicated to Laszl6: he has been the father of
modern Abelian group theory and much more. In 1973 his book [2] made me
start working in group theory (in particular, on the Whitehead problem (in [10],
[11], and the old better versions of the general compactness theorem in [17]).

2. Notations and preliminaries

The following started in Todorcevic [26] and will be used in the proof of Theo-
rem 3.5.

LemMma 2.1. The following hold:

L p*t — [u™]3, except possibly when A = pu*, p singular limit of ( possibly
weakly) inaccessibles;

2. if A > R is regular, then Pry(AT, AT, A1, Ry);
3. Nl -> (Rl;xl)il.

Proor. Part (1) follows from Todorcevic [26] and [12, 3.1,3.3(3)] while (2)
follows from [20, Chapter III] (see also the history and the definition there) and
(3) follows by Moore [9]. O

We now recall and assign appropriate notation to some classes of groups that
will be considered in the sequel; note that we use the notation sb(4, G) for the
subgroup of a group G generated by a set of elements A of G. We write Ky for
the class of locally finite groups and KIAf will denote the class of G € Ky which
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are of cardinality A; K¢y will denote the class of locally finite existentially closed
groups, that is, the class of locally finite groups G, such that for every pair of finite
groups H; € H, and embedding f; of H; into G there is an embedding f, of H»
into G extending f7; then Ki"lf will be the class of G € K¢ of cardinality A.

ConvenTion 2.2. We will use the following conventions and notations.

1. ¥ = (K¢, <¢) denote an a.e.c., see [18]. with K being a class of structures
and <, a partial order on it (the reader can ignore this or use <, being a
sub-structure).

2. A major case is £ being a universal class.

Finally, throughout G, H, K will denote groups, usually locally finite while
8 denotes a limit ordinal; k, £, m,n natural numbers; i, j, «, 8, y ordinals and
A, i, k, 0 cardinals.

3. Indecomposability

In this section we show the density of indecomposable locally finite groups,
moreover for any A > Ry and locally finite group G of cardinality A there is an
extension H of the same cardinality which is #-indecomposable for almost all
regular cardinals 6, noting that for 6 > A this trivially holds and for 6 = cf(}) it
trivially fails. The only additional exclusion is that for A a successor of singular,
we may exclude its cofinality. This is proved in Theorem 3.5(3)(b); before this in
Proposition 3.4 we showed how to use a colouring ¢:[1]> — A to build a group
extension. Lastly in Claim 3.7 we justify the excluded cardinal.

DEerintTION 3.1. We introduce the following terminology.

1. M is 8-decomposable or 8 € CF(M) when 6 is regular and if (M;:i < 0) is
C-increasing with union M, then M = M; for some i.

2. M is ®-indecomposable when it is 6-indecomposable for every 6 € ©.

3. M is (# 0)-indecomposable when 0 is regular and if 0 = cf(c) # 6 then
M is o-indecomposable.

4. c:[A]*> — S is 0-indecomposable provided that if (u;:i < 0) is C-increasing
with union A then § = {c{o, 8}: ¢ # B € u;} for some i < 6; similarly for
the other variants.

5. If we replace C by <, where ¢ is an a.e.c., then we write “(6 — £)-indecom-
posable” or 6 € CF¢(M) .
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Note that a group G may be indecomposable as a group or as a semi-group;
the default choice is semi-group; but note that for locally finite groups the two are
the same.

DEerINITION 3.2. We say that G is 0-indecomposable inside G if the following
hold:

a. 8 = cf(0);
b. GCGT;

c. if (G;:i < 0) is C-increasing continuous and G € Gy = G, then for some
i < 6 wehave G C G;.

The point of the above definition of indecomposable is the following Observa-
tion 3.3.

Using cases of indecomposability (see Theorem 3.5), help elsewhere to prove
density of complete members of KIAf and to improve characterizations of the
existence of universal members in e.g. cardinality 3.

Below recall that § is here a limit ordinal.

OBservaTiON 3.3. We observe the following.

1. Assume (M;:i < §) is <g-increasing with union M, each M;, is (8 — £)-in-
decomposable or just each My;4; is (6 — £)-indecomposable in My;4,. If
cf(8) # 0, then M is (6 — ¢)-indecomposable.

2. If for £ = 1,2 the sequence (Mf:i < 0) is <g-increasing and | J; M;! =
M = |J; M? and each M/ is (§ — €)-indecomposable or just M,
f-indecomposable inside lei 42 fori < 6, then

/\ \/ Mil =t Mj2'

i<f j<0

i+1 18

3. Iffor £ = 1, 2 the sequence (Mf: i < §)is <g-increasing continuous and each
M{_, is (—¥)-indecomposable or just M£; , | is 6-indecomposable in M5, , ,
fori <8and M} = M? and 6 = cf(§) > o, then {i < §: M;'! = M?}isa
club of 6.

4. If M is a Jonsson algebra of cardinality A, then M is (# cf(1))-indecompos-
able.

5. Assume J is a directed partial order, (M;:s € J) is C-increasing and
Ji 1= {s € J: My is (6 — ¥)-indecomposable} is cofinal in J. Then | J;.; M,
is (¢ — £)-indecomposable provided that
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(%) if ;<9 Ji € J is cofinalin J and (J;:i < 0) is C-increasing, then for
some i, J; is cofinal in J or at least ;e j, Ms = Usey Ms.

6. Assume G is a model (e.g. a group), ax < 6 = cf(0),G4, € G € H for
a < oy and U{Gy:a < a4} generate G. If each G, is 6-indecomposable
inside H then G is #-indecomposable inside H.

7. G is 6-indecomposable if and only if G is 6-indecomposable inside G.

8. If G; € G, € H, € H; and G; is #-indecomposable inside H, then G is
f-indecomposable inside H;.

Proor. The claims are easily proved but for the convenience of the reader
we elaborate on (5). Towards contradiction let (N;:i < 0) be C-increasing with
union |, ; M. For each s € J there is i(s) < 6 such that N;5) 2 M. Let
Ji ={i(s):s € Jyandi(s) < j} fori < 0. Clearly (J;:i < ) is as required in
the assumption of (x), hence for some i < 6 we have (J;c; Ms = Usej, Ms, s0
necessarily N; 2 M, and thus equality holds. O

seJ

We now turn to the class Kis.

ProvrosiTion 3.4. The following hold.

1. Assume I is a linear order and c:[I1*> — U is O-indecomposable (hence
onto U, see Definition 3.1(4)), G, € Kys and a; € G1(i € U) are! pairwise
commuting and each of order 2 (or 1). Then there is G, such that
a. G, € Kys extends Gq;

b. G, is generated by G, U b where b = (bs:s € I);
C. bs has order 2 for s € I;

d. if s1 # s are from I, then acys, 5,3 € sb({bs, . bs,}) and, moreover,
Aefsy,sn} = [bsnbsz]i

e. G1 Ce Gy, for 6 = Q[Kj] (used only in [19], we can use much smaller
G, see [15, Definitions 0.9 and 1.4 and Claim 1.16]);

f. sb({a;:i € U}, Gy) (the subgroup of Gi generated by {a;:i € U}) is
0-indecomposable inside G,; see Definition 3.2.

1 The demand “the a;’s commute in G;” is used in the proof of (%)g, and the demand
“ag,; has order 2 (or 1)” is used in the proof of (*).
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2. Assume Gy € Ky and I a linear order which is the disjoint union of
(In:;o < ax),uq € Ord and cy: [I4)> — ugy is Og-indecomposable for
Q< O, (Ug: @ < ax) is a sequence of pairwise disjoint sets with union U
and 0 ¢ U and a, € Gy for e € U and ag, ar commute for €,§ € Uy, 00 < ot
and each a has order 2 (or 1), and we let ag = e. Let ¢:[I]> — U U {0}
extend each ¢y and be 0 otherwise. Then there are G, and (dy: o < ax) such
that:

e (a), (¢), and (e) above hold,
e b'. G, is generated by G U bud:

d'. (dy:a < ay) are pairwise commuting of order 2;

f’. if o < ay then sb({as: € € Uy}, Go) is Oy-indecomposable inside G,.
3. Inparts (1) and (2),

a. the cardinality of G, is |G1| + |I| (or both are finite);

b. if we omit the assumption “c is 0-indecomposable,” then clauses (a)—(e)
of part (1) holds;

c. e.g.inpart (1) if o is a regular cardinal and ¢ is o-indecomposable, then
the subgroup ({a;:i € U}, Gy) is o-indecomposable in G.
Proor. (1) Let
(*)1 X ={(u,a):u C I is finite and a € G,}.
We shall choose below members /., h; € Sym(X) for ¢ € Gy,s € I, as follows.
First,

(%), for ¢ € G| we choose h, € Sym(X) as follows: for u € [I]™ and a € G,
let

he(u,a) = (u,ac™h).

Now clearly,
(x)3 a. he € Sym(X) for ¢ € Gy;
b. the mapping ¢ — /. is an embedding of G; into Sym(X);

c. so, without loss of generality, this embedding is the identity.
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Next,
(x)4 fort € I we define h;: X — X by defining &, (u, @) by induction on |u| for
(u,a) € X as follows:
a. ifu = 0, then h;(u,a) = ({t},a);
b. if u = {s}, then &;(u, a) is defined as follows:
() if t <7 s, then h;(u,a) = ({¢, s}, a);
(B) ift = s, then h;(u,a) = (9,a);
(y) ifs <g t,then hy(u,a) = ({s,t},d) where

d = Adefs,t}s
c.ifs; <--- < sy listu € [I[]"and k € {0,...,n} and ¢ € (Sg, Sk+1)1>
where we stipulate 5o = —00, sy4+1 = 400, then

he(u,a) = (WUt} adegs, i) - - - Aefsg,1))s
d. if sy <---<sylistu e [I]"andk € {0,...,n — 1} and t = s then?
he(u,a) = (u\{t}, aaC_{ISk’t}, e, ac_{lsz,t}ac_{;’t}).
Note that
(*%)5 a. (x)4(b)(x) is the same as (x)4(c) forn = 1,k = 0;
b. (x)4(b)(B) is the same as (x)4(d) forn = 1,k = 0;
c. (*%)4(b)(y) is the same as (x)4(c) forn = 1,k = 1;
(*)¢ a. hg, hg are permutations of X;
b. let G3 be the subgroup of Sym(X) generated by

Y ={hg, hs:a € Gy,5 € 1};
c. the group Gj is locally finite.

<« Why? Clause (a), just check and clause (b) is a definition. For clause (c), let
Z be a finite subset of Y, without loss of generality for some finite subgroup H of
G and finite subset J of [ the set Z is included in the set {h,, hs:a € H,s € J}.
Without loss of generality {c{s,t}:s # ¢, s,t € J} C H. It suffice to prove that
for every pair (u,a) € X the closure of {(u,a)} under {hy,hs:d € H,s € J}
is not just finite but has at most 21”1 x |H x H| elements. Now this closure is
obviously included in the set {((# \v) Uw,c):v S J Nu,w € J\u,c € (HaH)}
which satisfies the inequality. »

2The a;,! and inverting the order are more natural but immaterial as long as we are assuming
the “of order 2” and “pairwise commuting,” but those are now used in fewer points.
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Now clearly

(x)7 if t € I then h; € Sym(X) has order 2.

<« It is enough to prove &, (h;(u,a)) = (u,a). We divide to cases according to
“by which clause of (x)4 is & (u, a) defined.”

e If the definition is by (x)4(a) then /i, (4, a) = ({t}, a) and by (x)4(b)(B), then
htht(07 Cl) = ht({t}7 Cl) = (0’ a)'

If the definition is by (x)4(b)(8), then the proof is similar.
If the definition is by (x)4(b)(y), then, recalling (x)4(d),

hi(he(u, @) = he(he({s}, @) = hi ({5, 1}, ade(s,ry)

= ({s}, aae(syags ) = (. a).

If the definition is by (x)(b)(«), then the proof is similar.

If the definition is by (x)4(c), then recall (x)4(d) and compute similarly to
the two previous cases, recalling (acs,):s € I) are pairwise commuting of
order 2 (or 1).

o If the definition is by (*)4(d), then this is just like the last case.
So (*)7 holds indeed. »

(*)g [hs,hi] = hg, in G3 where i = c{s, ¢}

< Why? We have to check by cases; here we use “the a;’s are pairwise
commuting in G; for i € U”. Without loss of generality s <; ¢; we shall now
checked four representative cases (the point is that for (u, c), the members of
u \ {s, ¢} have little influence).

First,
(x)g.1 how is (@, c) mapped?

a. h;lh,—lhsh,(ﬂ,c) (by (x)4(a))
b, =hi'h he({t}c)  (by (%)a(b)(@))
= hithy ({s.1}.¢)  (by (x)a(b)(y))
= hi'({s} cagy ) (by (%)a(b)(B))
= (0, cag), (by (*)2)
= hegs,ry (D, ¢).

B C = R )
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Second,

(*)s.2 how is ({s}, c) mapped?

a. hy'hi'hsh:({s},c) (by (x)4(b)(¥))
b. =h; h hs({s, 1}, Cacis,y)  (by (¢)4(d)
with (s1,52) = (s,2),k = 0)
¢ = hi'h () cacs.n) (by (x)4(b)(B))
d = hs_l((b, Clcls,i}) (by (x)4(a))
e. = ({5}, cacys,y) (by “every a; has order 2”)
f. =s}eag,) (by (*)2)
g = hc{s,t}({s}’ c).

Third,

(*)s.3 how is ({t}, c) mapped?

a. bty thsh({t} 0) (by (+)4(b)(B))
b =k hs@.c)  (by ()a(a))
c. —=hithi{sho) (by (*)4(d)
with (s1,52) = (s,2), k= 1)
d. = hi'({s, 1}, cacgs,y)  (by (¥)a(d))
e. = ({t}, cacis,iy) (by (%), and “every a; has order 2”)
£ =henth o).

Fourth and lastly,

(*)s.4 how is ({s,}, c) mapped?

a. hyYhyYhghe({s,1},¢) (by (x)4(d)
with (s1.52) = (s,2),k = 1)

b. = hith he({sh cag y)  (by (%)a(b)(B))
. =hUil@cazl,) by (ab)(A)
d = h7(n)eaZt ) (by ()4(c)
with (s1,52) = (s,2),k =0)
e. =s.t}cagy,y) (by (%)2)
f. = hegs,nn({s.t}.¢). »
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(%)9 G2 = Gj is the subgroup of Sym(X) generated by {h,, hs:a € G1,s € I}
recalling that we have identify ¢ € G with i, we have G| C G,.

<« Why? By (%)19(b) and (x)3(b). »
(*)10 sb({ai:i € S}, Gy) is B-indecomposable inside G».

< Why? Because the function ¢ is #-indecomposable by an assumption of the
proposition and by (x)sg. »

Together we are done proving part (1).
(2) First,
(*)11 we can find a pair (G2, d ) such that (this G5 is not the final one):

a. G, € KIf;

b. d = (dy:a < 0s);
d is a sequence of members of G», pairwise commuting each of order 2,
and letting d,, be the product (dy:a € u) for finite u C o, we have
dy, = eifandonlyifu = @;

c. the group G, extend G and is generated by G U (dy < @ < o4);

d. the sequence (d, G1d,:u € [a]=N0) is a sequence of pairwise commut-
ing subgroups, with the intersection of any two being {e};

e. (follows) G1 <g G, see clause (e) of Proposition 3.4(1).

<« Why? Let X = [o4] N0 x G;. For ¢ € G; we define the permutation /.
of X by he(u,s) = (u,ca) ifu = @ and h.(u,a) = (u,a) otherwise. Next for
o < ax we define hy, a permutation of X by: hy (1, a)) = (uA{a}, a) where A is
the symmetric difference.

Easy to check. »

Now let a; = d Yaidy, for i € ugy; so clearly they are pairwise commuting,
each of order 2. So we can apply part (1) with G, (a}:i € U),c:[I]> - U U {0}
here standing for Gy, (a;:i € U), ¢:[I]*> — U there. We get G3, (b2:s € I).

Let b = b2 and we shall show that the triple (G», b, d) is as require, this suffice.

Clauses (a)—(e) are obvious. As for clause (f), fix @ < a«, and let (G, ;:i < )
be an increasing sequence of subgroups of G, with union G,. Recalling that
¢y = ¢ | [I]?, as in the proof of part (1) for some i < 6, the set {at:s € Iy} is
included in G, ;. Without loss of generality d, € G»; hence for every s € I, we
have ay = dyald;' € G,,; so we are done.

(3) By the proofs of parts (1) and (2). O
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Our main result is the following Theorem 3.5, in particular part (3).

THeoREM 3.5. The following hold.

1. If G; € Klsf/l, then for some G, € ka extending G, and afl € Gy for
Le{l,2},a <A,

® a. sb({al:€ € {1,2},a < A}, G,) includes Gy;
b. if £ € {1,2} then (al:a < A) is a sequence of pairwise distinct
commuting elements of order 2 of G;
c. G, is generated by {aﬁ:a <A, L e{l,2}};
d. G1 <@ Gy, like clause (e) of Proposition 3.4(1).

2. If A > wandc:[M? — uis O-indecomposable and G, € Klsfu, then there
is G, € Kllf extending G such that Gy is 0-indecomposable inside G, and

G1 <g Gy, like clause (e) of Proposition 3.4(1).

3. If A > Ry and ® = {cf(A)} except that ©® = {cf(A), d} when (c, y) below
holds, then (a) and (b) holds, where

a. some c:[A]> — A is O-indecomposable when 6 = cf(0) ¢ O;

b. for every G, € Klé)L there is an extension G, € Ki"lf which is
0-indecomposable for every regular 6 ¢ © (and G, <g G, see
clause (e) of Proposition 3.4(1));

- forsome pu, A = pt, u>09=cf(n) and
w = sup{f < u:0is a regular Jonsson cardinal}.

Remark 3.6. Given A > R; the demand (c), 3 determines d and implies
A >R,
We intend to sharpen (c), 5 in [19].

Proor oF THeEOREM 3.5. (1) Without loss of generality, the group G, is gen-
erated by its set of elements of order 2 (see [6] or [15], for clause (d) of Proposi-
tion 3.4(1) only the later). Let a = {(a;:i < A) list the elements of G; of order 2,
possibly with repetition.

Let o = A, 1 = A x {1,2} lexicographically ordered, I, = {«a} x {1,2},
aliq = o g = {1 +a}, U = {l +a:a < au}, coi(@, 1), (@,2)} = 1+«
and apply Proposition 3.4(2) getting G, and (bs:s € I), {(dy: @ < ). Letting
al = by fora < A, € € {1,2} we are done.
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(2) Let G| = Gy, by part (1) with u here for A there is G, € KI{ extending G}
with (aﬁ:é € {1,2},i < A) as there.

Now (G}, (a} :i < u)) satisfies the assumptions in 3.4(1) hence there is G} € KI{
extending G} such that H; = sb({a}:i < A}), G}) is #-indecomposable in G}.
Similarly there is G}, € KI{ extending G} such that H, = sb({a?:i < 1}), G}) is
f-indecomposable inside G;. Now H = sb(H;UH>, G}) include G| and recalling
the previous sentences, by Observation 3.3(6), it is #-indecomposable inside G
but G; = G| € H hence by Observation 3.3(8) also G; is f-indecomposable
inside Gz, so letting G, = G, we are done.

(3) To prove the last part

(%) it suffices to prove clause (a).
<« Why? So we are given G; € Klék. Let® = {0 < A:0 = cf(®)} \ ©® and
let 0 = cf(A) so it is a regular cardinal < A. Let d = |®’| so it is a cardinal < A

and let (6,: ¢ < 0) list ®'. We choose G ; by induction on i < do (do is ordinal
product) such that:

()11 a. Gz, € K§I;
b. (G,,;:j < i) is increasing continuous;
c. Gy extends Gy;
d. ifi =3§j + &, < d then G, ; is f.-indecomposable inside G2 ;+1;
e. Gi <g G,~+1Ki"d, see clause (e) of Proposition 3.4(1).

We can carry the induction, e.g. for i = dj + ¢ + 1 by Theorem 3.5(2); well
the € Ki’df holds by [15] (recalling Observation 3.3(8)). By Observation 3.3,
G> 1= Gy, is as required. »

We shall now prove clause (a) by induction on A.
Cask 1: A = 61, 0 regular. Recall 2.1(1).

Caske 2: A a limit cardinal and A > 6. Let (A;:i < cf(4)) be an increasing
sequence of regular cardinals with limit A, now let

(%)2 a. cipr: (A2 = AfH;
b. (cj:j <i)is C-increasing;
c. ¢; is f-indecomposable for 0 regular but # A+

Arriving to i use Case 1 knowing that ¢; [ U, _ )LJ_-H_]Z does not matter.

Now ¢ = [J{ci:i < cf(A)} is as required by Observation 3.3(8) and Observa-
tion 3.3(5).
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Case3: A = ut,;u > k = cf(u) # 0. Let (A;:i < k) be an increasing
sequence of cardinals with limit u, each a successor of regular. Let ¢;: [A;]2 — A;
witness A; - [)L,-]i_ andlet Ao; = (J{A;:j <i}.

For o < A let f, be a one-to-one function from (1 + «) onto . Now define
¢:[A]?> — A such that

(%)3 a. if « # B belongs to the interval [u(1 4+ €) + A<;, (1 + &) + A;), then
cla. py = f,7 eila— p(1 + ). B — (i +)));
b. if not, then c¢{«, B} = 0.
Then,
(x)4 it suffices to prove ¢ witness the desired conclusion.

So let 6 be regular and ¢ ® and 0 < A, 50 0 < pu, say 6 < A;(x) fori(x) <«.

(*)s Let h: A — 6. We should prove that for some ¢ < 6,
{cla, B} h(a), h(B) < e} = A.

Now for each y < A andi < «, we define a function A, ;: A; — 6 by
(%)6 hyi(@) =h((1+y)pn+ ) fora < A;.
By the choice of ¢;,

(x)7 fory < A,i <k thereis g,; < 6 such that

{ci{o, Byia, B < Aand hyi(a), by (B) <&y} = A
<« Why ¢,; exists? By the choice of ¢;. »

(x)s Foreach y < A, there exists ¢, < 0 such that « = sup{i < «:¢e,; < ¢&,}.

<« Why? Because «, 0 are regular cardinals and k # 6. »

(*)o thereis e < 0 suchthat A = sup{y < A:e, < e¢}.
<« Why ¢ exists? Because A is a regular cardinal > 6. »

Now by the choices of the f,’s and of ¢ we can finish.
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Case4: A = ut, u >k = cf(n) = 0 but p not a limit of Jonsson cardinals.
Let S = {§ < A:cf(§) = 0,8 divisible by u for transparency} and let C be such
that

BH; a. C =(Cs:6 € S);
b. a. Csisaclub of §;
B. Cs is of order type « if K > Rg and p if € = Ro;
y. 0 € Cs;
8. each o € Cs\{0} is a limit ordinal;

c. if Eisaclub A, then, forsome§ € S N E,

e forevery o < u we have u = sup{o € nacc(Cs):cf(e) > 0 and o € C;
moreover, « = sup(E£ Na)}.

<« Why such C exists? See [13, Chapter IIL§1]. »

H, choose

a. € = (eq: a0 < A),eq aclub of a of order type cf(x);

b. ¢y:[0]R0 — 9 witness 9 - [8];30 for d a regular non-Jonsson cardinal
from (04, ) for some 9« € [0, u];

c. f={(fu: €[, 1)), fois a function from u onto .

Now a major point is the choice of ¢: [A]?> — A:

M3 we choose ¢:[A]> — A such that (A) = (B), where

A. a. 5, e Sandé; € S NSy,
b. B = min{B:8; < B € Cs,} so necessarily B € nacc(C3);
c. cf(B) > 04«;
d. u ={y €eg:forsomea € Cs,,y = sucez(x)};
e. otp(u) is ¢ + n, ¢ is zero or a limit ordinal;
f. yo < --- < yp—1 list the last » members of u;
g. 0= cf(p);
B. ¢({81,82}) = f5,(ca{otp(ep N ye): € < n})).
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Now
H4 there is indeed ¢ as in Hs.

< Why? The point is proving that for any §; < §, from S, at most one case
of (A) of H3 holds, i.e. there is at most one sequence pair(8, (y;: £ < n)) as there.
But this is obvious from the way H3(A) is stated. »

So it suffices to prove

Hs c is #-indecomposable, moreover it witnesses A - [A]i,

and
He¢ for h: A — 0,

(3 < O)[A ={c{a, B} # B < A and h(a), h(B) < {}].
First,

He1 a. let y = 24: < be a well ordering of #(x);
b. M = (My:a < A) is <-increasing continuous;
c. My < (H(x), €, <)) and M, has cardinality < p for o < 4;
d. ¢,e,Cand h belong to My, hence to M, for ¢ < A;
e. MMa+1) e Myy.
Next,
Heor a. let By ={a < A: My N A =a};
b. let £, = {§ € Ez:otp(E1 N 3J) = §}.
Now,
H- there is &, such that
a. 6, e E,NS;

b. forevery o < u,
8> = sup(4s), where A; = {@ € nacc(Cs,): o € E; and cf (o) > o}.
The rest is as in [14]. O

It is an obvious question if we can eliminate the exceptional 8 in Theo-
rem 3.5(3)(b). By the following claim we cannot, at least as long as the following
famous open problem is unresolved (it is whether every successor of singular car-
dinality is a Jonsson algebra.)
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Cramm 3.7. We claim the following:

1.

2.

if A = pt, u singular and X is a Jonsson cardinal, then every G € Kif is
cf(u)-decomposable;

moreover this holds for every model M with universe A and vocabulary of
cardinality < .

Proor. Easy and it will not be used. |
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