
Rend. Sem. Mat. Univ. Padova, Vol. 144 (2020), 253–270

DOI 10.4171/RSMUP/68

Density of indecomposable locally finite groups
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Abstract – We prove that for any locally finite group there is an extension of the same

cardinality which is indecomposable for almost all regular cardinals smaller than its

cardinality. Note that a group G is called �-indecomposable when for every increasing

sequence hGi W i < �i of subgroups with union G there is i < � such that G D Gi .
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1. Introduction

We are interested here in the class Klf of locally finite groups; the subject naturally

uses finite group theory and infinite combinatorics, see e.g. the book by Kegel and

Wehfritz [6].

Wehrfritz asked about the categoricity of the class Kexlf of existentially closed,

locally finite groups (exlf ) in any cardinality � > @0. This was answered by

Macintyre and Shelah [8] who proved that for every � > @0 there are 2� non-

isomorphic members of K
exlf
�

. This was disappointing in some sense: for @0 the

class is categorical, so the question was perhaps motivated by the hope that also

general structures in the class can be understood to some extent.
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A natural and frequent question on a class of structures is the existence of

rigid members, i.e. ones with no non-trivial automorphism. Now, any exlf group

G 2 Kexlf has non-trivial automorphisms—the inner automorphisms (recalling

that it has a trivial center). So the natural question is about complete members

where a group is called complete if and only if it has no non-inner automorphism.

Concerning the existence of a complete, locally finite existentially closed group

of cardinality �, Hickin [5] proved that it exists for @1 (and more generally, he

even finds a family of 2@1 such groups which are pairwise far apart in the sense

that no uncountable group is embeddable in two of them). Thomas [24] assumed

G.C.H. and built one in every successor cardinal (and moreover he showed that

it has no Abelian or just solvable subgroup of the same cardinality). Related

results can be found in Macintyre [7], Giorgetta and Shelah [3], and Shelah and

Ziegler [23], which investigate the class of groups KG�
; recall that if G� is a

countable existentially closed group then KG�
is the class of groups such that

every finitely generated subgroup is embeddable into G�.

On the existence and non-existence of universal members see Grossberg and

Shelah [4].

The paper [22] investigates the group of permutation of the natural numbers,

and asks: what can be the set of regular cardinals � such that the group is �-in-

decomposable (denoted there � 2 CF.G/); the result is that essentially there are

some so-called “pcf restrictions” and those essentially are all the restrictions (for

more details on pcf theory see [13]).

Lately [15] has appeared which connects to stability theory, in particular

though the class Kexlf is very unstable it has many definable complete quantifier

free types. One application was to use this to build canonical extensions of a locally

finite group which are existentially closed and of the same cardinality. Another

application was to build so-called “complete extensions” in many cardinals.

Here we deal more specifically with the density of so-called “�-indecompos-

able extensions” of the same cardinality, working simultaneously for almost all rel-

evant regular cardinals � obtaining essentially best possible results. Observe that

for a regular cardinal � , a group G of cardinality � is trivially �-indecomposable

if � > � and is not so if � D � or just � is equal to the cofinality of �. Those are al-

most the only restrictions. The problematic case is when � ¤ cf.�/ < �; �C D �

but other cases causing difficulties are dealt with in Theorem 3.5 and Claim 3.7.

We prove that essentially for every locally finite group G there is a locally

finite group H extending G of the same cardinality which is �-indecomposable

for every regular � 6D cf.jGj/; it is possible in some cases to handle the situation

where � ¤ cf.�/ when cf.�/ < �; �C D �.
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In addition to being of self interest, this helps in [21], in proving that for �

strong limit singular of cofinality @0, there is a universal locally finite group of

cardinality � if and only if there is a canonical such group. The results apply to

many other classes (in general for so-called “abstract elementary classes”) which

have enough indecomposable members.

The result here also helps in [19], in proving results of the form “any locally

finite group of cardinality � > @0 can be extended to a complete one of the same

cardinality (not just its successor).”

The current work and [21] were originally part of [19] and were separated

by requests. In 2019, the existence of �-indecomposables in � (see 3.5) was

considerably improved after Corson and Shelah [1] dealt with indecomposable

groups (while here we are dealing with locally finite groups). The improvement

was that earlier it was for many rather than all cardinals. The aim of [1] was to

prove the existence of strongly bounded groups.

It is fitting that this work is dedicated to László: he has been the father of

modern Abelian group theory and much more. In 1973 his book [2] made me

start working in group theory (in particular, on the Whitehead problem (in [10],

[11], and the old better versions of the general compactness theorem in [17]).

2. Notations and preliminaries

The following started in Todorcevic [26] and will be used in the proof of Theo-

rem 3.5.

Lemma 2.1. The following hold:

1. �C ! Œ�C�2
�C except possibly when � D �C; � singular limit of ( possibly

weakly) inaccessibles;

2. if � > @0 is regular, then Pr1.�C; �C; �C; @0/;

3. @1 ¹ .@1I @1/2
@1

.

Proof. Part .1/ follows from Todorcevic [26] and [12, 3.1,3.3(3)] while .2/

follows from [20, Chapter III] (see also the history and the definition there) and

.3/ follows by Moore [9]. �

We now recall and assign appropriate notation to some classes of groups that

will be considered in the sequel; note that we use the notation sb.A; G/ for the

subgroup of a group G generated by a set of elements A of G. We write Klf for

the class of locally finite groups and K
lf
�

will denote the class of G 2 Klf which
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are of cardinality �; Kexlf will denote the class of locally finite existentially closed

groups, that is, the class of locally finite groups G, such that for every pair of finite

groups H1 � H2 and embedding f1 of H1 into G there is an embedding f2 of H2

into G extending f1; then K
exlf
�

will be the class of G 2 Kexlf of cardinality �.

Convention 2.2. We will use the following conventions and notations.

1. k D .Kk; �k/ denote an a.e.c., see [18]. with Kk being a class of structures

and �k a partial order on it (the reader can ignore this or use �k being a

sub-structure).

2. A major case is k being a universal class.

Finally, throughout G; H; K will denote groups, usually locally finite while

ı denotes a limit ordinal; k; `; m; n natural numbers; i; j; ˛; ˇ; 
 ordinals and

�; �; �; � cardinals.

3. Indecomposability

In this section we show the density of indecomposable locally finite groups,

moreover for any � > @0 and locally finite group G of cardinality � there is an

extension H of the same cardinality which is �-indecomposable for almost all

regular cardinals � , noting that for � > � this trivially holds and for � D cf.�/ it

trivially fails. The only additional exclusion is that for � a successor of singular,

we may exclude its cofinality. This is proved in Theorem 3.5(3)(b); before this in

Proposition 3.4 we showed how to use a colouring cW Œ��2 ! � to build a group

extension. Lastly in Claim 3.7 we justify the excluded cardinal.

Definition 3.1. We introduce the following terminology.

1. M is �-decomposable or � 2 CF.M/ when � is regular and if hMi W i < �i is

�-increasing with union M , then M D Mi for some i .

2. M is ‚-indecomposable when it is �-indecomposable for every � 2 ‚.

3. M is .¤ �/-indecomposable when � is regular and if � D cf.�/ ¤ � then

M is �-indecomposable.

4. cW Œ��2 ! S is �-indecomposable provided that if hui W i < �i is �-increasing

with union � then S D ¹c¹˛; ˇºW ˛ ¤ ˇ 2 ui º for some i < � ; similarly for

the other variants.

5. If we replace � by �k where k is an a.e.c., then we write “.� � k/-indecom-

posable” or � 2 CFk.M/ .
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Note that a group G may be indecomposable as a group or as a semi-group;

the default choice is semi-group; but note that for locally finite groups the two are

the same.

Definition 3.2. We say that G is �-indecomposable inside GC if the following

hold:

a. � D cf.�/;

b. G � GC;

c. if hGi W i � �i is �-increasing continuous and G � G� D GC, then for some

i < � we have G � Gi .

The point of the above definition of indecomposable is the following Observa-

tion 3.3.

Using cases of indecomposability (see Theorem 3.5), help elsewhere to prove

density of complete members of K
lf
�

and to improve characterizations of the

existence of universal members in e.g. cardinality Æ! .

Below recall that ı is here a limit ordinal.

Observation 3.3. We observe the following.

1. Assume hMi W i < ıi is �k-increasing with union M , each MiC1 is .� � k/-in-

decomposable or just each M2iC1 is .� � k/-indecomposable in M2iC2. If

cf.ı/ ¤ � , then M is .� � k/-indecomposable.

2. If for ` D 1; 2 the sequence hM `
i W i < �i is �k-increasing and

S

i M 1
i D

M D
S

i M 2
i and each M 1

i is .� � k/-indecomposable or just M 1
2iC1 is

�-indecomposable inside M 1
2iC2 for i < � , then

^

i<�

_

j <�

M 1
i �k M 2

j :

3. If for ` D 1; 2 the sequence hM `
i W i � ıi is �k-increasing continuous and each

M `
iC1 is .��k/-indecomposable or just M `

2iC1 is �-indecomposable in M `
2iC2

for i < ı and M 1
ı

D M 2
ı

and � D cf.ı/ > @0, then ¹i < ıW M 1
i D M 2

i º is a

club of ı.

4. If M is a Jonsson algebra of cardinality �, then M is .¤ cf.�//-indecompos-

able.

5. Assume J is a directed partial order, hMs W s 2 J i is �-increasing and

J� WD ¹s 2 J W Ms is .� � k/-indecomposableº is cofinal in J . Then
S

s2J Ms

is .� � k/-indecomposable provided that
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.�/ if
S

i<� Ji � J is cofinal in J and hJi W i < �i is �-increasing, then for

some i; Ji is cofinal in J or at least
S

s2Ji
Ms D

S

s2J Ms .

6. Assume G is a model (e.g. a group), ˛� < � D cf.�/; G˛ � G � H for

˛ < ˛� and [¹G˛W ˛ < ˛�º generate G. If each G˛ is �-indecomposable

inside H then G is �-indecomposable inside H .

7. G is �-indecomposable if and only if G is �-indecomposable inside G.

8. If G1 � G2 � H2 � H1 and G2 is �-indecomposable inside H2 then G1 is

�-indecomposable inside H1.

Proof. The claims are easily proved but for the convenience of the reader

we elaborate on .5/. Towards contradiction let hNi W i < �i be �-increasing with

union
S

s2J Ms . For each s 2 J� there is i.s/ < � such that Ni.s/ � Ms . Let

Jj D ¹i.s/W s 2 J� and i.s/ � j º for i < � . Clearly hJi W i < �i is as required in

the assumption of .�/, hence for some i < � we have
S

s2J Ms D
S

s2Ji
Ms , so

necessarily Ni �
S

s2J Ms , and thus equality holds. �

We now turn to the class Klf .

Proposition 3.4. The following hold.

1. Assume I is a linear order and cW ŒI �2 ! U is �-indecomposable (hence

onto U, see Definition 3.1(4)), G1 2 Klf and ai 2 G1.i 2 U/ are1 pairwise

commuting and each of order 2 (or 1). Then there is G2 such that

a. G2 2 Klf extends G1;

b. G2 is generated by G1 [ Nb where Nb D hbs W s 2 I i;

c. bs has order 2 for s 2 I ;

d. if s1 ¤ s2 are from I , then ac¹s1;s2º 2 sb.¹bs1
; bs2

º/ and, moreover,

ac¹s1;s2º D Œbs1
; bs2

�I

e. G1 �S G2, for S D �ŒKlf� (used only in [19], we can use much smaller

S, see [15, Definitions 0.9 and 1.4 and Claim 1.16]);

f. sb.¹ai W i 2 Uº; G1/ (the subgroup of G1 generated by ¹ai W i 2 Uº) is

�-indecomposable inside G2; see Definition 3.2.

1 The demand “the ai ’s commute in G1” is used in the proof of .�/8, and the demand

“aˇi
has order 2 (or 1)” is used in the proof of .�/7.
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2. Assume G1 2 Klf and I a linear order which is the disjoint union of

hI˛W ˛ < ˛�i; u˛ � Ord and c˛W ŒI˛�2 ! u˛ is �˛-indecomposable for

˛ < ˛�; hu˛W ˛ < ˛�i is a sequence of pairwise disjoint sets with union U

and 0 … U and a" 2 G1 for " 2 U and a"; a� commute for "; � 2 u˛; ˛ < ˛�

and each a" has order 2 (or 1), and we let a0 D e. Let cW ŒI �2 ! U [ ¹0º

extend each c˛ and be 0 otherwise. Then there are G2 and hd˛ W ˛ < ˛�i such

that:

� (a), (c), and (e) above hold;

� b0. G2 is generated by G1 [ Nb [ Nd ;

d0. hd˛ W ˛ < ˛�i are pairwise commuting of order 2;

f 0. if ˛ < ˛� then sb.¹a"W " 2 u˛º; G2/ is �˛-indecomposable inside G2.

3. In parts (1) and (2),

a. the cardinality of G2 is jG1j C jI j (or both are finite);

b. if we omit the assumption “c is �-indecomposable,” then clauses (a)–(e)

of part (1) holds;

c. e.g. in part (1) if � is a regular cardinal and c is �-indecomposable, then

the subgroup .¹ai W i 2 Uº; G1/ is �-indecomposable in G2.

Proof. (1) Let

.�/1 X D ¹.u; a/W u � I is finite and a 2 G1º.

We shall choose below members hc ; hs 2 Sym.X/ for c 2 G1; s 2 I; as follows.

First,

.�/2 for c 2 G1 we choose hc 2 Sym.X/ as follows: for u 2 ŒI �<@0 and a 2 G1

let

hc.u; a/ D .u; ac�1/:

Now clearly,

.�/3 a. hc 2 Sym.X/ for c 2 G1;

b. the mapping c 7! hc is an embedding of G1 into Sym.X/;

c. so, without loss of generality, this embedding is the identity.
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Next,

.�/4 for t 2 I we define ht W X ! X by defining ht .u; a/ by induction on juj for

.u; a/ 2 X as follows:

a. if u D ;, then ht .u; a/ D .¹tº; a/;

b. if u D ¹sº, then ht .u; a/ is defined as follows:

.˛/ if t <I s, then ht .u; a/ D .¹t; sº; a/;

.ˇ/ if t D s, then ht .u; a/ D .;; a/;

.
/ if s <I t , then ht .u; a/ D .¹s; tº; d / where

d D aac¹s;tºI

c. if s1 < � � � < sn list u 2 ŒI �n and k 2 ¹0; : : : ; nº and t 2 .sk ; skC1/I ,

where we stipulate s0 D �1; snC1 D C1, then

ht .u; a/ D .u [ ¹tº; aac¹s1;tº : : : ac¹sk ;tº/I

d. if s1 < � � � < sn list u 2 ŒI �n and k 2 ¹0; : : : ; n � 1º and t D skC1 then2

ht .u; a/ D .un¹tº; aa�1
c¹sk;tº; : : : ; a�1

c¹s2;tºa
�1
c¹s1;tº/:

Note that

.�/5 a. .�/4.b/.˛/ is the same as .�/4.c/ for n D 1; k D 0;

b. .�/4.b/.ˇ/ is the same as .�/4.d/ for n D 1; k D 0;

c. .�/4.b/.
/ is the same as .�/4.c/ for n D 1; k D 1;

.�/6 a. ha; hs are permutations of X;

b. let G3 be the subgroup of Sym.X/ generated by

Y D ¹ha; hsW a 2 G1; s 2 I ºI

c. the group G3 is locally finite.

J Why? Clause (a), just check and clause (b) is a definition. For clause (c), let

Z be a finite subset of Y , without loss of generality for some finite subgroup H of

G1 and finite subset J of I the set Z is included in the set ¹ha; hsW a 2 H; s 2 J º.

Without loss of generality ¹c¹s; tºW s ¤ t; s; t 2 J º � H . It suffice to prove that

for every pair .u; a/ 2 X the closure of ¹.u; a/º under ¹hd ; hsW d 2 H; s 2 J º

is not just finite but has at most 2jJ j � jH � H j elements. Now this closure is

obviously included in the set ¹..u n v/ [ w; c/W v � J \ u; w � J n u; c 2 .HaH/º

which satisfies the inequality. I

2 The a�1
m and inverting the order are more natural but immaterial as long as we are assuming

the “of order 2” and “pairwise commuting,” but those are now used in fewer points.
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Now clearly

.�/7 if t 2 I then ht 2 Sym.X/ has order 2.

J It is enough to prove ht .ht .u; a// D .u; a/. We divide to cases according to

“by which clause of .�/4 is ht .u; a/ defined.”

� If the definition is by .�/4.a/ then ht .;; a/ D .¹tº; a/ and by .�/4.b/.ˇ/, then

htht .;; a/ D ht .¹tº; a/ D .;; a/:

� If the definition is by .�/4.b/.ˇ/, then the proof is similar.

� If the definition is by .�/4.b/.
/, then, recalling .�/4.d/,

ht .ht .u; a// D ht .ht .¹sº; a// D ht .¹s; tº; aac¹s;tº/

D .¹sº; aac¹s;tºa
�1
c¹s;tº/ D .u; a/:

� If the definition is by .�/.b/.˛/, then the proof is similar.

� If the definition is by .�/4.c/, then recall .�/4.d/ and compute similarly to

the two previous cases, recalling hac¹s;tºW s 2 I i are pairwise commuting of

order 2 (or 1).

� If the definition is by .�/4.d/, then this is just like the last case.

So .�/7 holds indeed. I

.�/8 Œhs; ht � D hai
in G3 where i D c¹s; tº

J Why? We have to check by cases; here we use “the ai ’s are pairwise

commuting in G1 for i 2 U”. Without loss of generality s <I t ; we shall now

checked four representative cases (the point is that for .u; c/, the members of

u n ¹s; tº have little influence).

First,

.�/8:1 how is .;; c/ mapped?

a. h�1
s h�1

t hsht .;; c/ (by .�/4.a/)

b. D h�1
s h�1

t hs.¹tº; c/ (by .�/4.b/.˛/)

c. D h�1
s h�1

t .¹s; tº; c/ (by .�/4.b/.
/)

d. D h�1
s .¹sº; ca�1

c¹s;tº
/ (by .�/4.b/.ˇ/)

e. D .;; ca�1
c¹s;tº

/ (by .�/2)

f. D hc¹s;tº.;; c/:
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Second,

.�/8:2 how is .¹sº; c/ mapped?

a. h�1
s h�1

t hsht .¹sº; c/ (by .�/4.b/.
/)

b. D h�1
s h�1

t hs.¹s; tº; cac¹s;tº/ (by .�/4.d/

with .s1; s2/ D .s; t /; k D 0)

c. D h�1
s h�1

t .¹tº; cac¹s;tº/ (by .�/4.b/.ˇ/)

d. D h�1
s .;; cac¹s;tº/ (by .�/4.a/)

e. D .¹sº; cac¹s;tº/ (by “every ai has order 2”)

f. D .¹sº; ca�1
c¹s;tº

/ (by .�/2)

g. D hc¹s;tº.¹sº; c/:

Third,

.�/8:3 how is .¹tº; c/ mapped?

a. h�1
s h�1

t hsht .¹tº; c/ (by .�/4.b/.ˇ/)

b. D h�1
s h�1

t hs.;; c/ (by .�/4.a/)

c. D h�1
s h�1

t .¹sº; c/ (by .�/4.d/

with .s1; s2/ D .s; t /; k D 1)

d. D h�1
s .¹s; tº; cac¹s;tº/ (by .�/4.d/)

e. D .¹tº; cac¹s;tº/ (by .�/2 and “every ai has order 2”)

f. D hc¹s;tº.¹tº; c/:

Fourth and lastly,

.�/8:4 how is .¹s; tº; c/ mapped?

a. h�1
s h�1

t hsht .¹s; tº; c/ ( by .�/4.d/

with .s1:s2/ D .s; t /; k D 1)

b. D h�1
s h�1

t hs.¹sº; ca�1
c¹s;tº

/ (by .�/4.b/.ˇ/)

c. D h�1
s h�1

t .;; ca�1
c¹s;tº

/ (by .�/4.b/.ˇ/)

d. D h�1
s .¹tº; ca�1

c¹s;tº
/ (by .�/4.c/

with .s1; s2/ D .s; t /; k D 0)

e. D .¹s; tº; ca�1
c¹s;tº

/ (by .�/2)

f. D hc¹s;tº.¹s; tº; c/: I
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.�/9 G2 D G3 is the subgroup of Sym.X/ generated by ¹ha; hsW a 2 G1; s 2 I º

recalling that we have identify c 2 G with hc we have G1 � G2.

J Why? By .�/10.b/ and .�/3.b/. I

.�/10 sb.¹ai W i 2 Sº; G1/ is �-indecomposable inside G2.

J Why? Because the function c is �-indecomposable by an assumption of the

proposition and by .�/8. I

Together we are done proving part (1).

(2) First,

.�/11 we can find a pair .G2; Nd/ such that (this G2 is not the final one):

a. G2 2 K
lf
�
;

b. Nd D hd˛W ˛ < ˛�i;

Nd is a sequence of members of G2, pairwise commuting each of order 2,

and letting du be the product hd˛ W ˛ 2 ui for finite u � ˛� we have

du D e if and only if u D ;;

c. the group G2 extend G1 and is generated by G1 [ hd˛ < ˛ < ˛�i;

d. the sequence hduG1duW u 2 Œ˛��<@0i is a sequence of pairwise commut-

ing subgroups, with the intersection of any two being ¹eº;

e. (follows) G1 �S G2, see clause (e) of Proposition 3.4(1).

J Why? Let X D Œ˛��<@0 � G1. For c 2 G1 we define the permutation hc

of X by hc.u; s/ D .u; ca/ if u D ; and hc.u; a/ D .u; a/ otherwise. Next for

˛ < ˛� we define h˛, a permutation of X by: h˛..u; a// D .u�¹˛º; a/ where � is

the symmetric difference.

Easy to check. I

Now let a0
i D d �1

˛ aid˛ for i 2 u˛; so clearly they are pairwise commuting,

each of order 2. So we can apply part (1) with G2; ha0
i W i 2 Ui; cW ŒI �2 ! U [ ¹0º

here standing for G1, hai W i 2 Ui; cW ŒI �2 ! U there. We get G3; hb2
s W s 2 I i.

Let Nb D Nb2 and we shall show that the triple .G2; Nb; Nd/ is as require, this suffice.

Clauses (a)–(e) are obvious. As for clause (f ), fix ˛ < ˛�, and let hG2;i W i < �i

be an increasing sequence of subgroups of G2 with union G2. Recalling that

c˛ D c � ŒI˛�2, as in the proof of part (1) for some i < �˛ the set ¹a0
sW s 2 I˛º is

included in G2;i . Without loss of generality d˛ 2 G2;i hence for every s 2 I˛ we

have a˛ D d˛a0
sd

�1
˛ 2 G2;i so we are done.

(3) By the proofs of parts (1) and (2). �
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Our main result is the following Theorem 3.5, in particular part (3).

Theorem 3.5. The following hold.

1. If G1 2 K
lf
��

, then for some G2 2 K
lf
�

extending G1 and a`
˛ 2 G2 for

` 2 ¹1; 2º; ˛ < �,

˚ a. sb.¹a`
˛W ` 2 ¹1; 2º; ˛ < �º; G2/ includes G1;

b. if ` 2 ¹1; 2º then ha`
˛ W ˛ < �i is a sequence of pairwise distinct

commuting elements of order 2 of G2;

c. G2 is generated by ¹a`
˛W ˛ < �; ` 2 ¹1; 2ºº;

d. G1 �S G2, like clause (e) of Proposition 3.4(1).

2. If � � � and cW Œ��2 ! � is �-indecomposable and G1 2 K
lf
��, then there

is G2 2 K
lf
�

extending G1 such that G1 is �-indecomposable inside G2 and

G1 �S G2, like clause (e) of Proposition 3.4(1).

3. If � � @1 and ‚ D ¹cf.�/º except that ‚ D ¹cf.�/; @º when .c�;@/ below

holds, then (a) and (b) holds, where

a. some cW Œ��2 ! � is �-indecomposable when � D cf.�/ … ‚;

b. for every G1 2 K
lf
��

there is an extension G2 2 K
exlf
�

which is

�-indecomposable for every regular � … ‚ (and G1 �S G2, see

clause (e) of Proposition 3.4(1));

c�;@ . for some �; � D �C; � > @ D cf.�/ and

� D sup¹� < �W � is a regular Jonsson cardinalº:

Remark 3.6. Given � � @1 the demand (c)�:@ determines @ and implies

� > @! .

We intend to sharpen .c/�;@ in [19].

Proof of Theorem 3.5. (1) Without loss of generality, the group G1 is gen-

erated by its set of elements of order 2 (see [6] or [15], for clause (d) of Proposi-

tion 3.4(1) only the later). Let Na D hai W i < �i list the elements of G1 of order 2,

possibly with repetition.

Let ˛� D �; I D � � ¹1; 2º lexicographically ordered, I˛ D ¹˛º � ¹1; 2º,

a0
1C˛ D a˛; u˛ D ¹1 C ˛º; U D ¹1 C ˛W ˛ < ˛�º, c˛¹.˛; 1/; .˛; 2/º D 1 C ˛

and apply Proposition 3.4(2) getting G2 and hbs W s 2 I i, hd˛ W ˛ < ˛�i. Letting

a`
˛ D b.˛;`/ for ˛ < �; ` 2 ¹1; 2º we are done.
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(2) Let G0
1 D G1, by part (1) with � here for � there is G0

2 2 K
lf
�

extending G0
1

with ha`
˛W ` 2 ¹1; 2º; i < �i as there.

Now .G0
2; ha1

i W i <�i/ satisfies the assumptions in 3.4(1) hence there is G0
3 2K

lf
�

extending G0
2 such that H1 D sb.¹a1

i W i < �º/; G0
2/ is �-indecomposable in G0

3.

Similarly there is G0
4 2 K

lf
�

extending G0
3 such that H2 D sb.¹a2

i W i < �º/; G0
2/ is

�-indecomposable inside G0
4. Now H D sb.H1[H2; G0

2/ include G0
1 and recalling

the previous sentences, by Observation 3.3(6), it is �-indecomposable inside G0
4

but G1 D G0
1 � H hence by Observation 3.3(8) also G1 is �-indecomposable

inside G0
5, so letting G2 D G0

4 we are done.

(3) To prove the last part

.�/1 it suffices to prove clause (a).

J Why? So we are given G1 2 K
lf
��

. Let ‚0 D ¹� � �W � D cf.‚/º n ‚ and

let � D cf.�/ so it is a regular cardinal � �. Let @ D j‚0j so it is a cardinal � �

and let h�"W " < @i list ‚0. We choose G2;i by induction on i � @� (@� is ordinal

product) such that:

.�/1:1 a. G2;i 2 K
exlf
�

;

b. hG2;j W j � ii is increasing continuous;

c. G2;0 extends G1;

d. if i D ıj C "; " < @ then G2;i is �"-indecomposable inside G2;iC1;

e. Gi �S GiC1K
excl
�

, see clause (e) of Proposition 3.4(1).

We can carry the induction, e.g. for i D @j C " C 1 by Theorem 3.5(2); well

the 2 K
exlf
�

holds by [15] (recalling Observation 3.3(8)). By Observation 3.3,

G2 WD G2;@� is as required. I

We shall now prove clause (a) by induction on �.

Case 1: � D �C; � regular. Recall 2.1(1).

Case 2: � a limit cardinal and � > � . Let h�i W i < cf.�/i be an increasing

sequence of regular cardinals with limit �, now let

.�/2 a. ciC1W Œ�CC
i �2 ! �CC

i ;

b. hcj W j � ii is �-increasing;

c. ci is �-indecomposable for � regular but ¤ �CC
i .

Arriving to i use Case 1 knowing that ci�
�

S

j <i �CC
j

�2
does not matter.

Now c D
S

¹ci W i < cf.�/º is as required by Observation 3.3(8) and Observa-

tion 3.3(5).
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Case 3: � D �C; � > � D cf.�/ ¤ � . Let h�i W i < �i be an increasing

sequence of cardinals with limit �, each a successor of regular. Let ci W Œ�i �
2 ! �i

witness �i ¹ Œ�i �
2
�i

and let �<i D
S

¹�j W j < iº.

For ˛ < � let f˛ be a one-to-one function from �.1 C ˛/ onto �. Now define

cW Œ��2 ! � such that

.�/3 a. if ˛ ¤ ˇ belongs to the interval Œ�.1 C "/ C �<i ; �.1 C "/ C �i /, then

c¹˛; ˇº D f �1
" .ci¹˛ � �.1 C "/; ˇ � �.i C "/º/;

b. if not, then c¹˛; ˇº D 0.

Then,

.�/4 it suffices to prove c witness the desired conclusion.

So let � be regular and 62 ‚ and � < �, so � < �, say � < �i.�/ for i.�/ < �.

.�/5 Let hW � ! � . We should prove that for some " < �;

¹c¹˛; ˇºW h.˛/; h.ˇ/ < "º D �:

Now for each 
 < � and i < �, we define a function h
;i W �i ! � by

.�/6 h
;i.˛/ D h..1 C 
/� C ˛/ for ˛ < �i .

By the choice of ci ,

.�/7 for 
 < �; i < � there is "
;i < � such that

¹ci¹˛; ˇºW ˛; ˇ < � and h
;i.˛/; h
;i.ˇ/ < "
;iº D �i :

J Why "
;i exists? By the choice of ci . I

.�/8 For each 
 < �, there exists "
 < � such that � D sup¹i < �W "
;i � "
º.

J Why? Because �; � are regular cardinals and � ¤ � . I

.�/9 there is " < � such that � D sup¹
 < �W "
 � "º.

J Why " exists? Because � is a regular cardinal > � . I

Now by the choices of the f
 ’s and of c we can finish.
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Case 4: � D �C; � > � D cf.�/ D � but � not a limit of Jonsson cardinals.

Let S D ¹ı < �W cf.ı/ D �; ı divisible by � for transparencyº and let xC be such

that

�1 a. xC D hCı W ı 2 Si;

b. ˛: Cı is a club of ı;

ˇ: Cı is of order type � if � > @0 and � if � D @0;


: 0 2 Cı ;

ı: each ˛ 2 Cın¹0º is a limit ordinal;

c. if E is a club �, then, for some ı 2 S \ E,

� for every � < � we have � D sup¹˛ 2 nacc.Cı/W cf.˛/ > � and ˛ 2 C ;

moreover, ˛ D sup.E \ ˛/º.

J Why such xC exists? See [13, Chapter III,§1]. I

�2 choose

a. Ne D he˛W ˛ < �i; e˛ a club of ˛ of order type cf.˛/;

b. c@W Œ@�<@0 ! @ witness @ ¹ Œ@�
<@0

@
for @ a regular non-Jonsson cardinal

from .@�; �/ for some @� 2 Œ�; ��;

c. Nf D hf˛W ˛ 2 Œ�; �/i; f˛ is a function from � onto ˛.

Now a major point is the choice of cW Œ��2 ! �:

�3 we choose cW Œ��2 ! � such that (A) H) (B), where

A. a. ı2 2 S and ı1 2 S \ ı2;

b. ˇ D min¹ˇW ı1 < ˇ 2 Cı2
º so necessarily ˇ 2 nacc.C2/;

c. cf.ˇ/ > @�;

d. u D ¹
 2 eˇ : for some ˛ 2 Cı1
; 
 D suceˇ

.˛/º;

e. otp.u/ is � C n; � is zero or a limit ordinal;

f. 
0 < � � � < 
n�1 list the last n members of u;

g. @ D cf.ˇ/;

B. c.¹ı1; ı2º/ D fı2
.c@.¹otp.eˇ \ 
`/W ` < nº//.
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Now

�4 there is indeed c as in �3.

J Why? The point is proving that for any ı1 < ı2 from S , at most one case

of (A) of �3 holds, i.e. there is at most one sequence pair.ˇ; h
`W ` < ni/ as there.

But this is obvious from the way �3.A/ is stated. I

So it suffices to prove

�5 c is �-indecomposable, moreover it witnesses � ¹ Œ��2
�
,

and

�6 for hW � ! � ,

.9� < �/Œ� D ¹c¹˛; ˇºW ˛ ¤ ˇ < � and h.˛/; h.ˇ/ < �º�:

First,

�6:1 a. let � D Œ2��CW <�
� be a well ordering of H .�/;

b. xM D hM˛ W ˛ < �i is �-increasing continuous;

c. M˛ � .H .�/; 2; <�
�/ and M˛ has cardinality � � for ˛ < �;

d. c; Ne; xC and h belong to M0, hence to M˛ for ˛ < �;

e. xM�.˛ C 1/ 2 M˛C1.

Next,

�6:2 a. let E1 D ¹˛ < �W M˛ \ � D ˛º;

b. let E2 D ¹ı 2 E2W otp.E1 \ ı/ D ıº.

Now,

�7 there is ı2 such that

a. ı2 2 E2 \ S ;

b. for every � < �,

ı2 D sup.A�/; where A� D ¹˛ 2 nacc.Cı2
/W ˛ 2 E2 and cf.˛/ > �º:

The rest is as in [14]. �

It is an obvious question if we can eliminate the exceptional � in Theo-

rem 3.5(3)(b). By the following claim we cannot, at least as long as the following

famous open problem is unresolved (it is whether every successor of singular car-

dinality is a Jonsson algebra.)
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Claim 3.7. We claim the following:

1. if � D �C; � singular and � is a Jonsson cardinal, then every G 2 K
lf
�

is

cf.�/-decomposable;

2. moreover this holds for every model M with universe � and vocabulary of

cardinality < �.

Proof. Easy and it will not be used. �
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