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Test sets for factorization properties of modules
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ABsTRACT — Baer’s Criterion of injectivity implies that injectivity of a module is a fac-
torization property with respect to a single monomorphism. Using the notion of a co-
torsion pair, we study generalizations and dualizations of factorization properties in
dependence on the algebraic structure of the underlying ring R and on additional set-
theoretic hypotheses. For R commutative noetherian of Krull dimension 0 < d < oo,
we show that the assertion ‘projectivity is a factorization property with respect to a
single epimorphism’ is independent of ZFC + GCH. We also show that if R is any ring
and there exists a strongly compact cardinal ¥ > | R|, then the category of all projective
modules is k-accessible.
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Introduction

Various classes of modules studied in homological algebra are defined by factor-
ization properties with respect to proper classes of monomorphisms or epimor-
phisms. A natural question arises of whether these defining classes of morphisms
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can be replaced by sets, and hence by single morphisms. In many cases, this is pos-
sible. We start with the easier setting of injective modules, and more in general,
right-hand classes of complete cotorsion pairs. Then we will turn to the more diffi-
cult setting of projective modules, and left-hand classes of cotorsion pairs, where
solutions often require extra algebraic and/or set-theoretic assumptions. Our no-
tation will follow [7] and [14].

1. Injective modules and their generalizations

Injective modules and their various generalizations are defined by factorization
properties with respect to proper classes of monomorphisms. Denote by W the
class of all monomorphisms in Mod-R. Then a module M is injective, if and only
if Homg (¥, M) is surjective for each ¢ € ¥, i.e., if and only if for each ¢ € ¥
with ¥ € Homg (N, N’), each homomorphism from N to M factorizes through
Y. The classic Baer Criterion for injectivity [4] says that in the definition above,
one can replace the proper class W by a subset, and hence by a single element.
Namely, if S denotes the set of all right ideals of R, then M is injective, if and
only if Homg (¢, M) is surjective, where ¢: ;g I — @;cg R. By dimension
shifting, it follows that for each n < w, there is a single monomorhism ¢,, such
that factorization through ¢, defines the property of having injective dimension
<n.

Given a monomorphism ¥ in Mod-R, we call a class of modules € a factor-
ization class of y provided that ¢ = {M € Mod-R | Homg (v, M) is surjective}.
So, for example, the class J, of all modules of injective dimension < n is the
factorization class of ¢,. Using Enochs’ proof of the Flat Cover Conjecture (i.e.,
the fact that the class F, of all flat modules is deconstructible, see definition be-
low), we infer that there is a monomorphism v such that the class £C of all Enochs
cotorsion modules is the factorization class of v.

In order to see that these results are particular instances of a more general
phenomenon, we need to recall several definitions:

Let 8§ be a class of modules. A module M is S-filtered provided that M
is the union of an increasing well-ordered continuous chain of its submodules
(Mg, vge | @« < B < o) such that vg,: My — Mpg is the inclusion for all
a < fB <o, My = 0, and for each o < o, Coker(vy+14) is isomorphic to an
element of 8. The class of all 8-filtered modules is denoted by Filt(8). The class
of all direct summands of 8-filtered modules is denoted by sFilt(8). Note that
Filt(Filt(8)) = Filt(S) and Filt(sFilt(8)) = sFilt(8). In particular, both Filt(8) and
sFilt(8) are closed under arbitrary direct sums and extensions.
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For example, if § = {R}, then Filt(8S) is the class of all free modules, and
sFilt(8) the class of all projective modules.

A class of modules C is deconstructible provided that there is a subset § C C
such that € = Filt(8).

For a class of modules C, we define

€l = {M € Mod-R | Exth(C, M) = 0 for all C € €}

and +C = {M € Mod-R | Ext}Q(M, C) = Oforall C € €C}. A pair of classes of
modules ¢ = (A, B) is a cotorsion pair in case A = 1B and B = A*L. ¢ is said
to be generated (cogenerated) by a class C, if B = C+ (A = L1C). ¢ is hereditary,
if Extp(A4, B) = 0forall A € A, B € Bandalli > 2.

LemwMma 1.1. Let € = (A, B) be a cotorsion pair in Mod-R. Then the following
conditions are equivalent:

1. € is generated by a set;
2. there is a subset 8 C A such that A = sFilt(8);
3. A is deconstructible;

4. there is a monomorphism f:Q < P with P projective such that B is the
factorization class of f.

Proor. (1) = (3) by the Kaplansky Theorem for cotorsion pairs [14, 7.13].
Since A is closed under direct summands, (3) =— (2). That (2) = (1) follows
by the Eklof Lemma [14, 6.2].

Assume (1). Then there is a set S € A such that B = 81. For each 4 € 8,
there is a presentation 0 — Qg4 e P4y — A — 0 with P4 projective. We define
a monomorphism f by f = @,ecsva. Then f € Homg(Q, P) where Q =
D yes Q4 and P = @45 Pa is projective. Moreover, for each N € Mod-R, each
homomorphism from Q to N factorizes through f, if and only if Ext}Q (A,N)=0
for each A € §, if and only if N € B. So (4) holds.

Assume (4). Then for each N € Mod-R, one has N € B if and only if
Ext}e(P /O,N) = 0. That is, € is generated by the one element set {P/Q},
proving (1). |

For integral domains, other variants of cotorsion modules are studied. How-
ever, Lemma 1.1 applies to them, too. Recall that a module M over an integral
domain R is called Matlis cotorsion if Ext}e(Q, M) = 0 where Q denotes the
quotient field of R.
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CoroLLARY 1.2. Let R be an integral domain. Then there exist monomor-
phisms go € Homg(Qy, Py) and g1 € Homg(Q1, P1) with Py and P; projec-
tive, such that the class of all Matlis cotorsion (Warfield cotorsion) modules is the
factorization class of go (g1).

Proor. The first claim follows immediately by Lemma 1.1. For the second
claim, one uses the characterization of Warfield cotorsion modules as the Matlis
cotorsion modules of injective dimension < 1, [14, 7.47]. O

A different, and more involved, argument shows that there is a single pure
monomorphism p such that the class of all pure-injective modules is the factor-
ization class of ju:

LemMA 1.3. Let k = |R| + Ro. Then a module L is pure-injective, if and
only if for each pure embedding v € Homg(N, M) with |M| < «k and each
f € Hompg (N, L) there exists g € Homg(M, L) with gv = f.

Proor. The only-if part is trivial, let us prove the if part. By [7, Theo-
rem V.1.2], it is enough to show that each system 8 consisting of R-linear equations
(in any number, finite or infinite, of variables) with parameters in L has a solution
in L provided that |$| < « and each finite F C 8 has a solution in L.

Let 8 be such a system. Fix a submodule N < L of cardinality < « such that N
contains all the parameters from 8 and each finite ¥ C 8 has a solution in N. Let
us denote by f the inclusion N C L. Following the proof of [7, Theorem V.1.2
2) = @B)],weputM = (N & F)/K where F is the free module whose basis
is the set of variables in the system &, and K is the submodule generated by all the
elements (b, Y7 y;r;) where Y 7_, y;r; = b belongsto 8. Let:: N < M be
the canonical embedding. Using finite solvability of & in N, it is straightforward
to check that ¢ is actually a pure embedding. Since [M| < x, we can use our
assumption to find g € Homg (M, L) such that g« = f. By construction, 8 has
a solution in M. The g-image of this solution is a desired solution of S in L. O

The notions of purity and pure-injectivity naturally generalize as follows.
Given a regular infinite cardinal A, a monomorphism f: B — A is A-pure if the
homomorphism Hompg(C, A) — Hompg(C, Coker( f)) induced by the canonical
projection A — Coker(f) is surjective for each < A-presented module C.
A module is called A-pure-injective if it is injective with respect to all A-pure
monomorphisms. The case A = Ry amounts to the classical notions of purity/pure-
injectivity.
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Going back to Lemma 1.3, if we consider A-purity and A-pure-injective mod-
ules for a regular uncountable cardinal A, the situation is rather unclear. The diffi-
culty here stems from the fact that Mod- R often does not possess enough A-pure-
injective modules, i.e. there exist R-modules which cannot be A-purely embedded
into A-pure-injective ones.

The following proposition shows in particular that, over a non-right perfect
ring, the class of R;-pure-injective modules does not precisely recognize R;-pure
monomorphisms, i.e. there is a pure and not X;-pure monomorphism v such that
Hompg (v, N) is surjective for each R;-pure-injective module N.

ProrosiTioN 1.4. Let R be a ring which is not right perfect. Then Mod- R does
not have enough N1 -pure-injective objects.

Proor. Let us denote by C the class of all X;-pure-injective modules. Since R
is not right perfect, there exists a countably presented flat module M which is not
projective. This module is the direct limit of a countable directed system Fy —
F;, — F, — --- consisting of finite rank free modules. In particular, we have a
pure, albeit not X;-pure, short exact sequence 0 — R@ 5 R@) — a1 — 0.

Each flat Mittag-Leffler module (being R;-projective, cf. [14, 3.19]) is an
R -pure-epimorphic image of a projective module, whence it belongs to +€. By
[5, Theorem 6], M € +C as well.! It immediately follows that the module R@)
cannot be X;-purely embedded into an X;-pure-injective module since this would
imply that ¢ is X;-pure and thus splits. O

Under the additional set-theoretic assumption that 0¥ does not exist (a weak
form of V=L, cf. [17, §18] or [7, VI.3.16]), we can even show that:

ProposITION 1.5 (0% does not exist). Let R be a ring which is not right perfect.
There does not exist a regular uncountable cardinal A such that Mod-R has
enough A-pure-injective modules.?

1 ApDED IN PROOF. This argument shows that, over any ring, all countably presented flat
modules belong to €. Since each flat module F is the direct limit of an ¥;-directed system
consisting of countably presented flat modules, it is an N;-pure-epimorphic image of a direct
sum of countably presented flat modules. This direct sum belongs to €, and € consists of
R -pure-injective modules. We conclude that F € 1€ as well, whence each R -pure-injective
module is cotorsion.

2 ADDED IN PROOF. In a forthcoming paper of the first author and Manuel Cortés-Izurdiaga,
we show that the conclusion of Proposition 1.5 actually characterizes the right non-pure-
semisimple rings (under the same additional set-theoretical assumption).
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Proor. For the sake of contradiction, assume that there exists such a A. Let
f:R®@ — B be a A-pure embedding into a A-pure-injective module B. Let k be
a strong limit singular cardinal with uncountable cofinality such that ¥ > |B| 4+ A
and fix a countably presented non-projective flat module N together with a pure
short exact sequence 0 — R@ 5 R@ _ N — 0.

It follows from our assumption on 0* and [7, VI.3.16 and V1.3.6] that E(x )
holds which allows us to use [7, Theorem VIIL.1.4] to obtain a «t-free module
M which is not projective. In particular, M is a A-pure-epimorphic image (even
kT -pure) of a free module, whence M € +B. Moreover, by the proof of [7,
Theorem VII.1.4], there are a stationary subset E of «* consisting of ordinals
with countable cofinality and a filtration M = (M | o < k™) of M consisting of
k-generated free modules such that M, +;/M, = N foreachv € E.

We have 2 = «* by [17, Corollary 18.33]. Using [23], we get .+ (E),
in particular ®,+(F). By Lemma 2.9, there exists a v € E such that N =
M,y1/M, € +B. In particular, f can be factorized through ¢ yielding that &
is A-pure, and thus split, in contradiction with the choice of N. O

ReEmaRrk 1.6. If A = R, for 0 < n < w, then the proof of Proposition 1.5 can
be carried out in ZFC using the tools from [7, Section VIL.3].

ExampLE 1.7. If R is a countable ring and € the class of all X;-pure-injective
modules, then L€ is just the class of all flat modules (cf. [5, Theorem 6]). As
a consequence, N1 -pure-injective modules over countable rings are cotorsion.

Suppose that R is a countable von Neumann regular ring which is not semisim-
ple. Then all the classes of cotorsion, pure-injective, R;-pure-injective and injec-
tive modules coincide. Subsequently, there exists a single monomorphism p such
that a module M is N;-pure-injective if and only if Homg(u, M) is surjective.
On the other hand, there are strictly more pure monomorphisms than N;-pure
monomorphisms. Also, since all cyclic modules are countable, it immediately
follows from the Baer test lemma that R;-pure submodules of (X-pure-)injective
modules are just the direct summands. Thus not only Mod- R does not have enough
N;-pure-injective modules, even more so: no non-injective module X;-purely em-
beds into an R;-pure-injective module.

Consider now the class T of all X;-pure embeddings into projective modules.
By [14, Remark 10.7], {Coker(v) | v € T} is precisely the class of all flat
Mittag-Leffler modules, hence (again by [5, Theorem 6]) T is the test class for
(R1-pure-)injectivity. However, we cannot pick a subset 8 C T with the same
property, since for each set F of flat Mittag-Leffler modules F contains a non-
injective module.
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2. Projective modules and their generalizations

We turn to the dual setting of projective modules and their generalizations. These
classes of modules are defined by factorization properties with respect to proper
classes of epimorphisms. Here, the problem of replacing a proper class of mor-
phisms by a set is more complex: we will see that its solution may depend on the
underlying ring, and on the extension of ZFC that we work in.

Given an epimorphism ¢ in Mod-R, we call a class of modules D a cofactor-
ization class of ¢ provided that D = {N € Mod-R | Homg (N, ¢) is surjective}.

Our first aim is to dualize Lemma 1.1. To this purpose, we need more defi-
nitions. Let § be a class of modules. A module M is S-cofiltered provided that
M is isomorphic to an inverse limit of a well-ordered continuous inverse system
(Mg, mqp | @« < B < o) such that w,g: Mg — M, is an epimorphism for all
a < f <o, Mpy=0,andforeach @ < o, Ker(myn+1) is isomorphic to an element
of 8. The class of all $-cofiltered modules is denoted by Cofilt(8). The class of all
direct summands of 8-cofiltered modules is denoted by sCofilt(8).

Note that Cofilt(Cofilt(8)) = Cofilt(8) and also Cofilt(sCofilt(8)) = sCofilt(8).
In particular, both Cofilt(S) and sCofilt(8) are closed under arbitrary direct prod-
ucts and extensions.

A class of modules C is codeconstructible provided that there is a subset § € C
such that € = Cofilt(8).

Here is a partial dual of Lemma 1.1:

LEmMMA 2.1. Let € = (A, B) be a cotorsion pair in Mod-R. Consider the
Jollowing conditions:
1. €is cogenerated by a set;
2. there is a subset 8§ C B such that B = sCofilt(8);
3. B is codeconstructible;

4. there is an epimorphism g € Hompg (I, J) with I injective, such that A is the
cofactorization class of g.

Then (1) < (4). Moreover, (3) = (2), and 2) = (1).

Proor. The proof of the equivalence of (1) and (4) is dual to the proof of the
corresponding equivalence in Lemma 1.1. Moreover, (3) = (2) because B is
closed under direct summands. That (2) = (1) follows by the Lukas Lemma
[14, 6.37]. O
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The following example shows that (2) need not imply (3) even for the trivial
cotorsion pair J = (Mod-R, Jy), i.e., there is no dual to Kaplansky’s theorem for
cotorsion pairs for J.

ExampLE 2.2. (i) For any ring R, J is cogenerated by any set consisting of
injective modules. Consider such a set 8. Then Cofilt(8) is the class of all modules
isomorphic to (arbitrary) direct products of modules from 8. In particular, if
8o = {W} where W is an injective cogenerator for Mod-R, then Jy = sCofilt(S).
So condition (2) is satisfied.

(ii) Now, assume that R is a commutative noetherian ring. For M € Mod-R,
Ass M will denote the set of all associated prime ideals of M, that is, all p €
Spec(R) such that R/ p embeds into M. Recall that for each module M, Ass M =
Ass E(M), where E(M) denotes the injective envelope of M. Also, Jy coincides
with the class of all modules / of the form I = @,.p E(R/p)©®) where
P < Spec(R) and «p (p € P) are non-zero ordinals; for such 7/, we have
Ass I = P,so P is uniquely determined by /, and so are the ordinals «, (p € P).
In particular, the indecomposable injective modules are the modules isomorphic
to E(R/ p) for some p € Spec(R), and Ass E(R/p) = {p}.

Assume moreover that R possesses a maximal ideal m satisfying the conditions
(p<e ™" = 0and m ¢ Ass R (this occurs when R is a noetherian domain which
is not a field, or R is a local Gorenstein ring of Krull dimension > 1). Suppose
that Jo = Cofilt(8) for a set 8 C Jy. Then Jo = Prod S, the class of all modules
isomorphic to direct products of copies of modules in 8. In particular, § must
contain copies of all indecomposable injective modules. Since (), ., m" = 0, if
D is any infinite sequence of non-zero elements of 8§ such that for each D € D,
m € Ass D, then I = [[pcp D contains a copy of R. Then E(R) is isomorphic
to a direct summand in /. As m ¢ Ass R = Ass E(R), I has an indecomposable
direct summand isomorphic to E(R/ p) for some prime ideal p # m. So for each
infinite cardinal «, if E(R/m)% € Prod$, then E(R/m)%®) is isomorphic to
a module in §, in contradiction with 8 being a set. Thus Cofilt(8§) & Jo for any
set S of injective modules, i.e., condition (3) fails.

Our next example generalizes part (i) of Example 2.2 to 1-cotilting cotorsion
pairs. Hence, it also covers the setting of Dedekind domains and cotorsion pairs
(A, B) such that A O Fy (see Theorem 2.8 below):

ExampLE 2.3. Let R be a ring and € = (A, B) be a cotilting cotorsion pair
cogenerated by a 1-cotilting module C, i.e., amodule C such that CogenC = +C.
Then € satisfies the condition (2) of Lemma 2.1.



Test sets for factorization properties of modules 225

Indeed, using [14, 15.20] and a dual version of [14, 6.13], we see that B
coincides with the class of all modules that are direct summands of the modules
M that fit in an exact sequence 0 — C* — M — I — 0 for an injective
module / and a cardinal A. Let W denote an injective cogenerator for Mod-R.
Then I @ J =~ W* for a cardinal «, and we have the exact sequence 0 — C* —
M&®J - W - 0.LetS = {C, W} (C B). Then the module M & J is S-
cofiltered, whence B = sCofilt(8).3

Lemma 2.1 is sufficient to settle our problem for flat and torsion-free modules:

CoRrROLLARY 2.4. Let R be a ring and n < w. Then there exist epimorphisms
gn € Homg(1,, J,) and h € Homg (I, J) with I, and I injective, such that the
class Fy, of all modules of flat dimension < n (the class of all torsion free modules)
is a cofactorization class of g, (h).

Proor. The first claim follows by Lemma 2.1, since a module M has flat
dimension < n, if and only if Tor® +1(M, C) = 0 for each cyclic left R-module
C, if and only if Tor{e (M, Q"(C)) = 0 for each cyclic left R-module C, where
Q" (C) denotes the nth syzygy module of C in a projective resolution of C. It
follows that the cotorsion pair (F,,, ;1) is cogenerated by the set of dual modules
of modules Q" (C) where C is a cyclic left R-module. For the second claim, one
uses the characterization of torsion-free modules as the modules M such that
Torf (M, R/Rr) = 0 for each non-zero divisor r € R. |

In particular, we have a solution for modules of bounded projective dimension
in the case when projectivity and flatness of modules coincide, that is, for right
perfect rings:

CoRrROLLARY 2.5. Let R be a right prefect ring and n < w. Then there exists an
epimorphism g, € Homg(I,, J,) with I, injective, such that the class P, of all
modules of projective dimension < n is a cofactorization class of g.

RemaRrk 2.6. Note that, over each right perfect ring R, there are simpler test
epimorphisms than gy from Corollary 2.4 available:

1. By [20] (or [18]), the Dual Baer Criterion (DBC) for projectivity holds in
Mod-R, that is, one can use the epimorphism g: R — [];<r R/1, where T
is the set of all right ideals of R: Py is the cofactorization class of g.

3 ADDED IN PROOF. Positselski has recently extended this result to arbitrary n-cotilting cotor-
sion pairs € = (A, B), n > 0, by constructing for each such pair € a set 8 consisting of n + 1
modules, such that B = sCofilt(8). See Theorem 2.19 in his preprint “An explicit construction
of complete cotorsion pairs in the relative context”, [19].
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2. Let 7 be the finite direct product of the projections ns: E(S) — E(S)/S
where S runs over a representative set of all simple modules. Then Py is the
cofactorization class of 7 by [14, 8.8].

For non-right perfect rings, the following consistency result gives a barrier to
testing for projectivity using sets of epimorphisms:

LemMma 2.7. Assume Shelah’s Uniformization Principle (SUP). Let R be a non-
right perfect ring.

Then for each set & C Mod-R, there exists a module M with proj.dimM =1
and Ext}Q(M, S) = 0 forall S € 8. So the cotorsion pair (Py, Mod-R) is not
cogenerated by any set of modules.

Moreover, there is no epimorphism v such that Py is the cofactorization class

of m.

Proor. For the first claim, see e.g. [25, 2.4]. The second claim follows from
the first one for § = {Ker(x)}. O

Note that if ZFC is consistent, then so is ZFC + SUP, see [8].

We now pause to look at other cotorsion pairs, but in the particular setting of
Dedekind domains. Once again, (SUP) comes as a handy tool here. The following
theorem generalizes [9, 1.3]:

THEOREM 2.8. Let R be a Dedekind domain with the quotient field Q, and
¢ = (A, B) be a cotorsion pair.

a. Assume Q € A (or, equivalently, Fo € A). Then € is a cotilting cotorsion
pair, i.e., € is cogenerated by a pure-injective module C such that Cogen C =
LC (= A). In particular, € is generated by a set, and there is a unique subset
P < mSpec(R) such that

A ={M € Mod-R | forall p € P:Homg(R/p, M) = 0}.

b. Assume (SUP). Moreover, assume that Q ¢ A, Q is a countably generated
module, and € is generated by a set.

Then there is no epimorphism w such that A is the cofactorization class

of m.
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Proor. (a) This is proved in [14, 16.29] (see also [14, 16.21]).

(b) In[9, 1.3], it is proved (in a different notation) that under the same assump-
tions, € is not cogenerated by a set, i.e., there is no epimorphism 7: I — J with
1 injective such that A is the cofactorization class of 7 (see Lemma 2.1). In order
to prove our stronger claim, we will follow the pattern of the proof of [9, 1.3],
indicating only the necessary changes needed to strengthen the claim.

Assume there is an epimorphism 7 in Mod- R such that A is the cofactorization
class of w. Let K = Ker(m).

Since Q is countably generated, there is a short exact sequence 0 — R(®) 1>
R@ — 0 — 0with f(1;) = 1; — p;1;11 where {p; | i < w} is a set of non-
invertible non-zero elements of R. As in [9], we use this presentation and (SUP)
to define for a cardinal 4 = ¢+, where 7 is an uncountable singular cardinal of
cofinality w, a non-projective module H = F/G, where F and G are free modules
of rank pu, such that Ext}e (H, N) = 0 for each module N of cardinality < 7.

As in [9], we distinguish the following two cases:
1. Cis generated by a cotorsion module B;

2. there is no cotorsion module generating € (but, by our assumption, there is
nevertheless a non-cotorsion module B such that B = B1).

In the case (2), we take a singular cardinal z of cofinality w bigger than the
cardinalities of R, B and K and u = t*. Taking the appropriate {B}-filtered
module A € BL = B, we infer as in the proof of case (2) in [9, 1.3] that for
the module H as above, Exty(H, K) = 0, so H € A, but Exty(H, A) # 0, in
contradiction with A € B.

In the case (1), we will first prove the following claim: B = B+ = (E(T(B))®
F(B))* where T(B) is the torsion part of B, E(T(B)) is its injective hull, and
F(B) is the torsion-free part of B. Notice that F(B) is a cotorsion module since
B is such.

Consider the push-out of 7(B) € B and T(B) € E(T(B)) in Figure 1. Since
the second row splits, it suffices to prove that B+ = X<1. As R is hereditary,
the second column gives X+ C B~, and the first row yields B+ C T(B)*. Let
P = AssT(B). Then,

E(T(B))* =T(B)*

- (@rir)

pEP
={M € Mod-R |forall pe P:M.p = M},
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0 0
L
0 T(B) = B F(B) —> 0
<| | |I
0 —— E(T(B)) X F(B) — 0
| l
E(T(B))/T(B) == E(T(B))/T(B)
| |
0 0
Figure 1

since E(T(B)) is {R/p | p € P}-filtered. Moreover, there is a subset P’ C P
such that E(T(B))/T(B)is {R/p | p € P’}-filtered. Hence

T(B)* < (E(T(B))/T(B))".

The second column gives B+ N (E(T(B))/T(B))t < X~. However, B+ C
T(B)! € (E(T(B))/T(B))*+, whence B+ € X+, and our claim is proved.

Furthermore, F(B) is a torsion-free cotorsion module, which is reduced (oth-
erwise Q is a direct summand in F(B), and since F(B) € A, also Q € A, a
contradiction). So F(B) is isomorphic to a product of completions of localiza-
tions of free R,-modules where g ranges over some subset S € mSpec(R), see
[10,5.3.28]. If ¢ € P N S, then E(R/q) € A, and the g-adic module J, be-
longs to A (because J; is a direct summand in F(B), and F(B) € A). Since A is
closed under extensions, also E(J;) € A, whence Q € A, a contradiction. Thus,
P NS = @. Since the completion of the localizations of a free R,;-module is
p-divisible for all p # ¢, we infer that F(B).p = F(B) forall p € P.

The rest of the proof is the same as for the case (1) in [9, 1.3], i.e., we take
a singular cardinal t of cofinality @ bigger than the cardinalities of R, B and K
and let u = t+, and take the appropriate { F(B)}-filtered module A € B+ = B
so that for the module H as above, Ext}Q(H ,K) = 0, whence H € A, but
Ex‘[}e (H, A) # 0, in contradiction with 4 € B. |

Next we show that in the extensions of ZFC with the Weak Diamond Princi-
ple @, for many non-right perfect rings, the class of all projective modules is the
cofactorization class of a suitable (single) epimorphism. The point is that one can
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combine the methods developed (in ZFC) in infinite dimensional tilting theory [14,
§8.2] with the following lemma employing ® which generalizes [12, Lemma A.7]
and [7, Theorem XII.1.10].

First, however, we have to recall the statement of the principle ®. Given a
set X, we say that a system (X, | o < k) is a k-filtration of X if X = U, Xa,
| Xo| < k, Xo € Xg41 foreacha < k, and X, = Uﬁm Xg whenever a < « is
a limit ordinal.

Given a regular uncountable cardinal « and a stationary subset S C «, we
denote by ®,(S) the following statement. let X be a set with |X| < « and
(Xo | @ < k) be a k- filtration of X; moreover, for each « € S let a mapping
Py:P(Xy) — {0, 1} be given. Then there exists ¢: S — {0, 1} such that, for each
Y € X, theset{a € S| Po(Y N Xy) = ¢(c)} is stationary in «.

The Weak Diamond Principle ® asserts that “®,(S) holds for each regular
uncountable cardinal k and stationary subset S C «”. It is consistent with ZFC
since it follows, for instance, from the axiom of constructibility V = L. It is however
much weaker than V = L, and also weaker than the famous Jensen’s diamond
principle <.

LemMa 2.9. Let A, B be R-modules with |B| < « where k is a regular un-
countable cardinal. Assume that A is the direct limit of a continuous well-ordered
directed system A = (A, hgo: Aa — Ap | < B < k), where Ay is < k-gen-
erated and EXt}Q(Aa, B) =0 for each « < «. If the set S C {a < « |
Ext}e (Coker(hg+1a), B) # 0} is stationary in k and ®,(S) holds, then one has
Exth(4, B) # 0.

Proor. First, we extend the system A into a continuous well-ordered system

of short exact sequences £,:0 — Ky E> F, g Ay — 0 where F, is a free module
of rank < « and the three components of connecting maps €y4+14: E¢ —> Eq+1 are
inclusion, split inclusion and /4414, respectively. Using the assumptions that « is
infinite regular and A, is < k-generated for @ < «, this is easy.

As the direct limit, we get a short exact sequence 0 — K S F5A50
where F' is free of rank < . Thus we obtain also a «-filtration (V, | @ < k) of a
set V of free generators of F' where V, is a set of free generators of F, for each
a<k.

Since Ext}Q(Aa, B) = 0 for « < «, we can fix for each homomorphism
f: Ky — B one of its extensions f¢ € Homg(Fy, B). Furthermore, we fix, for
eacha € S, aky, € Hompg(Ay, B) which cannot be factorized through sy 4 14.

Consider any «-filtration (B, | @ < «) of the set B (the B, need not be
submodules of B, just subsets) and put X = V x B and X, = V, x By for
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each o < k. Let @ € S be arbitrary. We define the mapping P,: Py — {0, 1} as
follows: if Z € X, is not a mapping from V,, to B,, we put Py(Z) = 0; otherwise,
we fix a unique extension z € Hompg(Fy, B) of Z and put y = (z | Ky)¢. Then
y — z is zero on K, and thus it defines a unique homomorphism from A, to B.
We put Py(Z) = 1 if and only if this homomorphism can be factorized through
h(x+1a-

Using &, (5), we get p: S — {0, 1} for our choice of the mappings P,. To show
that Ext}e (A, B) # 0, werecursively construct a homomorphism f: K — B which
cannot be extended to an element of Hompg(F, B). We start with fo: Ko — B the
zero map. If ¢ < « is a limit ordinal, we put f, = [ B<a /- Let us assume that
fo is already constructed and o < k. We define fy+1: Ko+1 — B as follows:

Letusput f, = f¢ifa € S or p(o) = 0; otherwise, we put f, = f + kq7q.
We extend f,, arbitrarily to a homomorphism f‘j: Fy+1 — B and define fy as
fa+ r Ko+1.

Finally, we put f = f,: K — B. For the sake of contradiction, we assume that
there exists g € Homg(F, B) such that g | K = f. It is easy to see that the set
C ={a < k| g(Vy) C By} is closed and unbounded. Using the property of ¢
forY =g | V,weobtainad € C NS such that Ps(g | V5) = ¢(8). Obviously,
f5+ — g | Fsy41is zero on K. Thus, it defines a unique # € Homg(Ags+1, B).
Then k = hhsyy s where k: Ag — B is such that kng = f{ — g I Fs.

If (8) = 0,thenkns = f—g I Fs inthe contradiction with Ps(g ' Vs) =0
which has meant that k cannot be factorized through hs. 5.

If on the other hand ¢(§) = 1, then kns = ksms + f — g | Fs. Since
Ps(g | Vs) = 1, we know that k — kg can be factorized through hs, 15 which
immediately implies that ks has this property as well, in contradiction with its
choice. O

A typical application of Lemma 2.9 is the following: given a filtration A =
(Aq | @ < k) of A consisting of < k-generated modules such that A, A, € + B for
each @ < k and | B| < «, there exists a subfiltration of A with consecutive factors
in + B provided that ® holds true.

In the sequel, given a € € Mod- R and a cardinal i, we denote by C=* (or C=<H,
respectively) the subclass of € consisting of all the modules which are p-presented
(< p-presented, respectively).

Also, we will say that a module M has C-resolution dimension < n provided
that there exists an exact sequence £:0 - C, —»> C,—; — -+ > C; — Cy —
M — 0 with C; € Cforalli < n. The sequence € is called a C-resolution of M
of length n.
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Finally, recall that given a module M and a cotorsion pair € = (A, B) where
A = Filt(A=*) for a cardinal u, there exists a special B-preenvelope of M, i.e.
a monomorphism f: M — B where B € B and Coker(f) € A. This follows
from [14, Theorem 6.11] and the fact that € is generated by a representative set of
p-presented modules from A.

THEOREM 2.10. Assume that ® holds true. Let € = (A, B) be a hereditary
cotorsion pair such that A N B = Add K for some K € Mod-R. Assume that
i > |K| + |R| is an infinite cardinal such that A = Filt(A=H).

Let M be a module of A-resolution dimension < n (e.g., assume M € P,).
Then M € A if and only ifExt’k(M, K®Y =0forall0<i <n.

Proor. The only-if part follows immediately since K*) € B and € is hered-
itary. Let us concentrate on the if part. We shall prove it by induction on n. The
result is trivial forn = 0, so letn = 1.

We thus have a short exact sequence £:0 — A; — A 5 M — 0 with
Ag, A1 € A. Considering a special B-preenvelope of A; and subsequently forming
the obvious push-out, we can w.l.o.g. assume that A; € Add K. By further adding
a suitable direct summand from Add K to Ay and A;, we can moreover assume
that A, = K® for some cardinal k. We argue by induction on « that M € A.

If k < pu, then the short exact sequence € splits by our assumption, whence
M e A. Assume that « = |A;| > . Then A; is trivially {K}-filtered and A is
A=F-filtered by one of our assumptions. If  is regular, we use [24, Theorem 3.4]
to obtain a filtration (£4:0 — Ag1 — Aao = Mo — 0 | ¢ < k) of € where
Agq,1 is a canonical direct summand of A; and Ay € A, whilst |Ag0] < «,
for each « < k. Consequently, since Hompg(—, K (“)) turns € into a short exact
sequence by our assumption, we see that Ext}e (My, K®W) = 0 for each @ < «.
Applying Lemma 2.9, we easily obtain a subfiltration of (M, | « < k) with
consecutive factors in - K. Using the property of Myy,/M, guaranteed by
[24, Theorem 3.4], we see that the consecutive factors belong to A by inductive
assumption, whence M € A by the Eklof lemma.

If k > p is singular, we easily construct, for each regular A < « such that
U < A, asystem 8, consisting of subobjects of the short exact sequence & whose
first term is a canonical direct summand of A; of cardinality < A, the second
term is in A <%, and such that (U8, = € and 8, is closed under unions of chains
of cardinality < A. The third terms of short exact sequences in S, then belong
to LK@, and thus to A = Filt(A=*) by the inductive hypothesis. We use the
Singular Compactness Theorem, [14, Theorem 7.29], to deduce that M € A. This
settles the case n = 1.
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Finally, assume that n > 1. Then the first syzygy, Q(M), in an A-resolution of
M of length n has A-resolution dimension < n — 1. By the inductive hypothesis,
(M) € A which immediately implies that M € A, too. O

RemARrk 2.11. Using dimension shifting, the conclusion of Theorem 2.10 can
be generalized to the statement “if 0 < d < n, then M has A-resolution dimension
< d, if and only if Extyy(M, K) = 0 for all d < i < n.” The original statement
amounts to d = 0.

Also, it follows from Theorem 2.10 that, if M is a module of Add K -resolution
dimension < n, then M € Add K, if and only if Ext’}Q(M, K (“)) = 0 for all
0<i <n.

All tilting cotorsion pairs, including, of course, the trivial cotorsion pair
(Po, Mod-R), satisfy the assumptions of Theorem 2.10. More generally, all hered-
itary cotorsion pairs with the right-hand class closed under direct limits (cf. [3,
Lemma 5.4]). Other examples include, for instance, the cotorsion pair P&F =
(PGTF, ?93"l) from [22]. In particular, if R is a ring over which each module has
finite PGF-resolution dimension, then ® implies the existence of a test module for
projectivity in Mod- R: indeed, by Theorem 2.10, SB& 5 is cogenerated by a single
module. At the same time, the flat cotorsion pair (Fy, £C) is also cogenerated by
a single module, and the flat modules in PSF are precisely the projective ones.

As the following proposition shows, the Weak Diamond Principle can help
us also in another special case which covers the setting of Theorem 2.8 and
complements part (b) therein.

ProposiTion 2.12. Let € = (A, B) be a cotorsion pair with B C J;. Assum-
ing ®, € is generated by a set if and only if € is cogenerated by a set.

Proor. The if part follows e.g. by [14, Theorem 11.2] where & and our
Lemma 2.9 play the role of ¥ and [14, Lemma 11.1]. Let us prove the only-if
part.

Denote by « the least infinite cardinal such that ¥ > |R| and A = Filt(A=K).
For each infinite cardinal p, fix a module W, € B such that a < u-presented
module M belongs to A if and only if M € -W,,. The module W, can be defined
e.g. as [ [yes War where 8 is the representative set of all < p-presented modules
not belonging to A and Wys € B is such that Exty (M, Wyy) # 0.

We construct a continuous increasing sequence (Ao | @ < k™) of cardinals:
we start by putting Ao = «; if o is limit, we put Ay = Y _5_, Ap. Finally, if A4
is defined and o < k™, we set Agr1 = (Aq + (Wi ). Put A = A +. By the
definition, we see that A“ = A.
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Let W denote the submodule of [ |, .+ Wj,, consisting of elements of bounded
support (i.e., of support of cardinality < «). Then W € B since A = Filt(A=¥).
Also |W| = A = X. We claim that A = L W. Clearly, A € 1 W.Let M € +W
be arbitrary. We shall prove that M € A by induction on 6 = [M|.

If & < A, then M € A immediately follows by the definition of modules W},
o < kt. Assume that N € LW = N € A holds for all modules N of cardinality
< 0 for some 6 > A.

First, consider the case of a regular cardinal § = |[M| where M € L W. Since
W € J; by our assumption, LW is closed under submodules, and we can use
Lemma 2.9 to infer that there is a ~W-filtration of M consisting of modules
of cardinality < 6. By the inductive assumption, this is actually an A-filtration,
whence M € A by the Eklof lemma.

If 6 is singular, we use the inductive hypothesis and W € J; to deduce that, for
each regular u < 0 with ¥k < p, the system 8, of submodules in M of cardinality
< u consists of modules from A = Filt(A=¥). Consequently, we can use Singular
Compactness Theorem [14, Theorem 7.29], to infer that M € A. O

Combining the results above, we obtain

CoroLLARY 2.13. Let R be a non-right perfect ring such that each flat module
has finite projective dimension. Then the assertion “There exists an epimorphism
7 such that Py is the cofactorization class of w” is independent of ZFC.

In particular, this is the case when

e R is a commutative noetherian ring of non-zero finite Krull dimension,
e R is an n-lwanaga—Gorenstein ring for n > 1,

e R is an almost perfect ring.

Proor. Consistency of the failure of the assertion under SUP follows by
Lemma 2.7.

Assuming &, we can apply Theorem 2.10 for K = R and € = (Py, Mod-R) to
obtain the epimorphism 7: @, _; ., E(Q7 (R®)) — E(Q7 (RP))/ Q= (RWP),
where Q7 (R®)) denotes the i th_cosyzygy of R® which tests for projectivity of
modules of finite projective dimension. From our assumption that all flat modules
have finite projective dimension it follows that P, is the cofactorization class of
the epimorphism =& @ go, where gg is the epimorphism from Corollary 2.4.

Finally, flat modules over a commutative noetherian ring of Krull dimension
d < o have projective dimension < d by a classic result of Gruson and Jensen
(cf. [27, 4.2.8]). If R is n-Iwanaga—Gorenstein, then proj.dim M < n for each
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module of finite flat dimension by [10, 9.1.10]. If R is almost perfect, then all flat
modules have projective dimension < 1 by [13, 7.1] (see also [11]). O

Remark 2.14. By Remark 2.6(1), the Dual Baer Criterion (DBC) holds for
each right perfect ring, that is, g: RT — [[;<r R/I, where T is the set of all right
ideals of R, is a test epimorphism for projectivity.

By Lemma 2.7, it is consistent with ZFC that the DBC fails for each non-right
perfect ring. In fact, in contrast with Corollary 2.13(2), DBC fails (in ZFC) for all
commutative noetherian rings that are not perfect (i.e., have Krull dimension > 1)
by [15]. However, there do exist commutative hereditary rings for which DBC is
independent of ZFC, [26].

3. Projective modules and large cardinals

The question of whether it is consistent with ZFC that there exists a test epimor-
phism for projectivity over any ring remains open. Apart from using the Weak Dia-
mond Principle, another possible approach here is to utilize large cardinals; in par-
ticular the strongly compact ones. An uncountable cardinal « is called a strongly
compact cardinal provided that each x-complete filter (on any set /) can be ex-
tended to a x-complete ultrafilter; recall that a filter F is k-complete if (8 € F
for each 8 € JF of cardinality < . (Each filter is 8¢-complete by definition.)

In [21], it is shown that, assuming the existence of a strongly compact « > | R|,
there exists a free R-module F such that all projective modules belong to Prod(F).
It is straightforward to check then that a module M of finite projective dimension
such that Exty (M, F) = 0 for all i > 0 is necessarily projective. As a result, in
the proof above, one can alternatively assume that there exists a proper class of
strongly compact cardinals, instead of ®. We should note, however, that consis-
tency results not relying on large cardinals are usually considered more valuable.

Nonetheless, using strongly compact cardinals, we can get to a situation which
resembles the case of right perfect rings where a test module for projectivity al-
ways exists. We need just one more preparatory lemma inspired by [1, Proposi-
tion 2.31]. In its proof, we use the characterization of A-pure monomorphisms via
solvability of systems of R-linear equations, cf. [12, Exercise XIII.7.2]. Also re-
call that, given a module B and a filter F on I, a reduced power B! /T is defined
as B! /Z5 where

Zy={feB'|{iel| f(i)=0}eT)}.

If F is actually an ultrafilter, then B /T is called an ultrapower of B.
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Lemma 3.1. Let A be an infinite regular cardinal, f:A — B a A-pure
monomorphism which is the colimit of a A-directed system (f/: A; — B} |i € I)
of morphisms between < A-presented modules. Let F be an arbitrary A-complete
filter on I containing all the sets i = {j € I | i < j} where i runs through I.
Then there exists a A-pure embedding of Coker( f) into the reduced power B! /7.

Proor. As in the proof of [1, Proposition 2.30(ii)], we use push-outs and
A-purity of f to get a A-directed system 8 = (fi:4 — B;,bj;:B;i — Bj | i <
j € I) in the coma-category A | Mod-R consisting of split monomorphisms and
such that li_r>n8 = f. Letus denote by b;: B; — B,i € I, the colimit maps (so
b; fi = f) and by g;: B; — A the retractions, i.e. g; f;i = 14.

Let p: B — B! /7 be the diagonal embedding of B into the reduced power.
We also define the morphism ¢: B — B’ /J by first picking, for each b € B, an
index i € I and ¢ € B; such that b;(c) = b, and then setting g(b) = [(u;)jer]s
where u; = b; f;g;bji(c) if i < j and u; = 0 otherwise. By the assumption on
F, this is a correctly defined homomorphism.

It is easy to check that pf = ¢f, whence we get a unique morphism
v:Coker(f) — B!/F such that p — g = v where n: B — Coker(f) is the
canonical projection. It remains to verify that v is a A-pure monomorphism.

Let 2 be a system of R-linear equations with parameters from Coker( /) such
that T := || < A. Since 8 is A-directed, there exists i € [ such that each
parameter in Q is of the form 7b;(c) for some ¢ € B;. Let us enumerate in
(ca | @ < 7) all these elements c¢. Assume that the system € with parameters
(vih;(cq) | @ < 7) has a solution in B! /F. By A-completeness of F and the other
assumption we have put on it, there exists j € I,i < j suchthat 2 with parameters
(bi(ca) — bj figjbji(ca) | @ < 7) has a solution in B. Taking the w-image of
this solution (note that wb; f; = wf = 0), we obtain a desired solution of €2 in
Coker( f), showing that v is a A-pure monomorphism. |

Remark 3.2. (1) Given a A-pure monomorphism f, there is always a A-di-
rected system (f;' | i € I') consisting of morphisms between < A-presented mod-
ules such that its directed colimit is f. Also note that the filter on / generated
by the sets 1 i is A-complete, whence there always exists a filter F satisfying the
assumption of Lemma 3.1.

(2) Since Lemma 3.1 holds also for A = Ry, it gives a direct proof of the
well-known fact that each definable class of modules (i.e. closed under directed
colimits, pure submodules and products) is closed under pure-epimorphic images.
Note that the reduced power B’ /7 is the directed colimit of powers of B and
canonical epimorphisms between them.
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Now we are ready to prove the promised result. Recall that, given a regular
infinite cardinal «, a category X is called k-accessible, if it has k-directed colimits
and there is a set § of < «-presented objects such that every object is a x-directed
colimit of objects from §. For instance, Mod-R is an NXy-accessible category for
any ring R since each module is a direct limit of finitely presented modules.

THeEOREM 3.3. Let k be a strongly compact cardinal and R a ring such that
|R| < k. Then each k-pure epimorphism g: B — C with B projective splits. In
particular, the category Py of all projective R-modules and R-homomorphisms is
k-accessible.

Proor. We can assume without loss of generality that B is actually a free
module. Using the lemma above for « = A, we can find a «-pure embedding
h:C — B!/U with U a k-complete ultrafilter; remember that each x-complete
filter extends to a k-complete ultrafilter. By [7, Theorem I1.3.8], the ultrapower
B! /U is a free module as well. We repeat the process with Coker(%), and so on,
and eventually obtain an unbounded pure-exact complex consisting of projective
(even free) modules which is well known to be contractible, cf. [6, Theorem 2.5].
In particular, C is projective and g splits.

Finally, since each «-directed colimit of projective modules is a x-pure-
epimorphic image of a direct sum of projective modules, we see that the class
Py is closed under taking k-directed colimits. To see that Py is x-accessible, ob-
serve that each projective module is a directed union of a «-directed system of
< k-generated projective modules. |

Another consequence of Lemma 3.1 is the following closure property of the
class D of all flat Mittag-LefHer (= R;-projective) right modules.

ProposiTioN 3.4. Let R be a left coherent ring such that any ( finite or infinite)
intersection of finitely generated submodules of g R is finitely generated. Then
D is closed under R1-pure-epimorphic images.

Proor. Recall that D is always closed under pure submodules and directed
colimits of 8;-continuous directed systems, cf. [16, Lemma 4.1, Proposition 2.2].
Furthermore, by [16, Theorem 4.7], D is closed under products precisely over
rings satisfying our assumption. Let 0 - A — B — C — 0 be an X;-pure short
exact sequence with B € D. It follows from Lemma 3.1 that C is a pure submodule
of areduced power B! /F where F is an R -complete filter. Consequently, B! /T is
the directed colimit of X;-continuous directed system consisting of direct powers
of B and epimorphisms. As such B /F € D, and hence also C € D. |
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Below, we show that the additional assumption on R is necessary.

ExampLE 3.5. In this example, by “countable,” we mean “of cardinality < R;.”
Consider the boolean ring R consisting of all the subsets of w; which are either
countable, or have countable complement, with the usual operations of symmetric
difference and intersection. The ideal / of all the countable subsets of w; is easily
seen to be maximal, and it is not a direct summand in Rg. It follows that the simple
module R/ is not (flat) Mittag-Leffler. On the other hand, the inclusion / < Rp
is the N;-directed (but not ®;-continuous!) colimit of split inclusions eR < Rp
where e runs through countable subsets of w1, thus I < Rp isRj-pureand R/1 is
an R-pure-epimorphic image of a free module which is not (flat) Mittag-Leffler.
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