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1. Introduction

Let T D R=Z. A torus is a topological group isomorphic with a power Tm.

A protorus is a compact, connected, finite dimensional topological group. In par-

ticular, a protorus is divisible as an abelian group ([9, Corollary 8.5, p. 377]).

[9, Proposition 8.15, p. 383] deals with the existence of compact totally discon-

nected subgroups � of a protorus G such that G=� is a torus. These ı-subgroups

enter into the Resolution Theorem for compact abelian groups [9, Theorem 8.20,

p. 387]). The Pontryagin duals of protori are the torsion-free groups of finite rank

and the duals of short exact sequences � � G � T where G is a protorus,

� is a ı-subgroup of G and thus T is a torus, are exact sequences F � A � D

where A is a discrete torsion-free group of finite rank, F is a free subgroup of A

and D is a torsion group. This suggests to study the full free subgroups F of A,

i.e., the free subgroups of A with torsion quotient. Let F.A/ denote the set of

all full free subgroups of A and let D.G/ denote the set of all ı-subgroups of

the protorus G. In Theorem 3.5 a comprehensive description of F.A/ is estab-

lished, and by duality a similarly comprehensive description of D.G/ is obtained

(Theorem 4.2, Theorem 4.3). In fact, there is an inclusion reversing lattice iso-

morphism ıWF.A/ ! D.G/ where G D A_ (Theorem 4.2). In Theorem 3.5(11)

and Proposition 3.7 the structure of the quotients A=F of A is determined, and in

Theorem 4.3(10) and Proposition 4.10 the structure of the subgroups� ofG is de-

scribed. The families F.A/ and D.G/ taken as neighborhood bases of open sets at

0 define linear topologies on A and G respectively. The completion of A with the

F.A/-topology can be described to a high degree (Proposition 5.9). The canoni-

cal subgroup � WD
S

D.G/ of G has interesting properties (Theorem 4.3(2,8,9),

Corollary 4.9) and leads to a “canonical” resolution theorem (Theorem 4.11). Also

G and � with the D.G/-topology turn out to be locally compact and therefore

complete (Theorem 6.2). This leads to a second canonical form for the resolution

theorem (Theorem 6.6).

Acknowledgments. The authors wish to thank the referee for a very careful

reading of the paper that led to substantial corrections and improvements.

2. Notation and background

As a rule A;B; C;D;E; : : : denote discrete groups and G;H;K;L; : : : are used to

denote topological groups. Unless otherwise stated, p denotes an arbitrary prime

number. TFFR is the category of torsion-free abelian groups of finite rank, and

as usual LCA is the category of locally compact abelian groups. .�/_ denotes the
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Pontryagin dual, while b.�/ is reserved for completions such as yZ, the completion

of Z in the n-adic topology, yZp for the completion of Z in the p-adic topology,
yAF is the completion of A in the free topology (Definition 5.2). We will use

N D ¹1; 2; : : :º and P denotes the set of all prime numbers.

Let C be a category. The symbol A ŠC B will say that A;B are isomorphic

in the category C . We will deal particularly with the category Ab of (discrete)

abelian groups and the category topAb of topological abelian groups. The symbol

Š without subscript is used to indicate algebraic isomorphism.

For a discrete abelian group A, rkp.A/ D dimZ=pZ.A=pA/ denotes the p-rank

of A and rk.A/ D dimQ.Q˝ A/ is the torsion-free rank of A. We also will need

dim.AŒp�/which is just the vector space dimension of thep-socleAŒp� D ¹a 2 A j

pa D 0º as a Z=pZ-vector space.

In the literature the dimension of a compact abelian group is defined in several

ways that coincide. Let G be any compact abelian group. The cardinal

m D sup¹�WG=H ŠtopAb T� and H is a closed subgroup of Gº

is the dimension of G, dim.G/ D m ([10]). If m is finite, then m is exactly the di-

mension ofG as defined in [8] and coincides with dimR.L.G// ([9, Theorem 8.22,

p. 390]).

Lemma 2.1 ([10] and [9]). Let G be a compact abelian group. Then,

1. G is totally disconnected if and only if dim.G/ D 0;

2. dim.G/ D rk.G_/.

We also recall that profinite groups are the limits of surjective inverse systems

of finite groups.

Theorem 2.2 ([17, Theorem 1.1.12, p. 10]). A group is profinite if and only if

it is compact, totally disconnected, and Hausdorff.

We remark that all topological groups encountered in this paper are Hausdorff

so that any compact totally disconnected group is profinite.

3. The lattice of full free subgroups

We will use Proposition 3.1 in proving one of the properties of F.A/.

Proposition 3.1. Let A 2 TFFR of rank n and let F be a full free subgroup

of A. Then dim..A=F /Œp�/ � n. Consequently .A=F /p D
Ln
iD1Z.p

npi / where

0 � npi � 1.
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Proof. Write .A=F /Œp� D
L
i2I hxiCF i. LetJ be a finite subset of I . We will

show that ¹xj j j 2 J º is linearly independent in A and hence jJ j � rk.A/ D n.

It then follows that jI j � n.

Suppose that
P
j2J mjxj D 0. Then

P
j2J mj .xj CF / D 0 and it follows that

p j mj for all j 2 J . Hence
P
j2J .mj =p/xj D 0 and by induction it follows that

pk j mj for all k. This is possible only if mj D 0, and we have established that

¹xj j j 2 J º is a linearly independent set in A.

The structure of the p-primary component .A=F /p can be seen by considering

a basic subgroup B of .A=F /p ([6, Theorem 5.2, p. 167]). The subgroup B must

be finite because .A=F /pŒp� is finite, hence BŒp� is finite, and B is a direct

sum of cyclic groups. Also B is pure in .A=F /p, hence a direct summand ([6,

Theorem 2.5, p. 156]. Consequently .A=F /p is the direct sum of a finite group

and finitely many copies of Z.p1/. �

Corollary 3.2. Let A 2 TFFR and F 2 F.A/.

1. If A=F is bounded, then A=F is finite and A is free.

2. If A is not free, then A=F is unbounded, and hence either there exists p 2 P

such that .A=F /p has a summand isomorphic to Z.p1/ or .A=F /p ¤ 0 for

infinitely many primes p.

Two (discrete) torsion groups T1; T2 are quasi-isomorphic, T1 Šqu T2, if there

exist homomorphisms f WT1 ! T2 and gWT2 ! T1 such that T2=f .T1/ and

T1=g.T2/ are bounded ([1, pp. 11–12]).

Lemma 3.3 ([1, Proposition 1.9, p. 12]). Let A 2 TFFR. If F1; F2 2 F.A/,

then A=F1 Šqu A=F2.

The quasi-isomorphism class ŒA=F �qu is the Richman type of A, RT.A/, an

invariant of the group A by Lemma 3.3.

We say analogously, that two compact totally disconnected groups�1; �2 are

isogenous, �1 Šisog �2, if there exist morphisms f W�1 ! �2 and gW�2 ! �1

such that Ker.f / and Ker.g/ are bounded.

Lemma 3.4. If T1; T2 are torsion groups and T1 Šqu T2, then the Di WD T _
i

are compact totally disconnected groups and D1 Šisog D2.

Proof. Immediate by duality. �

For a group X , a subgroup Y and m 2 N, define

m�1
X Y D ¹x 2 X j mx 2 Y º:
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For future use we observe that for torsion-free A with divisible hull QA and a

subgroup F of A, the following formula is true.

(1) F � m�1
A F D A \ �

QA

m�1.F /;

where �
QX

m�1 denotes multiplication by m�1 in QX .

Theorem 3.5. For A 2 TFFR of rank n, the family F WD F.A/ has the

following properties.

1. rk.F / D rk.A/ for all F 2 F; in particular, every F 2 F is finitely generated

and QF D QA.

2. F is closed under finite intersections.

3. F is closed under finite sums.

4. For any m 2 N, and F 2 F, m�1
A F 2 F. In particular, F is closed under

finite extensions.

5. F is closed under subgroups of finite index.

6. If F 2 F, then mF 2 F and
T
mmF D 0 for all m 2 N.

7.
T

F D 0, and
S

F D A.

8. F is a lattice with meet = \ and join = C.

9. If F1; F2 2 F, then A=F1 Šqu A=F2.

10. Let F; F 0 2 F. Then there exists k 2 N such that kF 0 � F .

11. Let F 2 F. Then, for the primary decomposition A=F D
L
p2P.A=F /p,

we get dim..A=F /Œp�/ � n and .A=F /p ŠAb

Ln
iD1Z.p

npi / for all p 2 P,

where 0 � npi � 1.

Proof. (1) Obvious and well known.

(2) Certainly F1 \ F2 is free. The map A=.F1 \ F2/ ! A=F1 ˚ A=F2;

aC.F1\F2/ 7! .aCF1; aCF2/ is well defined and injective. HenceA=.F1\F2/

is torsion.

(3) Certainly, A=.F1CF2/ is a torsion group as an epimorphic image ofA=F1.

Also F1 C F2 is finitely generated and torsion-free, so it is free.

(4) Let m 2 N and F 2 F. Then �
QA

m�1.F / Š F is a free group and hence so

is m�1
A F D A \ �

QA

m�1.F /. As m�1
A F contains F it is a full free subgroup of A.

Finite extensions of F are a special case of what has been considered.

(5) Let F 2 F and F 0 a subgroup of F with F=F 0 finite. Then F 0 is free and

F=F 0 � A=F 0 � A=F is exact with torsion ends, hence A=F 0 is torsion.
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(6) Clear as F is free.

(7) By (6) mF 2 F and
T

F �
T
mmF D 0 as F is free. Every element of A

is contained in some full free subgroup, so
S

F D A.

(8) follows from (2) and (3).

(9) Lemma 3.3.

(10) .F 0CF /=F � A=F is a finitely generated torsion group, hence bounded

(actually finite), so there is k 2 N such that kF 0 � F .

(11) Proposition 3.1. �

Theorem 3.5(11) shows that not every torsion group can appear as a quo-

tient A=F . In fact, it shows the following:

Corollary 3.6. Let A 2 TFFR, rk.A/ D n, and F 2 F.A/. Then there is a

monomorphism A=F !
� L

p2P Z.p1/
�n

.

Proposition 3.7 shows that the restrictions of Theorem 3.5(11) are the only

ones necessary.

Proposition 3.7. Let T D
L
p2P Tp be a torsion group with p-primary

componentsTp such that dim.T Œp�/ � n for a fixed n 2 N for allp 2 P. Then there

exists a group A 2 TFFR with rk.A/ D n and F 2 F.A/ such that A=F ŠAb T .

In fact, A may be taken to be completely decomposable.

Proof. By Proposition 3.1 T D
Ln
iD1

�L
p2P Z.pnpi /

�
where 0 � npi � 1.

Let F D Zv1˚� � �˚Zvn, the free group of rank n, and let V D Qv1˚� � �˚Qvn be

the divisible hull of F . For each i a summand Z.pnpi / ¤ 0may be finite cyclic or

the Prüfer groupZ.p1/. In the first case letApi D ZviCZ 1

p
npi
vi and if npi D1,

then let Api D Zvi C
P1

jD1Z
1

pj vi , and finally let Ai D
P
p2P Api . Then Ai is a

rank 1 group containing Zvi and clearly Ai=Zvi ŠAb

L
p2P Z.pnpi /. Finally, let

A D
Ln
iD1Ai , and note that A=F ŠAb T . �

4. F.A/ and D.G/

We now establish the connection of discrete groups and full free subgroups with

compact groups and ı-subgroups.

As an essential tool we will use annihilators. ForG 2 LCA, we have the pairing

G_ � G ! R=ZW .�; g/ 7! �.g/. For a subset X of G, we define the annihilator

of X in G_ by X? D .G_; X/ D ¹� 2 G_ j �.X/ D 0º. We assume familiarity

with the basic properties of annihilators [9, pp. 314–325], in particular see [9,

Theorem 7.64, p. 359]; alternatively see [10, pp. 270–275].
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Theorem 4.1 ([9, Theorem 7.64(v), p. 360]). Let G 2 LCA. Then � WH 7!

H? D .G_; H/ is a lattice antiisomorphism between the lattice of all closed

subgroups of G and the lattice of all closed subgroups of the LCA group G_. In

particular, H � K if and only if �.K/ � �.H/.

Let G be a protorus. Without loss of generality assume that G D A_ for some

A 2 TFFR. Let F 2 F.A/. Then F
ins
� A

˛
� A=F is exact where ˛ is the natural

epimorphism. Therefore

(2) .A=F /_ G F _�

!
˛_  

�
restr.

is exact, where F _ is a torus Trk.A/ and ˛_..A=F /_/ is a compact totally discon-

nected subgroup of G. Hence ˛_..A=F /_/ 2 D.G/. Define

(3) ıWF.A/ �! D.G/; ı.F / D ˛_..A=F /_/:

Theorem 4.2. Let A 2 TFFR and G D A_. Then, for all F 2 F.A/,

.G; F / D ˛_..A=F /_/, ı.F / D .G; F / D F?, and ıWF.A/ ! D.G/ is a

containment reversing bijective map satisfying ı.F1 C F2/ D ı.F1/ \ ı.F2/ and

ı.F1\F2/ D ı.F1/C ı.F2/. In particular, D.G/ is a lattice with joinC and meet

\ that is antiisomorphic with F.A/.

Proof. (a) We first show that ˛_..A=F /_/ coincides with .A_; F /, the an-

nihilator of F in A_ D G. In fact, suppose first that � 2 .G; F /. Then

�.F / D 0, so ��FD 0. Hence � is in the kernel of the restriction map in (2), i.e.,

� 2 Ker.restr:/ D ˛_..A=F /_/. Conversely, if � 2 Ker.restr:/, then �.F / D 0

and � 2 .G; F /.

(b) By Theorem 4.1, H 7! H? establishes a containment reversing lattice

isomorphism between the lattice of closed subgroups ofG and the lattice of closed

subgroups of G_. Applying this result to A and G D A_, we need only observe

that .G; F / 2 D.G/ for all F 2 F.A/ and � D .G; F / for some F 2 F.A/ for all

� 2 D.G/. �

We now establish, for a protorus G D A_, the properties of D.G/ correspond-

ing to the properties of F.A/. Recall that for anym 2 N and any subgroup Y ofX ,

we have m�1
X Y D ¹x 2 X j mx 2 Y º. Furthermore, set

� WD
X

D.G/:
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Theorem 4.3. Let G be a protorus. The family D WD D.G/ has the following

properties.

1. D is a lattice with join C and meet \. Hence � D
S

D.

2.
T

D D 0 and � D
S

D is dense in G.

3. If �1; �2 2 D, then �1 Šisog �2.

4. Let � D ı.F / and �0 D ı.F 0/ and assume that � � �0. Then F 0 � F and

Œ�0 W �� D ŒF W F 0� <1.

5. Let �;�0 2 D. Then there exists k 2 N such that k�0 � �.

6. If � 2 D, then m�1
G � 2 D for any m 2 N. Hence tor.G/ � � and

� D
P
m2Nm

�1
G �.

7. Let � 2 D and m 2 N. Then m� 2 D.

8. �=� D tor.G=�/ for all � 2 D, and hence G=� is torsion-free.

9. � is divisible.

10. Let � 2 D and n D dim.G/. Then � ŠtopAb

Q
p2P�p, rkp.�p/ � n, and

�p ŠtopAb

Qn
iD1�pi , where�pi is either a cyclicp-group or else�pi D yZp,

the group of p-adic integers .i D 1; : : : ; n/.

Proof. Without loss of generality G D A_ for A 2 TFFR.

(1) Theorem 4.2 establishes the lattice property. As D is closed under finite

sums, we have
P

D D
S

D.

(2) By [9, Theorem 7.64(vii), p. 360],
T

D D
�
G;

S
F.A/

�
D .G; A/ D 0 andS

D D
�
G;

T
F.A/

�
D .G; 0/ D G.

(3) There exist F1; F2 2 F.A/ such that �i D .G; Fi /. By Theorem 3.5(9) we

conclude thatA=F1 Šqu A=F2 and hence by Lemma 3.4 .A=F1/
_ Šisog .A=F2/

_.

(4) By Theorem 4.2 F 0 � F and as F=F 0 is both finitely generated and

torsion, it is finite. We now employ [9, Theorem 7.64(ii), p. 360] to conclude that

�0=� ŠtopAb .F=F
0/_ ŠtopAb F=F

0 and the claim follows.

(5) By (4), Œ�C�0 W �� is finite. Hence there is k 2 N such that k�0 � �.

(6) Let � D .G; F / 2 D with F 2 F.A/. If m 2 N, then m�1
G � D

m�1
G .G; F / D .G;mF / (cf. [10, Lemma 6.4.14, p. 274]), so since mF 2 F.A/

we have � � m�1
G � 2 D. Therefore � D

P
D D

P
mm

�1
G � by (5).

(7) Without loss of generality � D ı.F / for some F 2 F.A/. By Theo-

rem 3.5(4) we know that m�1
A F 2 F.A/. Using [10, Lemma 6.4.14, p. 274] we

obtain m� D ı.m�1
A F / 2 D.
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(8) This follows from (5) and (6).

(9) The protorus G is divisible and by (8) � is pure in G hence also divisible.

(10) Dual of Theorem 3.5(11). �

Remark 4.4. Our results include the case that A is free of finite rank, i.e.,

G D A_ is a finite-dimensional torus. In this case the quotients A=F , F 2 F.A/,

are all finite, so are the � 2 D.G/ and G=� ŠtopAb G.

Corollary 4.5. Let G be a protorus of dimension n and � 2 D.G/. Then

there is the exact sequence

�

�

G

�

G

�
;

�

!

 

�

where G
�
ŠtopAb

�
R
Z

�n
is a torus, �

�
D tor

�
G
�

�
Š

�
Q

Z

�n
is dense in G

�
, and

G
�
Š

�
R
Q

�n
.

Proof. By Theorem 4.3(2) � is dense in G, hence so is �

�
in G

�
. The quotient

G
�

is a torus by definition of �, and the rest follows. �

A topological groupG is finitely generated if there is a finite subsetS ofG such

that G D hSi. If G D hSi for some singleton S , then G is called monothetic. For

example, the compact group yZ D
Q
p2P
yZp is monothetic (see [8, Theorem 25.16,

p. 408]).

Dually to Corollary 3.6 we have:

Corollary 4.6. Let G be an n-dimensional protorus and � 2 D.G/. Then

there is a continuous epimorphism
� Q

p2P
yZp

�n
! �.

Lemma 4.7. Let G and H be topological groups. Then,

1. if G D G1 � : : : �Gn and G1; : : : ; Gn are finitely generated, then so is G;

2. if G is finitely generated and �WG ! H is a continuous epimorphism, then

H is finitely generated.

Proof. (1) Write Gi D hSi i with Si a finite subset of Gi .i D 1; : : : ; n/. Then

G D hS1i � : : :� hSni D hS1i � : : :� hSni D hS1 � : : :� Sni.

(2) Notice that �. xE/ � �.E/ for each E � G since � is a continuous map.

If G D hSi, then H D �.G/ D �.hSi/ � �.hSi/ D h�.S/i. Thus H D h�.S/i

and the claim follows. �
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By Corollary 4.6 and Lemma 4.7 we have:

Corollary 4.8. Let G be a protorus. Then each � 2 D.G/ is finitely gener-

ated.

Corollary 4.9. Let G be a nontrivial protorus. Then G ¤ � and hence � is

not a locally compact subgroup of G.

Proof. Let � 2 D.G/. Then G=� is a torus and contains torsion-free ele-

ments, while �=� � G=� is a torsion group. Hence �=� is properly contained

in G=� and G ¤ �. The subgroup � is dense in G and different from G. Locally

compact subgroups are closed, hence � cannot be locally compact. �

Recall that a compact totally disconnected group � is topologically isomor-

phic to
Q
p2P�p with p-primary components �p (see for instance [10, Proposi-

tion 6.6.9, p. 281]). Dually to Proposition 3.7 we have:

Proposition 4.10. Let� be a compact totally disconnected group with p-pri-

mary components�p such that rkp.�p/ � n for a fixed n 2 N for all p 2 P. Then

there exists a protorusG with dim.G/ D n and�0 2 D.G/ such that�0 ŠtopAb �.

In fact, G may be taken to be completely factorable, i.e., the product of protori of

dimension 1.

We also obtain a “canonical resolution.” This is just the Resolution Theorem [9,

Theorem 8.20, p. 387] for protori where the arbitrary � 2 D.G/ is replaced by

the canonical subgroup �. We remind the reader that the “Lie algebra” of G,

L.G/, defined as L.G/ D cHom.R; G/, the group of continuous homomorphisms

R ! G, is a real topological vector space via the stipulation .rf /.x/ WD f .rx/

where f 2 L.G/ and r; x 2 R, and carries the topology of uniform convergence

on compact sets [9, Definition 5.7, p. 117, Proposition 7.36, p. 340]. Furthermore

expWL.G/! G, exp.�/ D �.1/ ([9, p. 340]). [9, Theorem 7.66, p. 362] contains

results on the exponential morphism.

Theorem 4.11. Let G be a protorus and � D
S

D.G/. Then

� � L.G/

�
ŠtopAb G;

the isomorphism being induced by the map 'W� � L.G/ ! G, '..a; �// D

aC exp.�/ D aC �.1/ and � D ¹.exp.a/;�a/ j a 2 exp�1Œ��º.
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Proof. We have to show that 'W� � L.G/ ! G, '..d; �// D d C exp.�/ is

continuous and open and then compute its kernel. The map is continuous as it is

the composite of the continuous map id� expW�� L.G/! �� exp.L.G// with

addition.

To show that ' is open we use the fact that by [9, Theorem 8.20, p. 387]

for every � 2 D.G/ the maps '�W� � L.G/ ! G, '�..a; �// D a C exp.�/

are open maps. The '� are just the restrictions of '. An open set in � is of

the form U \ � where U is an open set of G. Then for any � 2 D.G/, the

intersection U \ � is open in � and U \� D
S
¹U \ � j � 2 D.G/º. By [9,

Theorem 8.20, p. 387] the sets '.U \�/ D '�.U \�/ are open in G, hence so

is '.U \�/ D
S
¹'.U \ �/ j � 2 D.G/º. Of course, ' is surjective as any '�

is surjective.

Finally,

� D Ker.'/ D ¹.a; �/ j aC exp.�/ D 0º D ¹.exp.a/;�a/ j a 2 exp�1.�/º: �

One may ask whether F.A/ is a distributive lattice. As this is a side issue

without direct bearing on our study, we state the answer without proof.

Proposition 4.12. Let A 2 TFFR. If rk.A/ D 1, then F.A/ is distributive. For

larger ranks F.A/ largely fails to be distributive.

The dimension 1 case is settled by a celebrated theorem.

Theorem 4.13 ([16, Theorem 4, p. 267]). The lattice of subgroups of a group

G is distributive if and only if G is locally cyclic.

5. The F-topology of A

Let A 2 TFFR. Recall that F.A/ is a lattice with lattice operations \ and C.

Remark 5.1. Let A 2 TFFR. Then one has A D lim
�!
¹F j F 2 F.A/º with,

for F � F 0 2 F.A/, the map fFF 0 WF ! F 0 being the insertion. Consequently,

A_ D lim
 �
¹F _ j F 2 F.A/ºwith, for F � F 0 2 F.A/, the map f _

FF 0 W .F
0/_ ! F _

being the restriction. As F _ is a torus, we obtain thatA_ is an inverse limit of tori.

Hence the name “protorus” in analogy of “profinite.”

For a general reference on topology, topological groups, and completion

see [11], [8], and [3].

Let A be a topological group. The topology on A is determined by a neighbor-

hood basisU at 0 2 A consisting of open sets and called local basis for short, or by
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a basis O of the topology itself. We will write AŒU� respectively AŒO� to indicate

that A is a topological group with topology given by U respectively O. We denote

the completions of AŒU� D AŒO� by yAU D yAO.

Definition 5.2. The family F.A/ forA 2 TFFR is directed downward (filtered

below) and taken as a local basis defines a linear Hausdorff topology onA, the free

or F-topology ofA. LetAŒF� denoteA as a topological group with the F-topology

and let yAF denote the completion of A in the free topology.

Remark 5.3. If A 2 TFFR and A=U is torsion for a subgroup U of A, then U

contains some F 2 F.A/. This means that the F-topology onA 2 TFFR coincides

with the minimal functorial topology determined by the discrete class T consisting

of all torsion abelian groups as we shall explain.

A functorial topology is a functor T on the category Ab of all abelian groups

to the category topAb of topological abelian groups having the property that

T.f / D f WT.A/ ! T.B/ for all f 2 Hom.A; B/, which means that every

homomorphism f is continuous. The concept is due to B. Charles ([5]). Relevant

references are the survey [13] and the more specialized papers [4], [12], [14],

and [15].

Associated with a functorial topology T on Ab, there is the discrete class

C.T/ of T consisting of all groups T.A/ with the discrete topology. A discrete

class is always closed under embedded groups and finite direct sums. Conversely,

given a discrete class C, i.e., a class of groups that is closed under embedded

groups and finite direct sums, then we obtain a minimal functorial topology TC by

assigning T.A/ the smallest topology that makes every homomorphism f WA! C

continuous where C 2 C. This amounts to saying that the subgroups U of A with

A=U 2 C form a local basis for the topology TC ([4]).

The discrete class T consisting of all torsion groups is closed under embedded

groups, arbitrary direct sums, epimorphic images, and extensions. We will write

AŒT� for a group with the minimal functorial topology with discrete class T and

refer to it as the T-topology or torsion topology. We observed in Remark 5.3

that the free topology on A 2 TFFR coincides with the torsion topology on A,

AŒT� D AŒF�.

At this point we need a lemma.

Lemma 5.4. Let A be an abelian group and 0 ¤ a 2 A. Then there exists

a subgroup U of A with torsion quotient A=U and a … U . Consequently every

group AŒT� is Hausdorff.
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Proof. Let V be maximal disjoint from hai. Then V ˚ hai is essential in A,

in particular A=.V ˚ hai/ is a torsion group. If hai is finite, then for U D V the

quotient A=U is a torsion group and a … U . If hai is infinite, U D V ˚ h2ai does

not contain a and A=U is a torsion group. �

The T-topology has special desirable features due to the closure properties

of T.

Lemma 5.5. Let A;B 2 TFFR. Every f 2 Hom.A; B/ is a continuous map

f WAŒF� ! BŒF� and if f is surjective, then f WAŒF� ! BŒF� is an open map.

Every subgroup of AŒF� is closed.

Proof. The first two claims are general facts and easily verified directly.

Let C be a subgroup of A. By Lemma 5.4 .A=C /ŒT� is Hausdorff, so C is

closed in A. �

Our definition of the F-topology amounts to saying that we found a rather

special local basis for the T-topology on A.

Lemma 5.6. Let A 2 TFFR. Fix F 2 F.A/. Then ¹kŠF j k 2 Nº is a local

basis for AŒT� D AŒF�.

Proof. First kŠF 2 F.A/, hence is an open subgroup. By Theorem 3.5(10)

given any F 0 2 F.A/ there is k 2 N such that kŠF � F 0. �

It is well known that

yAF ŠtopAb lim
 �
¹A=kŠF j k 2 Nº

D ¹.: : : ; ak C kŠF; : : :/ j for all k � ` 2 N; ak � a` 2 kŠF º

([3, III, § 7.3, Corollary 2, p. 290] and [2, III, Exercise 14, p. 236]). We identify
yAF and lim

 �
¹A=kŠF j k 2 Nº, so now A D ¹.: : : ; aC kŠF; : : :/ j a 2 Aº. Let AŒN�

be the topology of A (any abelian group) with ¹nA j n 2 Nº as a local basis. This

N-topology is well known as the Z-adic or n-adic topology and has ¹kŠA j k 2 Nº

as a special local basis. This is the minimal functorial topology with the discrete

class consisting of all bounded groups.

Theorem 5.7. Let A 2 TFFR, let yAF be the completion of AŒF� and let yFN be

the completion of F ŒN�. Then, for any fixed F 2 F.A/,

(4) yAF ŠtopAb
A � yFN

�
where � D ¹.x; x/ j x 2 F º:
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Proof. Let x D .a1C1ŠF; a2C2ŠF; : : : ; akCkŠF; : : :/ 2 yAF. Then ak�a` 2

`ŠF , for all ` � k. In particular, for all k, ak � a1 2 F and so ak D a1 C bk with

bk 2 F . Note that ak � a` 2 `ŠF if and only if bk � b` 2 `ŠF . Hence

x D .a1 C b1 C 1ŠF; a1 C b2 C 2ŠF; : : : ; a1 C bk C kŠF; : : :/

D a1 C .b1 C 1ŠF; b2 C 2ŠF; : : : ; bk C kŠF; : : :/;

where a1 2 A and .b1 C 1ŠF; b2 C 2ŠF; : : : ; bk C kŠF; : : :/ 2 yFN. We define

'WA � yFN �! yAF; '..a; y// D a � y:

This is clearly an algebraic epimorphism, and topologically a continuous map

because yAF � yAF ! yAFW .x; y/ 7! x � y is continuous and so is its restriction '

to a subspace. Further '..a; x// D 0 if and only if a D x 2 F . We will show that

' is open which then establishes (4) by [8, Theorem 5.27, p. 41].

A local basis for the product topology on
Q
k2N A=kŠF consists of subsets of

the form UK D
Q
k>K A=kŠF whereK 2 N. Hence the sets UK\ yAF form a local

basis for yAF. Let UK \ yAF be given and let x 2 UK \ yAF. Then

x D .0; : : : ; 0; a0 C bKC1 C .K C 1/ŠF; : : : ; a
0 C bi C i ŠF; : : :/

D .0; : : : ; 0; a0 C .K C 1/ŠF; : : : ; a0 C i ŠF; : : :/

C .0; : : : ; 0; bKC1C .K C 1/ŠF; : : : ; bi C i ŠF; : : :/;

where a0 2 A and bi 2 F . Thus a WD .0; : : : ; 0; a0C.KC1/ŠF; : : : ; a0C i ŠF; : : :/ 2

UK \ A, y WD �.0; : : : ; 0; bKC1 C .K C 1/ŠF; : : : ; bi C i ŠF; : : :/ 2 .UK \ yFN/

and .a; y/ 2 .UK \ A/ � .UK \ yFN/. Now .UK \ A/ � .UK \ yFN/ is an open

subgroup of A � yFN that is mapped onto the open set UK \ yAF by ' because

'..a; y// D a � y D x. �

In the following F 2 F.A/ is fixed and we employ the local basis ¹kŠF j

k 2 Nº. It is routine to check that the short sequence of inverse systems is exact,

all groups carrying the discrete topology,

(5)
° F

kŠF

ˇ̌
ˇ k 2 N

± ° A

kŠF

ˇ̌
ˇ k 2 N

± °A
F

ˇ̌
ˇ k 2 N

±
;

�

!

 

�

Lemma 5.8. AŒF�=F is discrete and lim
 �
¹A=F j k 2 Nº ŠtopAb AŒF�=F .

Proof. The subgroup F is open in AŒF�, so A=F is discrete. Every x 2

lim
 �k

A=F has the form x D .a C F; : : : ; aC F; : : :/; a 2 A and the inverse limit

topology is the discrete topology. The assignment .: : : ; a C F; : : :/ 7! a C F is

the desired isomorphism of topological groups. �
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Proposition 5.9. Let A 2 TFFR of rank n. Fix F 2 F.A/. Then AŒF�=F is a

discrete torsion group and there is a sequence of completions exact in topAb

yFN
yAF AŒF�=F;

�

!
˛  

�
ˇ

where ˛ is the insertion map and ˇ is continuous and open. Furthermore,
yFN ŠtopAb

yZn, and yAF is a torsion-free group that is an essential extension of yFN.

Proof. (a) Taking inverse limits is a process that is left exact. Therefore (5)

implies that

yFN
yAF AŒF�=F;

�

!
˛  

�
ˇ

is exact. Here, ˛ is the insertion and thus continuous and open onto its image.

By [17, p. 5] the maps ˇ are continuous and we used Lemma 5.8. Evidently,
yAF ! A=F is surjective as .: : : ; a C kŠF; : : :/ 2 yAF maps to a C F 2 A=F

and open as A=F is discrete. Finally, it is well known that the N-completion of

F Š Zn is isomorphic in topAb to yZn.

(b) As a preliminary step we show the following fact. Let

x D .: : : ; ak C kŠF; : : :/ 2 yAF

and assume that infinitely many ak 2 F . Then x 2 yFN. Indeed, given ak C kŠF ,

there exists ` > k such that a` 2 F . Then a` � ak 2 kŠF and hence ak 2 F ,

showing that x 2 yFN.

(c) By way of contradiction, suppose that x D .: : : ; ak C kŠF; : : :/ 2 yAF and

mx D 0 for some nonzero integer m. Then mak 2 kŠF , for all k. Hence for every

k � m, we have that ak 2 .kŠ=m/F � F . By (b) x 2 yFN, a torsion-free group,

contradiction. �

6. The D-topology of G

Let G be a protorus. By Theorem 4.3(1,2) the family D D D.G/ serves as a

local basis for a linear Hausdorff topology of G, the D-topology of G. ThenGŒD�

is a 0-dimensional topological group ([8, (4.21)(a), p. 25]), thus GŒD� is totally

disconnected.

Proposition 6.1. The topology of �ŒD� as a subgroup of GŒD� has the local

basis D. The quotient topology on GŒD�=� is the discrete topology and

GŒD� ŠtopAb �ŒD� � GŒD�=�:

The groupGŒD�=� is torsion-free (Theorem 4.3(8)) and divisible, so algebraically

a direct sum of copies of Q.
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Proof. The quotient topology ofGŒD�=� is discrete because '�1Œ0C�� D �

is open in GŒD�. It is evident that the sequence

�ŒD� GŒD� GŒD�=�

�

!
ins.  

�
'

is exact and the maps are continuous and open. The group �ŒD� is an open

divisible subgroup of GŒD�. Now use [8, (6.22)(b), p. 59]. �

In contrast to Corollary 4.9 �ŒD� is locally compact as we will show next.

Theorem 6.2. Let G be a protorus. Then the topological group �ŒD� is the

union of open compact subgroups � 2 D.G/, hence in particular is locally

compact.

For later use we single out a part of the proof as a lemma.

Lemma 6.3. Let G be a protorus and � 2 D.G/. Then �ŒD� D � as

topological groups, i.e. the topologies of � as a subspace of �ŒD� and as a

subspace of G coincide.

Proof. Since� is a compact totally disconnected subgroup ofG, it has a local

basis U consisting of compact subgroups ([8, Theorem 7.7, p. 62]). On the other

hand,�ŒD� has a local basis V consisting of all � 2 D with � � �. We will show

that the topologies of � and �ŒD� coincide. Let C 2 U. Then �=C is compact

and discrete, hence finite. Thus m� � C for some positive integer m, and by

Theorem 4.3(7) m� 2 D. Therefore C , as a finite union of translates of m�, is

an open subgroup of �ŒD�. Now let � 2 V, i.e., � 2 D and � � �. Then � is

compact and hence closed in G and in its subgroup �. By Theorem 4.3(4), �=�

is finite and therefore discrete, thus � is open in �. Therefore the topologies of�

and �ŒD� coincide. �

Ploof of Theorem 6.2. Fix � 2 D D D.G/. Since � is compact as a

subgroup of G, this implies that�ŒD� is also compact. Then the assertion follows

since �ŒD� is an open subgroup of �ŒD�. �

Recall that a topological groupG is called periodic ifG is totally disconnected

and hgi is compact for all g 2 G. Periodic groups are studied extensively in [7].

Corollary 6.4. Let G be a nontrivial protorus. Then both groups GŒD� and

�ŒD� are locally compact and totally disconnected. The group �ŒD� is periodic

while GŒD� is not.
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Proof. GŒD� is locally compact since �ŒD� is, and �ŒD� is totally discon-

nected since GŒD� is. By Corollary 4.9 and Proposition 6.1, GŒD� is not peri-

odic. �

We are now in a position to improve on the resolution theorem Theorem 4.11

by replacing � by the simpler periodic group �ŒD�. We begin with a lemma that

is interesting in itself.

Lemma 6.5. Let G be a protorus. Fix � 2 D.G/. Then �ŒD�, by definition,

has the local basis B� WD ¹� 2 D.G/ j � � �º. Let U be a local basis of L.G/.

Then

B WD ¹� C exp.U / j � 2 B�; U 2 Uº

is a local basis of G. Even more, B� WD ¹�C exp.U / j � 2 D.G/; U 2 Uº is a

local basis of G.

Proof. By [9, Theorem 8.20, p. 387], for any � 2 D.G/ the homomorphism

'�W� � L.G/ �! G; '�..d; �// D d C exp.�/

is surjective, continuous and open. With the notation of Lemma 6.5 the product

��L.G/ has the local basis B� �U. Let � �U 2 B� �U. Then � C exp.U / D

'�.� � U/ is an open neighborhood of 0 2 G. On the other hand, let V be

an open neighborhood of 0 2 G. Then '�1
� ŒV � is open in � � L.G/. Hence

there is � 2 B� and U 2 U such that � � U � '�1
� ŒV �. It follows that

� C exp.U / D '�.� � U/ � V . �

Theorem 6.6. Let G be a protorus and � D
S

D.G/. Then

�ŒD� � L.G/

K
ŠtopAb G;

the isomorphism being induced by the map  W� � L.G/ ! G,  ..d; �// D

d C exp.�/ and K D ¹.exp.d/;�d/ j d 2 exp�1Œ��º.

Proof. Clearly  is surjective and the kernel is as stated. The identity mor-

phism idW�ŒD� ! � is continuous because � has the local basis B� \ �

(Lemma 6.5) and � � � C expU . So 'W�ŒD� � L.G/
id
! � � L.G/

 
! G is

continuous. Finally, an open neighborhood��U 2 D�U maps to �CU which

is open in G. It follows that ' is an open map. �
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