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1. Introduction

Let T = R/Z. A torus is a topological group isomorphic with a power T™.
A protorus is a compact, connected, finite dimensional topological group. In par-
ticular, a protorus is divisible as an abelian group ([9, Corollary 8.5, p. 377]).
[9, Proposition 8.15, p. 383] deals with the existence of compact totally discon-
nected subgroups A of a protorus G such that G/A is a torus. These §-subgroups
enter into the Resolution Theorem for compact abelian groups [9, Theorem 8.20,
p- 387]). The Pontryagin duals of protori are the torsion-free groups of finite rank
and the duals of short exact sequences A > G — T where G is a protorus,
A is a §-subgroup of G and thus T is a torus, are exact sequences F' >> A —» D
where A is a discrete torsion-free group of finite rank, F is a free subgroup of 4
and D is a torsion group. This suggests to study the full free subgroups F of A,
i.e., the free subgroups of A with torsion quotient. Let F(A) denote the set of
all full free subgroups of A and let D(G) denote the set of all §-subgroups of
the protorus G. In Theorem 3.5 a comprehensive description of F(A) is estab-
lished, and by duality a similarly comprehensive description of ‘D(G) is obtained
(Theorem 4.2, Theorem 4.3). In fact, there is an inclusion reversing lattice iso-
morphism §: F(4) — D(G) where G = AY (Theorem 4.2). In Theorem 3.5(11)
and Proposition 3.7 the structure of the quotients A/ F of A is determined, and in
Theorem 4.3(10) and Proposition 4.10 the structure of the subgroups A of G is de-
scribed. The families F(A) and D(G) taken as neighborhood bases of open sets at
0 define linear topologies on A and G respectively. The completion of A with the
F(A)-topology can be described to a high degree (Proposition 5.9). The canoni-
cal subgroup A := [ JD(G) of G has interesting properties (Theorem 4.3(2,8,9),
Corollary 4.9) and leads to a “canonical” resolution theorem (Theorem 4.11). Also
G and A with the D(G)-topology turn out to be locally compact and therefore
complete (Theorem 6.2). This leads to a second canonical form for the resolution
theorem (Theorem 6.6).

Acknowledgments. The authors wish to thank the referee for a very careful
reading of the paper that led to substantial corrections and improvements.

2. Notation and background

Asarule A, B,C, D, E, ...denote discrete groups and G, H, K, L, ... are used to
denote topological groups. Unless otherwise stated, p denotes an arbitrary prime
number. TFFR is the category of torsion-free abelian groups of finite rank, and
as usual LCA is the category of locally compact abelian groups. ()Y denotes the
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Pontryagin dual, while (A) is reserved for completions such as 7, the completion
of Z in the n-adic topology, ip for the completion of Z in the p-adic topology,
Ag is the completion of A in the free topology (Definition 5.2). We will use
N ={1,2,...} and P denotes the set of all prime numbers.

Let C be a category. The symbol A ~¢ B will say that 4, B are isomorphic
in the category C. We will deal particularly with the category Ab of (discrete)
abelian groups and the category topAb of topological abelian groups. The symbol
=~ without subscript is used to indicate algebraic isomorphism.

For a discrete abelian group 4, 1k, (A) = dimg, ,7(A/pA) denotes the p-rank
of A and 1k(A4) = dimq(Q ® A) is the torsion-free rank of A. We also will need
dim(A[p]) which is just the vector space dimension of the p-socle A[p] = {a € A4 |
pa = 0} as a Z/ pZ-vector space.

In the literature the dimension of a compact abelian group is defined in several
ways that coincide. Let G be any compact abelian group. The cardinal

m = sup{k: G/H =pap T and H is a closed subgroup of G}

is the dimension of G, dim(G) = m ([10]). If m is finite, then m is exactly the di-
mension of G as defined in [8] and coincides with dimg (£(G)) ([9, Theorem 8.22,
p. 390]).

LemMma 2.1 ([10] and [9]). Let G be a compact abelian group. Then,
1. G is totally disconnected if and only if dim(G) = 0;
2. dim(G) = k(G"Y).

We also recall that profinite groups are the limits of surjective inverse systems
of finite groups.

THEOREM 2.2 ([17, Theorem 1.1.12, p. 10]). A group is profinite if and only if
it is compact, totally disconnected, and Hausdorff.

We remark that all topological groups encountered in this paper are Hausdorff
so that any compact totally disconnected group is profinite.

3. The lattice of full free subgroups
We will use Proposition 3.1 in proving one of the properties of F(A4).

Prorposition 3.1. Let A € TFER of rank n and let F be a full free subgroup
of A. Then dim((A/F)[p]) < n. Consequently (A/F), = @;_, Z(p"r) where
0 <np; <oo.
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Proor. Write (4/F)[p] = €D, ¢ (xi+F).Let J be afinite subset of 7. We will
show that {x; | j € J} is linearly independent in A and hence |J| < rk(4) = n.
It then follows that |/| < n.

Suppose that } ;c; mjx; = 0. Then Y ;. ; m;(x; + F) = 0 and it follows that
p | mjforall j € J.Hence ) ;c;(m;/p)x; = 0 and by induction it follows that
p¥ | m; for all k. This is possible only if m; = 0, and we have established that
{x; | j € J}1is alinearly independent set in A.

The structure of the p-primary component (4/F), can be seen by considering
a basic subgroup B of (4/F), ([6, Theorem 5.2, p. 167]). The subgroup B must
be finite because (A/F),[p] is finite, hence B[p] is finite, and B is a direct
sum of cyclic groups. Also B is pure in (4/F),, hence a direct summand ([6,
Theorem 2.5, p. 156]. Consequently (A/F), is the direct sum of a finite group
and finitely many copies of Z(p®°). O

CoroLLARY 3.2. Let A € TFFR and F € F(A).
1. If A/ F is bounded, then A/ F is finite and A is free.
2. If A is not free, then A/ F is unbounded, and hence either there exists p € P

such that (A/ F), has a summand isomorphic to Z(p*) or (A/F), # 0 for
infinitely many primes p.

Two (discrete) torsion groups 71, T3 are quasi-isomorphic, Ty =gy T>, if there
exist homomorphisms f:7; — 7, and g: T, — T; such that 75/f(T;) and
T1/g(T>) are bounded ([1, pp. 11-12]).

Lemma 3.3 ([1, Proposition 1.9, p. 12]). Let A € TFFR. If F1, F> € F(A),
then A/F1 =qu A/F2

The quasi-isomorphism class [A/ F]q is the Richman type of A, RT(A), an
invariant of the group A by Lemma 3.3.

We say analogously, that two compact totally disconnected groups A, A, are
isogenous, A1 =isog A2, if there exist morphisms f: Ay — A and g: Ay — Ay
such that Ker( /) and Ker(g) are bounded.

Lemma 3.4. If Ty, T, are torsion groups and Ty =gy T2, then the D; := Tiv

are compact totally disconnected groups and D1 =isog D>.
Proor. Immediate by duality. |
For a group X, a subgroup Y and m € IN, define

my'Y ={xe X |mxeVY}
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For future use we observe that for torsion-free A with divisible hull QA4 and a
subgroup F of A, the following formula is true.

(1) FCmg'F =40 (F),
where ,ug)_(l denotes multiplication by m~! in QX .
TueoreM 3.5. For A € TFFR of rank n, the family ¥ = F(A) has the

Jollowing properties.

1. tk(F) = rk(A) forall F € F; in particular, every F € JF is finitely generated
and QF = QA.

2. Fis closed under finite intersections.

3. Fis closed under finite sums.

B

Foranym € N, and F € &, mZIF € . In particular, F is closed under
finite extensions.

F is closed under subgroups of finite index.

IfF €3 thenmF € Fand()\,,mF =0 forallm € IN.
NF=0and| JTF = A.

F is a lattice with meet = N and join = +.

If Fi,F, € 3, then A/ Fy =qu A/ F>.

10. Let F, F’ € F. Then there exists k € N such that kF' C F.

11. Let F € F. Then, for the primary decomposition A/F = @ ,cp(A/F)p,
we get dim((A/F)[p]) < n and (A/F), =ab B;_, Z(p"ri) forall p € P,
where 0 < np; < oo.

© © NN

Proor. (1) Obvious and well known.

(2) Certainly F; N F, is free. The map A/(F1 N ) — A/F1 & A/ F,,
a+ (FiNFy) — (a+ Fy,a+ F») is well defined and injective. Hence A/(F; N F3)
is torsion.

(3) Certainly, A/(F; + F») is a torsion group as an epimorphic image of A/ F;.
Also F; + F5 is finitely generated and torsion-free, so it is free.

(4) Letm € N and F € F. Then /Lgl/_il (F) = F is a free group and hence so
ismy'F = AN u?f_il (F). As m;'F contains F it is a full free subgroup of A.
Finite extensions of F are a special case of what has been considered.

(5) Let F € F and F’ a subgroup of F with F/F’ finite. Then F’ is free and
F/F" >~ A/F" — A/F is exact with torsion ends, hence A/ F’ is torsion.
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(6) Clear as F is free.

(7)By (6) mF € Fand (\F C (,,mF = 0as F is free. Every element of A
is contained in some full free subgroup, so (JF = A.

(8) follows from (2) and (3).
(9) Lemma 3.3.

(10) (F'+ F)/F C A/F is afinitely generated torsion group, hence bounded
(actually finite), so there is k € IN such that kF' C F.

(11) Proposition 3.1. O

Theorem 3.5(11) shows that not every torsion group can appear as a quo-
tient A/ F. In fact, it shows the following:

CoroLLARY 3.6. Let A € TFFR, tk(A) = n, and F € F(A). Then there is a
monomorphism A/F — (@ ,cp Z(p™))".

Proposition 3.7 shows that the restrictions of Theorem 3.5(11) are the only
ones necessary.

ProprosiTion 3.7. Let T = @pelP T, be a torsion group with p-primary
components T, such that dim(T [p]) < n for afixedn € N forall p € P. Then there
exists a group A € TFFR with tk(A) = n and F € F(A) such that A/ F ~ap T.
In fact, A may be taken to be completely decomposable.

Proor. By Proposition 3.1 T = @?zl(@pelp Z(p"»i)) where 0 < n,; < oo.
Let F = Zv, ®---& Zv,, the free group of rank n, and let V' = Qu; - --® Qu, be
the divisible hull of F. For each i a summand Z(p"»i) # 0 may be finite cyclic or
the Priifer group Z(p°). In the first case let A,; = Zv; —i—Zﬁvi andif n,; = oo,
then let A,; = Zv; + Z;'il Z#vi, and finally let A; = ZPE]P Api. Then A; is a
rank 1 group containing Zv; and clearly A; /Zv; =ap D ,cp Z(p"?"). Finally, let
A =@/_, Ai,and note that A/F =, T. O

4. F(A) and D(G)

We now establish the connection of discrete groups and full free subgroups with
compact groups and §-subgroups.

As an essential tool we will use annihilators. For G € LCA, we have the pairing
GV xG — R/Z:(x,g) — x(g).For a subset X of G, we define the annihilator
of X in G¥ by X+t = (GV,X) = {x € GV | x(X) = 0}. We assume familiarity
with the basic properties of annihilators [9, pp. 314-325], in particular see [9,
Theorem 7.64, p. 359]; alternatively see [10, pp. 270-275].
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THeorREM 4.1 ([9, Theorem 7.64(v), p. 360]). Let G € LCA. Then o: H +—
HY = (GV,H) is a lattice antiisomorphism between the lattice of all closed
subgroups of G and the lattice of all closed subgroups of the LCA group GV. In
particular, H C K if and only if 6 (K) C o (H).

Let G be a protorus. Without loss of generality assume that G = A" for some

A € TFFR. Let F € F(A). Then F Boa% 4 / F is exact where « is the natural
epimorphism. Therefore

) (AJF)Y »%55 G =5 Fv

is exact, where F" is a torus T™“) and oV ((4/F)V) is a compact totally discon-
nected subgroup of G. Hence «¥((4/F)Y) € D(G). Define

3) §:F(A) —> D(G), 8(F) = a"((A/F)).

TueoreMm 4.2. Let A € TFFR and G = AY. Then, for all F € F(A),
(G,F) = av((A/F)Y), 8(F) = (G,F) = F*, and §:F(A) — D(G) is a
containment reversing bijective map satisfying §(F1 + F») = §(F1) N §(F2) and
8(F1 N Fy) = 8(F1) + 8(F2). In particular, D(G) is a lattice with join + and meet
N that is antiisomorphic with F(A).

Proor. (a) We first show that «V((4/F)Y) coincides with (A4Y, F), the an-
nihilator of F in AY = G. In fact, suppose first that y € (G, F). Then
x(F) =0,s0 x| F= 0. Hence y is in the kernel of the restriction map in (2), i.e.,
x € Ker(restr.) = a«V((A/F)Y). Conversely, if y € Ker(restr.), then y(F) = 0
and y € (G, F).

(b) By Theorem 4.1, H + H* establishes a containment reversing lattice
isomorphism between the lattice of closed subgroups of G and the lattice of closed
subgroups of GV. Applying this result to 4 and G = AV, we need only observe
that (G, F) € D(G) for all F € F(A) and A = (G, F) for some F € F(A) for all
A € D(G). O

We now establish, for a protorus G = AV, the properties of D(G) correspond-
ing to the properties of F(A). Recall that for any m € IN and any subgroup Y of X,
we have my'Y = {x € X | mx € Y}. Furthermore, set

A=) "D(G).
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THEOREM 4.3. Let G be a protorus. The family D := D(G) has the following

properties.

1. D is a lattice with join + and meet N. Hence A = | J D.

2. YD=0and A =D isdenseinG.

3. If A1, Ay € D, then Ay =isop As.

4. Let A = §(F) and A" = §(F') and assume that A C A'. Then F' C F and
[A": Al =[F : F'] < o0.
Let A, A’ € D. Then there exists k € N such that kA’ C A.

6. If A € D, then mg'A € D for any m € N. Hence tor(G) C A and
A =3 enmg A

7. Let A € Dandm € N. Then mA € D.

8. A/A =tor(G/A) for all A € D, and hence G/ A is torsion-free.

9. A is divisible.

10. Let A € D and n = dim(G). Then A =opab [[,ep Ap, TKp(Ap) < n, and
Ap ZopAb ]_[:-'zl Api, where Ap,; is either a cyclic p-group or else Ap; = Zp,
the group of p-adic integers (i = 1,...,n).

b

Proor. Without loss of generality G = A" for A € TFFR.

(1) Theorem 4.2 establishes the lattice property. As D is closed under finite
sums, we have YD = | D.

(2) By [9, Theorem 7.64(vii), p. 360], (D = (G, U ff(A)) = (G, A) =0and
UD = (G, NF(4) = (G,0) = G.

(3) There exist Fy, I, € F(A) such that A; = (G, F;). By Theorem 3.5(9) we
conclude that A/ F; =gy A/ F> and hence by Lemma 3.4 (A/F1)Y =is0g (4/F2)".

(4) By Theorem 4.2 F' C F and as F/F’ is both finitely generated and
torsion, it is finite. We now employ [9, Theorem 7.64(ii), p. 360] to conclude that
A/ A =opab (F/F')Y =opap F/F' and the claim follows.

(5) By (4), [A + A’ : A] s finite. Hence there is k € IN such that kA’ C A.

(6) Let A = (G,F) € D with F € F(4). If m € N, then mzg'A =
mal (G, F) = (G,mF) (cf. [10, Lemma 6.4.14, p. 274]), so since mF € F(A)
we have A C mg' A € D. Therefore A =YD =Y, mg' A by (5).

(7) Without loss of generality A = §(F) for some F € F(A). By Theo-

rem 3.5(4) we know that m;lF € F(A). Using [10, Lemma 6.4.14, p. 274] we
obtain mA = §(m;'F) € D.
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(8) This follows from (5) and (6).
(9) The protorus G is divisible and by (8) A is pure in G hence also divisible.
(10) Dual of Theorem 3.5(11). O

ReMARK 4.4. Our results include the case that A is free of finite rank, i.e.,
G = AV is a finite-dimensional torus. In this case the quotients A/ F, F € F(A),
are all finite, so are the A € D(G) and G/A =pab G.

CoroLLARY 4.5. Let G be a protorus of dimension n and A € D(G). Then
there is the exact sequence

A G G

— > — —» —,

A A A
where % (opAb (%)n is a torus, % = tor (%) ~ (%)n is dense in %, and
G ~ (R\"
x=(g)-

Proor. By Theorem 4.3(2) A is dense in G, hence so is % in %. The quotient

% is a torus by definition of A, and the rest follows. |

A topological group G is finitely generated if there is a finite subset S of G such
that G = (S). If G = (S) for some singleton S, then G is called monothetic. For
example, the compact group 7 = [lep Zp is monothetic (see [8, Theorem 25.16,
p. 408]).

Dually to Corollary 3.6 we have:

CoroLLARY 4.6. Let G be an n-dimensional protorus and A € D(G). Then
there is a continuous epimorphism (]_[pE]P Zp)" — A.

LemMma 4.7. Let G and H be topological groups. Then,
1. ifG =Gy x...x Gy and Gy, ..., Gy, are finitely generated, then so is G;

2. if G is finitely generated and ¢: G — H is a continuous epimorphism, then
H is finitely generated.

Proor. (1) Write G; = (S;) with S; a finite subsetof G; (i = 1,...,n). Then

G = (S1) X...x{Sy) = {S1) x...x{Sy) = (S1 x...x 8Sy).
(2) Notice that ¢(E) C ¢(E) for each E C G since ¢ is a continuous map.

IfG = (S), then H = ¢(G) = ¢((S)) C ((S)) = (¢(S)). Thus H = {¢(S))

and the claim follows. O
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By Corollary 4.6 and Lemma 4.7 we have:

CoroLLARY 4.8. Let G be a protorus. Then each A € D(G) is finitely gener-
ated.

CorOLLARY 4.9. Let G be a nontrivial protorus. Then G # A and hence A is
not a locally compact subgroup of G.

Proor. Let A € D(G). Then G/A is a torus and contains torsion-free ele-
ments, while A/A C G/A is a torsion group. Hence A /A is properly contained
in G/A and G # A. The subgroup A is dense in G and different from G. Locally
compact subgroups are closed, hence A cannot be locally compact. |

Recall that a compact totally disconnected group A is topologically isomor-
phic to [],cp Ap with p-primary components A, (see for instance [10, Proposi-
tion 6.6.9, p. 281]). Dually to Proposition 3.7 we have:

ProrosiTiON 4.10. Let A be a compact totally disconnected group with p-pri-
mary components Ap, such that 1k, (Ap) < n for a fixedn € N for all p € P. Then
there exists a protorus G with dim(G) = n and A" € D(G) such that A" =pap A.
In fact, G may be taken to be completely factorable, i.e., the product of protori of
dimension 1.

We also obtain a “canonical resolution.” This is just the Resolution Theorem [9,
Theorem 8.20, p. 387] for protori where the arbitrary A € D(G) is replaced by
the canonical subgroup A. We remind the reader that the “Lie algebra” of G,
£(G), defined as £(G) = cHom(R, G), the group of continuous homomorphisms
R — G, is a real topological vector space via the stipulation (rf)(x) := f(rx)
where f € £(G) and r, x € R, and carries the topology of uniform convergence
on compact sets [9, Definition 5.7, p. 117, Proposition 7.36, p. 340]. Furthermore
exp: £(G) — G, exp(yx) = x(1) ([9, p. 340]). [9, Theorem 7.66, p. 362] contains
results on the exponential morphism.

TueoreM 4.11. Let G be a protorus and A =\ D(G). Then

A x £(G)

T ZtopAb G,

the isomorphism being induced by the map ¢: A x £(G) — G, ¢((a, ) =
a+exp(y) =a+ y(1) and T’ = {(exp(a), —a) | a € exp~'[A]}.
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Proor. We have to show that ¢: A x £(G) — G, ¢((d, y)) = d + exp(y) is
continuous and open and then compute its kernel. The map is continuous as it is
the composite of the continuous map id x exp: A x £(G) — A x exp(£(G)) with
addition.

To show that ¢ is open we use the fact that by [9, Theorem 8.20, p. 387]
for every A € D(G) the maps pa: A x £(G) — G, pa((a, x)) = a + exp(y)
are open maps. The ¢a are just the restrictions of ¢. An open set in A is of
the form U N A where U is an open set of G. Then for any A € D(G), the
intersection U N Aisopenin Aand U N A = (J{U N A | A € D(G)}. By [9,
Theorem 8.20, p. 387] the sets (U N A) = oA (U N A) are open in G, hence so
isp(UNA)={e(U NA)| A e D(G)}. Of course, ¢ is surjective as any pa
is surjective.

Finally,

' = Ker(p) = {(a. 1) | a +exp(x) = 0} = {(exp(a). —a) | a € exp~'(A)}. O

One may ask whether F(A) is a distributive lattice. As this is a side issue
without direct bearing on our study, we state the answer without proof.

ProrosiTionN 4.12. Let A € TFFR. If tk(A) = 1, then F(A) is distributive. For
larger ranks F(A) largely fails to be distributive.

The dimension 1 case is settled by a celebrated theorem.

THEOREM 4.13 ([16, Theorem 4, p. 267]). The lattice of subgroups of a group
G is distributive if and only if G is locally cyclic.

5. The F-topology of 4
Let A € TFFR. Recall that F(A) is a lattice with lattice operations N and +.

ReEmMark 5.1. Let A € TFFR. Then one has 4 = 1i_n>1{F | F € F(A)} with,
for F C F’ € F(A), the map frp/: F — F’ being the insertion. Consequently,
AY = 1<iLn{Fv | F € F(A)} with, for F C F’ € F(A),themap f7p: (F')Y — FY
being the restriction. As FV is a torus, we obtain that A" is an inverse limit of tori.
Hence the name “protorus” in analogy of “profinite.”

For a general reference on topology, topological groups, and completion
see [11], [8], and [3].

Let A be a topological group. The topology on 4 is determined by a neighbor-
hood basis U at 0 € A consisting of open sets and called local basis for short, or by
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a basis O of the topology itself. We will write A[U] respectively A[O] to indicate
that A is a topological group with topology given by U respectively O. We denote
the completions of A[U] = A[0] by Ay = Ap.

DEerintTION 5.2. The family F(A) for A € TFFR is directed downward (filtered
below) and taken as a local basis defines a linear Hausdorff topology on A, the free
or F-topology of A. Let A[F] denote A as a topological group with the F-topology
and let A5 denote the completion of A in the free topology.

Remark 5.3. If A € TFFR and A/ U is torsion for a subgroup U of A, then U
contains some F € F(A). This means that the F-topology on A € TFFR coincides
with the minimal functorial topology determined by the discrete class T consisting
of all torsion abelian groups as we shall explain.

A functorial topology is a functor T on the category Ab of all abelian groups
to the category topAb of topological abelian groups having the property that
T(f) = f:T(A) — T(B) for all f € Hom(A4, B), which means that every
homomorphism f is continuous. The concept is due to B. Charles ([5]). Relevant
references are the survey [13] and the more specialized papers [4], [12], [14],
and [15].

Associated with a functorial topology T on Ab, there is the discrete class
C(T) of T consisting of all groups T(A) with the discrete topology. A discrete
class is always closed under embedded groups and finite direct sums. Conversely,
given a discrete class C, i.e., a class of groups that is closed under embedded
groups and finite direct sums, then we obtain a minimal functorial topology T by
assigning T(A) the smallest topology that makes every homomorphism f: A — C
continuous where C € C. This amounts to saying that the subgroups U of A with
A/U € € form a local basis for the topology Te ([4]).

The discrete class 7T consisting of all torsion groups is closed under embedded
groups, arbitrary direct sums, epimorphic images, and extensions. We will write
A[T] for a group with the minimal functorial topology with discrete class T and
refer to it as the T-topology or torsion topology. We observed in Remark 5.3
that the free topology on A € TFFR coincides with the torsion topology on A,
A[T] = A[3].

At this point we need a lemma.

Lemma 5.4. Let A be an abelian group and 0 # a € A. Then there exists
a subgroup U of A with torsion quotient A/U and a ¢ U. Consequently every
group A|T] is Hausdorff.
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Proor. Let V' be maximal disjoint from (a). Then V & (a) is essential in 4,
in particular A/(V & (a)) is a torsion group. If (a) is finite, then for U = V the
quotient A/ U is a torsion group and a ¢ U. If (a) is infinite, U = V & (2a) does
not contain @ and A/ U is a torsion group. O

The T-topology has special desirable features due to the closure properties
of 7.

LemMma 5.5. Let A, B € TFFR. Every f € Hom(A, B) is a continuous map
fiA[F] — B[TF] and if [ is surjective, then f:A[F| — B[TF] is an open map.
Every subgroup of A[F] is closed.

Proor. The first two claims are general facts and easily verified directly.
Let C be a subgroup of A. By Lemma 5.4 (A4/C)[7] is Hausdorff, so C is
closed in A. O

Our definition of the F-topology amounts to saying that we found a rather
special local basis for the T-topology on A.

Lemma 5.6. Let A € TFFR. Fix F € F(A). Then {k'F | k € N} is a local
basis for A[T] = A[F].

Proor. First k!F € F(A), hence is an open subgroup. By Theorem 3.5(10)
given any F’ € F(A) there is k € IN such that k!F C F’. O

It is well known that
Az Zopap Lim{A/k!F | k € IN}
={(..,ar +kIF,..) |forallk <{ e N,ar —ay € k!'F}
([3, LI, § 7.3, Corollary 2, p. 290] and [2, III, Exercise 14, p. 236]). We identify
Ag andl(iLn{A/k!F | k e N},sonow A ={(...,a+k!F,...) | a € A}. Let A[N]
be the topology of A (any abelian group) with {nA | n € IN} as a local basis. This
N-topology is well known as the Z-adic or n-adic topology and has {k!A4 | k € N}

as a special local basis. This is the minimal functorial topology with the discrete
class consisting of all bounded groups.

TueoreM 5.7. Let A € TFFR, let A be the completion of A|F] and let Fx be
the completion of F[N]. Then, for any fixed F € F(A),
A X ﬁj\[
r

“4) ffgr (opAb where I' = {(x,x) | x € F}.
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Proor. Letx = (a1 +1'F,a,+2!F,...,ar+k!F,...)) € /T;;.Thenak—ag €
LIF, for all £ < k. In particular, for all k, ar —a; € F and so a; = a; + by with
by € F.Note that ay — ay € £!F if and only if by — by € £!F. Hence

x:(a1+b1+1!F,a1+b2+2!F,...,a1+bk+k!F,...)
:a1+(b1+1!F,b2+2!F,...,bk+k!F,...),

where a; € Aand (b + 11F, by + 2\F, ..., bg + k!F,...) € Fx. We define
@: A X ﬁN — /Tg,r, o((a,y)=a—y.

This is clearly an algebraic epimorphism, and topologically a continuous map
because Ay x Ay — Ag: (x,y) — x — y is continuous and so is its restriction ¢
to a subspace. Further ¢((a, x)) = 0 if and only if ¢ = x € F. We will show that
¢ is open which then establishes (4) by [8, Theorem 5.27, p. 41].

A local basis for the product topology on [ [, A/ k! F consists of subsets of
the form UK =[lisx A/k'F where K € IN. Hence the sets Uk ﬂAg form a local
basis for Ag" Let Uy N Ag" be given and let x € Ug N Ag Then

x=0(0,...,0,a +bgs1 +(K+DF,....d +b; +ilF,..))
=(0,....,0,a’ +(K+DF,....d +i!F,..)
4+ (0,...,0,bg+1 + (K + DIF, ... b +ilF,..)),

wherea’ € Aandb; € F.Thusa := (0,...,0,a’+(K+D!F,...,d +i!F,...) €
Ug NA,y :=—(0,....0,bgs1 + (K + DIF,....b +i'F,..)) € (Ug N Fy)
and (a,y) € (Uxg N A) x (Ug N ﬁN). Now (Ux N A) x (Ux N ﬁN) is an open
subgroup of A x Fx that is mapped onto the open set Ux N A by ¢ because
p((@.y) =a—y=nx O

In the following F € F(A) is fixed and we employ the local basis {k!F |
k € IN}. It is routine to check that the short sequence of inverse systems is exact,
all groups carrying the discrete topology,
5 ‘ke]N} )ke]N} {i‘ke]N},
F

{k'F {k'F

Lemma 5.8. A[F]/F is discrete and 1<i£1{A/F | k € N} =opab A[F]/F.

Proor. The subgroup F is open in A[F], so A/F is discrete. Every x €
l(iLnk A/F hastheform x = (a+ F,...,a + F,...),a € A and the inverse limit
topology is the discrete topology. The assignment (...,a + F,...) — a + F is
the desired isomorphism of topological groups. |
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ProrosiTion 5.9. Let A € TFFR of rank n. Fix F € F(A). Then A[F|/F is a
discrete torsion group and there is a sequence of completions exact in topAb

Fx ~% Ay L5 A[7)/F,

where o is the insertion map and B is continuous and open. Furthermore,
Fx =opab 2", and Ag is a torsion-free group that is an essential extension of Fu.

Proor. (a) Taking inverse limits is a process that is left exact. Therefore (5)

implies that
Py > Ay L5 apF)F,

is exact. Here, « is the insertion and thus continuous and open onto its image.
By [17, p. 5] the maps § are continuous and we used Lemma 5.8. Evidently,
Ay — A/F is surjective as (...,a + k!F,...) € Ag mapstoa + F € A/F
and open as A/ F is discrete. Finally, it is well known that the N-completion of
F = 7" is isomorphic in topAb to Z".

(b) As a preliminary step we show the following fact. Let

x=0(..,ag +k'F,..) € Ag

and assume that infinitely many a; € F. Then x € ﬁN. Indeed, given ay + k!F,
there exists £ > k such that ay € F. Then ay — a; € k!F and hence a; € F,
showing that x € ﬁN.

(c) By way of contradiction, suppose that x = (...,ar + k!F,...) € A and
mx = 0 for some nonzero integer m. Then may € k!F, for all k. Hence for every
k > m, we have that a; € (k!/m)F C F.By (b) x € ﬁN, a torsion-free group,
contradiction. |

6. The D-topology of G

Let G be a protorus. By Theorem 4.3(1,2) the family D = D(G) serves as a
local basis for a linear Hausdorff topology of G, the D-topology of G. Then G[D]
is a O-dimensional topological group ([8, (4.21)(a), p. 25]), thus G[D] is totally
disconnected.

Prorosition 6.1. The topology of A[D] as a subgroup of G[D] has the local
basis D. The quotient topology on G[D]/A is the discrete topology and
G[D] =opab A[D] x G[D]/A.

The group G[D]/ A is torsion-free (Theorem 4.3(8)) and divisible, so algebraically
a direct sum of copies of Q.
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Proor. The quotient topology of G[D]/A is discrete because ¢! [0+A] = A
is open in G[D]. It is evident that the sequence

A[D] > G[D] 2> G[D]/A

is exact and the maps are continuous and open. The group A[D] is an open
divisible subgroup of G[D]. Now use [8, (6.22)(b), p. 59]. O

In contrast to Corollary 4.9 A[D] is locally compact as we will show next.

THEOREM 6.2. Let G be a protorus. Then the topological group A[D] is the
union of open compact subgroups A € D(G), hence in particular is locally
compact.

For later use we single out a part of the proof as a lemma.

Lemma 6.3. Let G be a protorus and A € D(G). Then A[D] = A as
topological groups, i.e. the topologies of A as a subspace of A[D] and as a
subspace of G coincide.

Proor. Since A is acompact totally disconnected subgroup of G, it has a local
basis U consisting of compact subgroups ([8, Theorem 7.7, p. 62]). On the other
hand, A[D] has a local basis V consisting of all I' € D with ' C A. We will show
that the topologies of A and A[D] coincide. Let C € U. Then A/C is compact
and discrete, hence finite. Thus mA C C for some positive integer m, and by
Theorem 4.3(7) mA € D. Therefore C, as a finite union of translates of mA, is
an open subgroup of A[D]. Now let " € V,ie.,,T" € Dand I' C A. Then T is
compact and hence closed in G and in its subgroup A. By Theorem 4.3(4), A/ T’
is finite and therefore discrete, thus I" is open in A. Therefore the topologies of A

and A[D] coincide. |

PLooF oF THEOREM 6.2. Fix A € D = D(G). Since A is compact as a
subgroup of G, this implies that A[D] is also compact. Then the assertion follows
since A[D] is an open subgroup of A[D]. O

Recall that a topological group G is called periodic if G is totally disconnected

and (g) is compact for all g € G. Periodic groups are studied extensively in [7].

CorOLLARY 6.4. Let G be a nontrivial protorus. Then both groups G[D] and
A[D] are locally compact and totally disconnected. The group A[D] is periodic
while G[D] is not.
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Proor. G[D] is locally compact since A[D] is, and A[D] is totally discon-
nected since G[D] is. By Corollary 4.9 and Proposition 6.1, G[D] is not peri-
odic. |

We are now in a position to improve on the resolution theorem Theorem 4.11
by replacing A by the simpler periodic group A[D]. We begin with a lemma that
is interesting in itself.

LemMma 6.5. Let G be a protorus. Fix A € D(G). Then A[D), by definition,
has the local basis Bp == {I’ € D(G) | ' C A}. Let U be a local basis of £(G).
Then

B:={+exp(U) | T € Ba,U €U}

is a local basis of G. Even more, B* := {A +exp(U) | A € D(G),U € U} isa
local basis of G.

Proor. By [9, Theorem 8.20, p. 387], for any A € D(G) the homomorphism

on A X L(G) — G, oa(d, y)) =d +exp(y)

is surjective, continuous and open. With the notation of Lemma 6.5 the product
A x £(G) has the local basis Bao x U. Let ' x U € Ba x U. Then I' + exp(U) =
oa(I" x U) is an open neighborhood of 0 € G. On the other hand, let V' be
an open neighborhood of 0 € G. Then ¢'[V] is open in A x £(G). Hence
there is ' € Bx and U € U such that T x U C ¢x'[V]. It follows that
I'+exp(U) =pa(l’xU)CV. O

THEOREM 6.6. Let G be a protorus and A = | JD(G). Then

A[D] x £(G)

K gtopAb G,

the isomorphism being induced by the map ¥: A x £(G) — G, ¥((d, y)) =
d + exp(y) and K = {(exp(d),—d) | d € exp~'[A]}.

Proor. Clearly ¥ is surjective and the kernel is as stated. The identity mor-

phism id: A[D] — A is continuous because A has the local basis B* N A
id

(Lemma 6.5) and A C A + expU. So ¢: A[D] x £(G) S A x £(G) % G is

continuous. Finally, an open neighborhood A x U € D x U maps to A 4+ U which

is open in G. It follows that ¢ is an open map. |
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