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On a new cotorsion pair

LAszL6 FucHs (%) — SANG BuM LEE (k%)

ABSTRACT — In cotorsion theories, the cotorsion pairs (8F, MC) of strongly flat and Matlis-
cotorsion modules, and (J, £C) of flat and Enochs-cotorsion modules play important
roles. We introduce a new cotorsion pair that in general lies properly between these two
(in the partial order generally accepted for cotorsion pairs), and discuss its properties
over commutative rings. In particular, we characterize the commutative rings over
which this is a perfect cotorsion pair. Our results may shed more light on the relation
between the two old cotorsion pairs.
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1. Introduction

Throughout, R denotes an arbitrary commutative ring with identity, Q its classical
ring of quotients, and K the factor module Q/R. R is called a Matlis ring if
p.d. QO < 1. (We shall use the notations “p.d.” for projective dimension and “w.d.”
for weak dimension.) R* will denote the monoid of regular (i.e. non-zero-divisor)
elements of R. For additional definitions see below.

Most of the theorems in this note hold for integral domains, but only a few of
them are valid for all commutative rings. Instead of restricting our considerations
to domains, we will frequently work over a newly introduced class of rings that
is an effective generalization of the class of integral domains: it is the class of
commutative rings R whose quotient rings Q are perfect rings (in the sense of
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Bass [1]), i.e. they are orders in commutative perfect rings. Recent publications
(see e.g. [9], [5], and [7]) are convincing evidence that these rings deserve more
attention, since they share several relevant features of domains that fail in most
commutative rings; following [5], we call such rings subperfect. (For a rough
comparison, let us point out that modules over Q are injective if R is a domain,
while they are in general only weak-injective if R is a subperfect ring. Also, it
is perhaps worthwhile mentioning that important examples of subperfect rings
include all Cohen—Macaulay rings and their non-Noetherian generalizations.)

The cotorsion pairs (F, £C) (flat and Enochs-cotorsion) and (8F, MC) (strongly
flat and Matlis-cotorsion) are well known and thoroughly investigated. The for-
mer pair is perfect, i.e. flat covers and Enochs-cotorsion envelopes exist over any
ring, while the second pair is in general only complete, i.e. modules admit special
strongly flat precovers and special Matlis-cotorsion preenvelopes. (See Gobel and
Trlifaj [10].) By Fuchs and Salce [9], these two cotorsion pairs are identical if and
only if the ring R is almost perfect.

It is easy to create new cotorsion pairs: any class of modules generates (and co-
generates) one, but there is hardly any of interest that is closely related to classical
cotorsion pairs and has homological interpretation. We introduce a new cotorsion
pair (*F,* C) that lies between (8F, MC) and (&, £C) in the partial order defined
in the class of cotorsion pairs: (§F, MC) < (*F,* C) < (&, £C), and its right hand
class can be defined in terms of Ext. The new pair is generated by the class of
pure submodules of strongly flat modules (called here *-flat modules). The class
*@ consists of those modules C for which Ext}g(Q, C) =0and EX'[%(F ,C)=0
for all flat . We show that this new cotorsion pair is hereditary (Theorem 4.4(a))
and is generated by a set (Lemma 4.2). We also discuss over subperfect rings
the cases when the new pair coincides with one of the two previously mentioned
pairs: (*F.,* C) = (8F, MC) if and only if s-divisible torsion modules are Enochs-
cotorsion, and (*F,* @) = (&, £C) if and only if h-divisible Enochs-cotorsion
torsion modules are weak-injective (Theorems 3.5, 4.5) (definitions below). Fi-
nally, we show that over a commutative ring, our new cotorsion pair is perfect (i.e.
*F-covers and *C-envelopes exist) if and only if the ring is almost perfect; in this
case it coincides with the cotorsion pair (85, MC) (Theorem 5.3).

We start recalling some definitions needed in this paper. We follow a customary
notation: for a non-negative integer n, &, will denote the class of R-modules of
w.d. < n. In particular, Fy is the class of flat modules.

An R-module N is torsion-free if Torfe (R/Rr,N) = 0holds for each r € R*.
An R-module D is divisible if rD = D for all r € R*. It is h-divisible if every
homomorphism R — D extends to a homomorphism Q — D; or, equivalently,
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D is an epimorphic image of a direct sum of copies of Q. D will denote the class
of divisible, and HD the class of k-divisible modules. It follows that D € D
if and only if Extyp(R/Rr,D) = 0 for all r € RX, and D € HD whenever
Extp(K, D) = 0. We have D = HD if and only if R is a Matlis ring [6]. Note
that the A-divisible torsion-free R-modules M are exactly the Q-modules, thus
they satisfy both Homg(Q, M) = M and Q g M =~ M. An R-module M
is h-reduced if it contains no h-divisible submodule # 0. M is called weak-
injective if Extir(A4, M) = 0 for all R-modules A with w.d. 4 < 1 (Lee [11]).
'WI will denote the class of weak-injective modules. Weak-injective modules are
h-divisible: WJ € HD.

A ring R is perfect if its flat modules are projective, or equivalently, the
R-modules admit projective covers [1]. Modules over perfect rings are weak-
injective. R is subperfect if its total ring of quotients is a perfect ring. It is almost
perfect if it is subperfect and R/Rr is a perfect ring for each » € R*. (For almost
perfect rings and examples, see [9].)

An R-module M is said to be Matlis-cotorsion if Ext}Q(Q,M ) = 0, and
Enochs-cotorsion if Ext}Q(F ,M) = 0 for all flat R-modules F. The Matlis-
cotorsion envelope of an h-reduced torsion-free module M is M = Ext},e (K, M).
A strongly flat module S is defined by the property that Ext}e (S, M) = 0 holds for
all Matlis-cotorsion M. In Gobel and Trlifaj [10] it is shown that S is strongly flat
if and only if it is a summand of a module N that fits into a pure-exact sequence
0 —- F —- N — D — Owhere F isafree R-module and D is Q-filtered (actually,
in this special case, D is a direct sum of copies of Q). Recall that for a class C
of R-modules, an R-module M is C-filtered if M is the union of a well-ordered
continuous chain of submodules M, (¢ < 7) (for some ordinal t) such that the
factor modules Ms11/My; (6 + 1 < 7) belong to C.

The generalized Matlis category equivalence for commutative rings (see
Matlis [15]) establishes an equivalence between the category M of h-reduced
torsion-free Matlis-cotorsion modules M and the category J{ of A-divisible tor-
sion modules D. It is implemented by the functors

F-M+—KQrM (MeM)
and
G: D +— Homg(K, D) (D € XH).

The corresponding modules are related as is shown by the exact sequence
00— M — Q0 Q®r M = Homgr(Q,D) — D —0.

We will refer to an exact sequence of this kind as a Matlis sequence.
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For unexplained terminology and facts, we refer to Gobel and Trlifaj [10],
Enochs and Jenda [4], and Fuchs and Salce [8].

2. *-Flat modules

We start our discussion with the following lemma, a generalization of Lee [13,
Theorem 3.2] that was proved for domains.

LemMma 2.1. Assume R is a subperfect ring. Then a strongly flat submodule of
a projective R-module is projective.

Proor. Suppose 0 — § — P — C — 0 is an exact sequence, where
S is strongly flat and P is projective. If M is Matlis-cotorsion, then we have
Ext?e(C,M) ~ Ext}Q(S ,M) = 0. Every h-divisible D embeds in a Matlis
sequence 0 - M = Homg(K, D) - Homgr(Q, D) - D — 0 where M is an
h-reduced torsion-free Matlis-cotorsion module. Hence we get the induced exact
sequence

Extg(C,Homg(Q, D)) — Extx(C, D) —> Ext3(C, M) = 0.

Here Hompg(Q, D) is weak-injective as it is a O-module and Q is by hypothesis a
perfect ring. Furthermore, w.d. C < 1 as S is flat, so the first Ext vanishes. Con-
sequently, Exty(C, D) = 0 holds for all h-divisible D, which implies p.d. C <1,
i.e. S is projective. O

A few useful facts on strongly flat modules are listed next.

LemMma 2.2, Let 0 - A — B — C — 0 be an exact sequence of modules
over a Matlis ring R.

i. If B is strongly flat and p.d. C < 1, then A is strongly flat.
ii. If A, B are strongly flat, then p.d. C < 1.

iii. Ifin addition R is subperfect, if A is strongly flat and B is projective, then A
is projective, and thus p.d. C < 1.

Proor (This was proved for domains in [13, Theorems 3.2 and 4.5]). Both (i)
and (ii) follow from the isomorphism Ext}e (A4, M) = Ext?e (C, M) that holds for
Matlis-cotorsion M, while (iii) is a consequence of Lemma 2.1. O

As mentioned above, a main objective here is to study a class of modules
that include the strongly flat modules. We call a module A *-flat if it is a pure
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submodule of a strongly flat module, i.e. it is embeddable in a pure-exact sequence
0 - A— S — F — 0where S is strongly flat and F is flat. We have the obvious
implications

strongly flat = *-flat = flat.

The class of *-flat modules is evidently closed under isomorphisms, arbitrary
direct sums, and pure submodules. Next, we list a few easy properties of *-flatness.

A. The Matlis-cotorsion envelope of a torsion-free module is *-flat if and only if
the module is *-flat. Moreover, a module A is pure in a strongly flat module
S if and only if the Matlis-cotorsion envelope A of A is pure in the Matlis-
cotorsion envelope S of §. This is an immediate consequence of purity.

B. The class of *-flat modules is resolving,i.e.if0 > A — B — C — 0 is an
exact sequence with *-flat modules B, C, then A is also *-flat.

C. The tensor product of two *-flat modules is *-flat. This follows from the facts
that the analogous statement is true for strongly flat modules, and tensoring
preserves purity.

Theorem 3.5 below will offer detailed information about the equivalence of
*-flatness and strong flatness. For the characterization of rings over which *-
flatness coincides with flatness, see Theorem 4.5.

ExampLE 2.3. Let R be an integral domain such that p.d. 9 > 1. From
Theorem 3.5 it is clear that over such a ring R, not all *-flat modules are strongly
flat. Also, R has localizations of p.d. 1. These are flat, but fail to be *-flat.

ExampLE 2.4. Bazzoni and Salce [3, Proposition 3.6] If V' is a valuation
domain, then Theorem 3.5(iii) will show that all *-flat (= torsion-free) V' -modules
are strongly flat if and only if p.d. M < 1 for all torsion-free V'-modules M. This
is the case if and only if V is a Matlis domain of global p.d. < 2.

ExampLE 2.5. A divisible *-flat R-module D is a pure submodule of a projec-
tive Q-module. If R is subperfect, then D itself is a projective Q-module. (The
same is true for *-flat-filtered modules.)

ExamPLE 2.6. An Enochs-cotorsion module M is *-flat if and only if it is
strongly flat. In fact, let 0 > M — S — F — 0 be a pure-exact sequence where
S is strongly flat and F is flat. If M is Enochs-cotorsion, then Ext}Q(F ,M) =0,
which means that the sequence splits. As a summand of S, M is strongly flat.
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3. *-Cotorsion modules

We introduce a kind of cotorsion module that lies between Matlis- and Enochs-
cotorsions in the sense that it is a special Matlis, but more general than Enochs.
We call an R-module C *-cotorsion if it satisfies Ext}e(A, C) = 0 for all *-
flat R-modules A. Evidently, the class of *-cotorsion R-modules is closed under
extensions and arbitrary direct products. We have the obvious implications

Enochs-cotorsion = *-cotorsion = Matlis-cotorsion.

These implications are in general irreversible, even for integral domains.
The next lemma characterizes *-cotorsion modules homologically.

LemwMma 3.1. The following conditions for an R-module C are equivalent:
a. C is *-cotorsion;
b. i. C is Matlis-cotorsion, and
i. Ext}e (H, C) = 0 for all pure submodules H of projective R-modules;
c. i. C is Matlis-cotorsion, and
ii. Ext?e (F,C) = 0 for all flat R-modules F.

Proor. (a) = (b) is a trivial implication.

(b) = (c). Let F be a flat R-module, and consider a presentation 0 —
H —- P — F — 0 where P is projective and H is pure in P. By (b), the
first Ext vanishes in the induced exact sequence Ext},e (H,C) — Exti(F ,C) —>
Ext%(P, C) = 0. Hence we have Ext?z(F, C)=0.

(c) = (a).Let A denote a *-flat R-module, so there is a pure-exact sequence
0> A— S — F — 0where S is strongly flat and F is flat. Assuming (i), in the
induced exact sequence Ext}e (5,C) —> Ext}e (A,C) — Ext?e (F, C) the first Ext is
0, and the third Ext is O because of (ii). Therefore we obtain Ext}Q (A4,C) = 0 for
all *-flat A, completing the proof. |

RemaRrk 3.2. Observe that (c.ii) in the preceding lemma can be replaced by
the condition that Extll‘g(F ,C) = O for all ¥ > 2 and flat R-modules F. Indeed,
let again 0 - H — P — F — 0 be an exact sequence where P is projective
and H is pure in P (and hence also flat). We then have for every k > 2 the exact
sequence

Extk(H,C) — ExtkT I (F,C) — Exth(P,C) =0

whence the induction hypothesis establishes the claim.
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We record immediate corollaries.

CoroLLARY 3.3. (i) A *-cotorsion filtered module is *-cotorsion.

(ii) The class of *-cotorsion modules is coresolving, i.e. if0 - A — B —
C — 0 is an exact sequence where A, B are *-cotorsion modules, then C is
likewise *-cotorsion.

(iii) The factor module M/ C of a Matlis-cotorsion module M modulo a *-co-
torsion C is Matlis-cotorsion.

(iv) If R is a subperfect ring, then all Q-modules (i.e. torsion-free divisible
R-modules) are *-cotorsion.

Proor. Claims (i) and (ii) follow at once from Lemma 3.1(b). (iii) is straight-
forward. If R is a subperfect ring, then all Q-modules are weak-injective, and
hence *-cotorsion in view of the same lemma (actually, they are even Enochs-co-
torsion). (iv) is a trivial consequence of the Enochs-cotorsion property of Q-mod-
ules whenever Q is a perfect ring. O

LemMma 3.4. A Matlis-cotorsion R-module C is *-cotorsion if and only if it
is a pure submodule of an Enochs-cotorsion module E with Enochs-cotorsion
cokernel E/C.

Proor. Suppose C is *-cotorsion, and let E be its Enochs-cotorsion envelope.
For any flat module F, the pure-exact sequence 0 - C — E — E/C — 0
induces the exact sequence

(1) 0 = Extk(F, E) — Extk(F, E/C) —> Ext3(F,C) — Extkx(F, E) = 0.

The third Ext is 0 by Lemma 3.1, thus E£/C is Enochs-cotorsion.

Conversely, assume that in the pure-exact sequence0 - C - E — E/C — 0
both £ and E/C are Enochs-cotorsion. Then from (1) we obtain that C satis-
fies (c.ii) of Lemma 3.1. O

Our next aim is to find out when Matlis-cotorsion modules are *-cotorsion.
Portions of the following lemma are borrowed from [14, Corollary 19.2.7]. (Sev-
eral implications in the next theorem hold for all commutative rings.)

THeoreM 3.5. If R is a subperfect ring, then the following conditions are
equivalent:

i. Matlis-cotorsion R-modules are *-cotorsion;

ii. h-reduced Matlis-cotorsion R-modules are *-cotorsion,;
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iii. flat R-modules are of p.d. < 1;
iv. epimorphic images of Enochs-cotorsion R-modules are Enochs-cotorsion;
v. the global Enochs-cotorsion dimension of R is < 1;
vi. Extyx(F, F') = 0 for all pairs F, F' of flat R-modules;
vii. pure submodules of projective R-modules are strongly flat;
viii. pure submodules of projective R-modules are projective;
ix. *-flat R-modules are strongly flat;

X. h-divisible R-modules are Enochs-cotorsion.

Furthermore, (X) holds for a ring R only if it is subperfect.

Proor. Assuming R is a subperfect ring, we prove the equivalence of the
stated conditions.

(i) = (ii) is trivial.

(ii) = (iii). Assuming (ii), we show that for a flat module F the equality
Ext?e (F, N) = 0 holds for all modules N. First, let N be h-reduced and torsion-
free. Then for its Matlis-cotorsion envelope N = Ex‘[}e (K, N) we have the exact
sequence 0 — N — N — N/N — 0, and hence also Ext}e(F, N/N) —
Ext?e (F,N) —> Ext?e (F, N). Here the first Ext vanishes, since N/ N is a Q-module
and hence weak-injective, and the last Ext is 0 in view (ii) and Lemma 3.1.

In the general case, let 0 - H — P — N — 0 be an exact sequence for an
arbitrary R-module N with projective P. As H, P are torsion-free and h-reduced,
and the sequence 0 = Ext?e(F, P) — Ext?e (F,N) —> Ext%(F, H) is exact, so
what has been proved combined with Remark 3.2 completes the proof of (iii).

(iii) = (iv). By definition, E is Enochs-cotorsion if Ex‘[}e (F,E) =0 forall
flat F'. Clearly, p.d. F < 1 implies that the same equality holds if E is replaced by
any of its epic images.

(iv) = (v).Let0 > M — E — H — 0 be the Enochs-cotorsion envelope
sequence for an arbitrary R-module M. By (iv), H is Enochs-cotorsion, and hence
Ex‘[%e (F,M) = Ext}Q(F , H) = 0 for any flat F. Therefore, (v) follows.

(v) = (vi). Hypothesis (v) asserts that EXt%(F , M) = 0 holds for all flat
modules F and for all R-modules M. Hence (vi) is obvious.

(vi) = (i). If (vi) holds, then Lemma 3.1(c.ii) is satisfied, so (i) follows.
(iii) = (vii) is trivial.
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(vii) = (viii). See Lemma 2.1.

(viii) = (ix). Let F be an arbitrary flat R-module and0 - H — P —
F — 0 a presentation of F' with projective P. H is then a pure submodule of P,
and thus projective by hypothesis. Hence p.d. F < 1.

(ix) = (). Let A be an arbitrary *-flat R-module, and 0 - A — § —
F — 0 a pure-exact sequence where S is strongly flat. Then F is flat and
thus of p.d. < 1 by hypothesis (ix). The claim follows from the induced exact
sequence Ext}Q (S,M) —> Ext}e (A, M) —> Ext?e (F, M) = 0 where the first Ext is
0 whenever M is Matlis-cotorsion.

(ili) = (x). By hypothesis, Q is a perfect ring, thus & Q is Enochs-cotorsion
both as an R- and as a Q-module. From (iii) we conclude that Ext}Q(F ,e0)=0
implies the same equality if @ Q is replaced by any of its epic images. Hence (x)
follows.

(x) = (v). Given any M, there is an exact sequence 0 — M — D —
D’ — 0 where D is the injective hull of M and D’ is h-divisible. Hence for every
module F we have EXt%(F M) = Ext}e(F , D) where for flat F the right hand
Ext vanishes by virtue of (x). Therefore, (v) holds true.

Finally, if (x) is satisfied by a commutative ring R, then all Q-modules M
are Enochs-cotorsion R-modules. They are also Enochs-cotorsion as Q-modules,
since for Q-modules flatness over R and over Q are equivalent. Moreover, Extg
can be replaced by Extgp. A ring over which all modules are Enochs-cotorsion is
necessarily perfect. O

RemARK 3.6. Observe that conditions (iii) and (x) imply that a ring satisfying
the conditions of the preceding theorem must be a subperfect Matlis ring. But a
subperfect Matlis ring need not satisfy these conditions: a counterexample is a
valuation domain of global dimension at least 3 with countably generated field of
quotients (the p.d. of an uncountably generated torsion-free = flat ideal is > 2).

ExampLE 3.7. Let R be a valuation domain with value group that is the
lexicographic extension of the linearly ordered group R by the linearly ordered Q.
Since ideals are countably generated, the global dimension of R is 2. R is a Matlis
domain, since its field of quotients is likewise countably generated. The cyclic
modules R/Rr (0 # r € R) are *-cotorsion, but they are in general not Enochs-
cotorsion. (They are Enochs-cotorsion in case R is an almost maximal valuation
domain.)
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4. Cotorsion pair generated by the *-flat modules

In this section we focus our attention on the cotorsion pair (*F,* ©) that is gen-
erated by the class of *-flat modules. By virtue of [10], the class *JF consists of
summands of *-flat-filtered modules, and the class *€ consists of the *-cotorsion
modaules.

ExampLE 4.1. The cotorsion pair (*F,* ©) is in general different from the
cotorsion pairs (8F, MC) and (&, £C). Indeed, in general we have

(8F, MC) < (*F.* €) < (7, £C).

That (*&,* ©) differs in general from (8F, MC) is clear by Example 2.3, while
Example 3.7 and [12, Example 3.8] show that an /-divisible Enochs-cotorsion
module is not necessarily weak-injective (cf. also Theorem 4.5 below).

In order to obtain more information about the pair (*J,* €), we verify:

Lemma 4.2. The cotorsion pair (*F,* C) is generated by Q and a set of pure
submodules of projective R-modules.

Proor. Set x = max{|R|, No}. Recall that every element in any R-module is
contained in a pure submodule of cardinality < «. If the module is flat, then its pure
submodules are also flat, whence it follows that every flat R-module is the union
of a continuous well-ordered ascending chain of flat submodules where the factors
are flat modules of cardinalities < «. Therefore, if X denotes the set of pairwise
non-isomorphic flat R-modules of cardinalities < «, then Ext?e (F, M) = 0 holds
for all flat R-modules F provided it holds for all F' € X. Let 2) denote the set of
pure submodules H, one for each F € X, in an exact sequence 0 - H — P —
F — 0 with some projective P. Then Exty(H, M) = Exty(F, M) implies that
condition (c) in Lemma 3.1 is satisfied for M once we know that (ii) holds for all
H € 9. Thus the set ) of *-flat modules along with O generates the cotorsion
pair (*F,* ©). O

We refer to [10, Corollary 3.2.3] to argue that the class *F consists of direct
summands of modules Z for which there is an exact sequence 0 - F — Z —
G — 0 with free F and {2), Q}-filtered G.

We will need the following lemma.

LemMma 4.3. Assume R is a subperfect ring. In the generalized Matlis category
equivalence, the h-reduced torsion-free *-cotorsion modules and the h-divisible
Enochs-cotorsion torsion modules correspond to each other.
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Proor. Consider the Matlis sequence 0 - N - Q Qg N > K Qr N — 0
with a torsion-free Matlis-cotorsion N. For any module F, we obtain the exact
sequence

Extp(F, Q®rN) —> Extip(F, K®RN) —> Extyx(F, N) —> Ext3(F, Q®grN).

If R is a subperfect ring, then Q-modules are weak-injective. It follows that the
extremal Exts are 0 whenever F is a flat module. Consequently,

Exth(F, K ®g N) = Ext}(F, N)

for all flat F. This means that K ® g N is Enochs-cotorsion if and only if N is
*_cotorsion (Lemma 3.1). O

Before stating the next theorem, we point out for comparison that the cotorsion
pair (&, £C) is hereditary, but (8F, MC) is not. (Actually, (8F, MC) is hereditary
exactly if R is a Matlis ring; this follows from the ring version of [13, Lemma4.1].)

THeorEM 4.4. (a) The cotorsion pair (*F,* C) is hereditary: Extgz(A,C) =0
forall Ae* F, C €* C, and for all integers n > 1.

(b) (*F,* ©) is a complete cotorsion pair over every commutative ring R, i.e.
all R-modules admit special *F-precovers and special * C-preenvelopes.

Proor. (a) Let C be *-cotorsion. There is a pure-exact sequence 0 — C —
E — N — 0 with Enochs-cotorsion £ and N (Lemma 3.4). By [10, Theo-
rem 4.1.1], the cotorsion pair (&, £C) is hereditary. Therefore Extz(4,C) = 0
for each flat module A and for each n > 2. This equality holds by definition for
Ae*Fandn = 1,s0 (*F,* ©) is hereditary.

(b) Since the cotorsion pair (*F,* C) is generated by a set (Lemma 4.2), by
[10, Theorem 3.2.1] every module M can be embedded in an exact sequence
0> M — H—> A— Owhere H €* Cand A €* F. This sequence provides a
special *C-preenvelope for M. The existence of special *F-precovers follows then
from Salce’s lemma (e.g. [10, Lemma 2.2.6]). O

We next consider rings over which the cotorsion pair (*F,* C) equals (F, £C).

THeoREM 4.5. For a subperfect ring R, the following are equivalent:
i. flat R-modules are *-flat;
ii. *-cotorsion R-modules are Enochs-cotorsion;
iii. h-reduced torsion-free *-cotorsion R-modules are Enochs-cotorsion;

iv. h-divisible Enochs-cotorsion torsion R-modules are weak-injective.
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Proor. (i) <= (ii). This is straightforward by observing that (F, £C) and
(*F,* ©) are cotorsion pairs over commutative rings.

(i) = (iii) is trivial.

(iili) = (iv). This implication is a consequence of Lemma 4.3.

(iv) = (ii). Form the Matlis sequence 0 - C - Q ®QrC — K®rC — 0,
starting with an /-reduced torsion-free *-cotorsion C. In view of Lemma 4.3, from
(iv) we conclude that K ® g C is weak-injective, and therefore [6, Proposition 5.3]
shows that C is Enochs-cotorsion. This implication remains true even if C is not
torsion-free, because then we can take a flat cover sequence 0 - £ — F —
C — 0 where F is flat and E is Enochs-cotorsion. Then C *- cotorsion implies
the same for F, and then by what has been proved we have F' Enochs-cotorsion.
Hence it follows that C is Enochs-cotorsion, so we obtain (ii). O

5. When (*F,* @) is a perfect cotorsion pair

It is natural to raise the existence question of covers and envelopes for the co-
torsion pair (*F,* €). Owing to Theorem 4.4, such special precovers and special
preenvelopes exist over any commutative ring. Our Theorem 5.3 below settles the
problem of perfectness for the cotorsion pair (*F.,* ©).

ExampLE 5.1. Over any subperfect ring R, every torsion-free divisible R-
module D has a *F-cover. In this case, D is a Q-module, so there exists a Q-
projective cover sequence 0 - C — P — D — 0 where P is Q-projective.
Now P is *-flat, and by Lemma 3.3(iii), C is *-cotorsion as an R-module, while
minimality is obvious.

Our main result on *F-covers is the next theorem.

THEOREM 5.2. Modules over a commutative ring R admit *F-covers if and
only if R is an almost perfect ring.

Proor. If R is an almost perfect ring, then flatness and strong flatness are
equivalent, and clearly, the same must be true for flatness and *-flatness. As flat
covers always exist, the claim of sufficiency is evident.

Conversely, assume that * F-covers exist for R-modules. Let D be any Q-mod-
ule (i.e. a torsion-free divisible R-module), and 0 — X — F — D — 0
an exact sequence with Q-projective F; here X is also a Q-module. As F is
*-flat as an R-module, in view of the Q-projectivity of F this exact sequence is a
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*F-precover sequence for D. Then a summand of F is a *F-cover of D (see [10,
Lemma 2.1.8]), which means that the *F-cover of D is Q-projective. Therefore,
a *F-cover sequence for D may be viewed as a Q-projective cover sequence for
the Q-module D. Consequently, Q-modules admit projective covers, i.e. Q is a
perfect ring.

Let the top row in the following diagram be a *F-cover sequence for a divisible
R-module D (with any r € R*):

0 c — s 4-2.Dp 0
J =«

0 ——> rdnC ra 24 p 0
J .

0 C 45D 0

Since D is divisible and hence A = rA + ¢C for r € R*, the middle row is an
exact sequence. As r4A = A, rA is *-flat, so there is amap « : 4 — rA making the
upper right square commute. Using the embedding map 8 : rA — A, we complete
the diagram in the obvious way. By commutativity, we have ¢S = ¢, whence the
cover property of A implies that the endomorphism B« of A is an automorphism.
It is clear that then B is surjective, and hence A is divisible. We have shown above
that R is subperfect, so it follows that A as a divisible *-flat-filtered R-module is
Q-projective (cf. Example 2.5).

Let M be an h-reduced torsion-free Matlis-cotorsion R-module, and 0 —
C - A - D — 0 a *F-cover sequence for the divisible torsion module
D = K ®pgr M (thus 4 is Q-projective and C is *-cotorsion). This exact sequence
induces the exact sequence

0 —> Homg(K, D) —> Extk(K,C) —> Extx(K, A) = 0;

the last Ext vanishes as A4 is weak-injective and w.d. K = 1. by the Matlis category
equivalence, Homg(K, D) = M, so M is isomorphic to the h-reduced part
Ext}e (K, C) of the *-cotorsion C. The divisible submodule of C is torsion-free,
so a Q-module, and hence *-cotorsion, therefore from Lemma 3.3(ii) it follows
that M is *-cotorsion. This means that /#-reduced torsion-free Matlis-cotorsion
R-modules are *-cotorsion, and our subperfect ring R satisfies condition (ii)
in Theorem 3.5. Condition (iv) of the same theorem shows that then all *-flat
R-modules are strongly flat. Consequently, we have the equality *F = §5.

If *F = 8F, then every *F-cover is also an 8F-cover, thus our hypothesis im-
plies that R-modules admit 8F-covers. It only remains to refer to [5, Theorem 3.7]
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(which says that modules over a commutative ring admit strongly flat covers if and
only if the ring is almost perfect) to conclude that R is almost perfect. O

We can now prove a main result.

THEOREM 5.3. The cotorsion pair (*F,* C) over a commutative ring is perfect
if and only if the ring is almost perfect (in which case it is equal to both (8F, MC)
and (7, £C)).

Proor. Only the necessity part requires a proof. By Theorem 5.2, already the
existence of *F-covers implies that R is almost perfect. O
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