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Abstract – This paper investigates the projective dimension of the maximal right ring of

quotients Qr .R/ of a right non-singular ring R. Our discussion addresses the question

under which conditions pd.Q/ � 1 guarantees that the module Q=R is a direct sum

of countably generated modules extending Matlis’ Theorem for integral domains to a

non-commutative setting.
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1. Introduction

There are various ways to extend the concept of divisibility from integral domains

to arbitrary rings. A rightR-moduleD is divisible in the classical sense ifDc D D

for every regular element c 2 R. E. Matlis extended upon this concept and called

a module D h-divisible if it is an epimorphic image of an injective module [18].

On the other hand, we can generalize using homological properties and define

D to be divisible if Ext1R.R=rR;D/ D 0 for every r 2 R. The question of

when these various notions coincide for integral domains has been investigated

by several authors, and a summary of their results can be found in [10]. The non-

commutative case was addressed by one of the authors in [1], and is considered

further in Section 2 of this paper.

It is always the case that h-divisibility implies classic divisibility, but the

converse fails in general [1]. If R is a semi-prime right Goldie-ring, then a non-

singular module D is divisible if and only if it is divisible in the classical sense if

and only if it is injective [1, Corollary 4.5]. Here, a ring R is a right Goldie-ring

if it has finite right Goldie-dimension and satisfies the ascending chain condition

on right annihilators. A ring R has finite right Goldie-dimension if every direct

sum of nonzero right ideals of R contains only finitely many direct summands.

A semi-prime right and left Goldie-ring R has a semi-simple Artinian classical

right and left ring of quotients Q D Qr D Ql , which is also its right and left

maximal ring of quotients [12].

In [10, Theorem VII.2.8], Fuchs and Salce show that all three notions of

divisibility coincide for countable integral domains (see also [18]). This does not

hold true ifR is a non-commutative domain (see [2, sections 4 and 5]). However, it

will hold ifR is a semi-prime right and left Goldie p.p.-ring for which the maximal

ring of quotientsQ is countably generated as a right R-module [1, Theorem 5.5].

Moreover, questions concerning divisibility are closely related to the projective

dimension of Q. An integral domain R with pdR.Q/ � 1 is called a Matlis

domain. E. Matlis [18], S. B. Lee [17], and L. Fuchs and L. Salce [10, Chapter VII,

Theorem 2.8] characterize Matlis domains by showing that the following three

conditions are equivalent for an integral domain R:

a) R is a Matlis domain;

b) divisible R-modules are h-divisible;

c) Q=R is a direct sum of countably generated (divisible) submodules.

Furthermore, L. Fuchs and S. B. Lee show in [9, Theorem 6.4] that a com-

mutative ring R is a Matlis ring if and only if Q=R is a direct sum of countably

presented modules if and only if divisibleR-modules are h-divisible. It is the main
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focus of this paper to investigate whether the equivalence of the above conditions

extends to a non-commutative setting. We want to remind the reader of the fol-

lowing result from [1]:

Theorem 1.1 ([1, Theorem 5.2]). LetR be a semi-prime right and left Goldie-

ring. IfQ=R is a direct sum of countably generated submodules, then pdR.Q/ � 1.

We begin our discussion in Section 2 by focusing on the various notions of

divisibility and related concepts. Our results will establish that c) H) b) and

b) H) a) remain valid for semi-prime right and left Goldie rings (Theorem 2.2).

However, we give an example that a) H) c) may fail in the non-commutative

setting (Theorem 2.4). Therefore, the remaining part of this paper will focus on

establishing a non-commutative setting in which a) H) c) is valid (sections 3, 4,

and 5). In the course of our discussion, we extend several of Kaplansky’s Change

of Rings Lemmas to a non-commutative setting (Section 3). We will obtain a direct

sum decomposition as in c) via a transfinite induction, at the core of which is a

Step-Lemma (Theorem 4.4) similar to the one used in applications of set-theoretic

methods to groups and modules [11].

2. Divisibility and projective dimension

We want to remind the reader that

Z.M/ D ¹x 2M W xI D 0 for some essential right ideal I of Rº

denotes the singular submodule of M . Moreover, a right R-module A has pro-

jective dimension � n, denoted pdR.A/ � n, if there exists a finite projective

resolution

0 �! Pn �! � � � �! P1 �! P0 �! A �! 0

in which P0; : : : ; Pn are projective.

A ring R is a right p.p.-ring if aR is projective for all a 2 R. Equivalently,

R is right p.p. if and only if right annihilators of elements are generated by an

idempotent. If R is a right and left Goldie-ring, then right p.p.-rings are also

left p.p.-rings [21]. In this case, we simply call R a p.p.-ring. Clearly, every ring

without zero-divisors is a p.p.-ring.

Proposition 2.1 ([1, Corollary 4.6a]). If R is a semi-prime right and left

Goldie p.p.-ring, then the class of divisible modules coincides with the class of

modules which are divisible in the classical sense.
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A right R-module M is weakly cotorsion if Ext1R.Q
r ;M/ D 0.

Theorem 2.2. Consider the following conditions for a semi-prime right and

left Goldie-ring R with classical right and left ring of quotients Q, and let K D

Q=R:

a) KR Š
L

I Ai=R where each Ai is a subring of Q such that .Ai/R is

countably generated.

b) KR is a direct sum of countably generated submodules;

c) every divisible module is h-divisible;

d) all divisible modules are weakly cotorsion;

e) Z.D/ is a direct summand of D wheneverD is divisible;

f ) pdR.Q=R/ � 1.

Then a) H) b) H) c). Furthermore, if R is a p.p.-ring in addition, then we get

c) H) d) H) e) H) f ). Theorem 2.4 will show that f ) H) a) may fail even

if R is a semi-prime right and left Goldie p.p.-ring.

Proof. Since a) H) b) is obvious, we turn to b) H) c). LetD be a divisible

right R-module, and consider a 2 Z.D/. Since R is a semi-prime right and left

Goldie-ring, there is a regular element s0 of R such that as0 D 0.

Write K.R/ D
L

I Ki=R where each Ki is a countably generated submodule

of QR containing R. Since R is a semi-prime right and left Goldie-ring, Q is the

classical right and left ring of quotients of R. Therefore, every element of Q can

be written as c�1r for some regular element c of R. Hence, if U is a countably

generated submodule of QR, then we can find regular elements ¹cnjn < !º of

R such that U � †n<!c
�1
n R. At the same time, there is a countable subset J of

I such that U � †j2JKj . Using a standard back and forth argument beginning

with U , we can find a countable subset ¹dnjn < !º of regular elements of R such

that V D .†n<!d
�1
n R/=R is a direct summand ofQ=R. In fact, V will be a direct

sum of countably many of the Ki .

Applying the construction from the last paragraph to U D s�1
0 R, we select

regular elements ¹s1; s2; : : :º of R such that E D .†n<!s
�1
n R/=R is a direct sum-

mand of Q=R. Inductively, we show that we can find regular elements tn of R

with t0 D s0 such that RtnC1 � Rtn for all n < ! and †n<!s
�1
n R �

S

n<! t
�1
n R.

Assume that we have already constructed t0; : : : ; tn with the desired properties

such that s�1
0 ; : : : ; s�1

n 2 t�1n R. Since R is a semi-prime right and left Goldie

ring, Rtn and RsnC1 are essential left ideals of R because tn and snC1 are regular.
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Thus, Rtn \ RsnC1 is an essential left ideal, and it contains a regular element

tnC1 of R. We can find rnC1; t 2 R such that tnC1 D t snC1 D rnC1tn. Observe

that rnC1 has to be left regular since tnC1 is regular. Since R is a semi-prime

right and left Goldie-ring, rnC1 is regular. Inside Q, we obtain s�1
nC1 D t

�1
nC1t and

t�1n D t
�1
nC1rnC1. Therefore, s�1

nC1; t
�1
n 2 t

�1
nC1R. In particular,

R � t�10 R � t�11 � � � � � t
�1
n R � � � � :

Then, V D
S

n<! t
�1
n R contains R, and E � V=R.

To show that Z.D/ is h-divisible, we let a0 D a and r0 D s0. Select ¹an 2 DW

n < !º such that anC1rnC1 D an for n < ! where tnC1 D rnC1tn as in the last

paragraph. Since t�1n R is a free right R-module, setting ˛n.t
�1
n / D an defines a

map ˛nW t
�1
n R! D. Moreover,

˛nC1.t
�1
n / D ˛nC1.t

�1
nC1/rnC1 D anC1rnC1 D an D ˛n.t

�1
n /:

Therefore, ˛nC1jt
�1
n R D ˛n. Moreover, ˛0.1/ D ˛0.t

�1
0 s0/ D a0s0 D 0 yields

˛n.R/ D 0 for all n < !. Thus, the ˛n induce a map ˛WV=R ! D with

˛.t�10 C R/ D a. However, t�10 C R D s�1
0 C R 2 E. Consequently, a is

contained in the image of ˛jEWE ! D. Since E is a direct summand of Q=R,

we obtain a map ˇWK.R/ D QR=R ! D such that a 2 im ˇ. Because Q=R

is singular, ˇ.Q=R/ � Z.D/. In particular, Z.D/ is an epimorphic image of

a direct sum of copies of K.R/. But then, Z.D/ is an image of copies of QR,

and hence h-divisible. By Part b) of Theorem 1.1, Z.D/ is divisible and weakly

cotorsion. Since R is a semi-prime right and left Goldie-ring, every non-singular

module, which is divisible in the classical sense, is actually aQ-module, and hence

injective. This holds in particular forD=Z.D/, and so Ext1R.D=Z.D/;Z.D// D 0.

This shows that D Š Z.D/˚D=Z.D/ is h-divisible.

From this point on, we will assume that R is a p.p.-ring in addition to being a

semi-prime right and left Goldie-ring.

c) H) d). LetD be a divisible module. By c),D is h-divisible. Hence,Z.D/

is a direct summand ofD by Theorem 4.1 of [1]. Moreover, all divisible modules

are divisible in the classical sense and vice-versa by Proposition 2.1. Combining

these two observations yields that all divisible modules are weakly cotorsion by

Part b) of [1, Corollary 4.6].

d) H) e). Since all divisible modules are divisible in the classical sense

and vice-versa by Proposition 2.1, the fact that every divisible module D is

weakly cotorsion yields that Z.D/ is a direct summand of D by Part b) of [1,

Corollary 4.6].

Finally, e) H) f ) follows directly from Proposition 2.1 and [1, Proposi-

tion 5.1]. �
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The equivalence of a) and b) was discussed in [1, Proposition 5.3]. A decom-

position Q=R D A=R˚ B=R, where A and B are submodules ofQR containing

R, has the additional property that A and B are subrings of Q exactly if A and B

are also submodules of RQ.

Although h-divisible modules are divisible in the classical sense, they need not

be divisible.

Proposition 2.3. [1, Corollary 4.2] The following are equivalent for a right

non-singular ring R of finite right Goldie-dimension:

a) R is a right p.p.-ring;

b) every h-divisible right R-module is divisible.

Therefore, it is not surprising that p.p-rings entered the discussion in Theo-

rem 2.2. Moreover, the ring M2.ZŒx�/ is an example of a ring for which not all

h-divisible modules are divisible [2].

The next result shows that f ) H) a) may fail, even if R is a semi-prime right

and left Goldie p.p.-ring, by constructing a right hereditary ring R for which

.Q=R/R is not the direct sum of countably generated submodules Ai=R where

each Ai is a subring of Q. Since R is right hereditary, pdR.QR/ � 1.

We want to remind the reader that a ring R is a right duo ring if Ra � aR for

every a 2 R, and it is a a duo ring if it is both a right and left duo ring. It is easy

to see thatMr is a submodule ofM for all right R-modulesM if and only if R is

a left duo ring.

Theorem 2.4. Let R be a right Noetherian, right chain domain whose lattice

of right ideals is inversely order isomorphic to an ordinal � of uncountable

cardinality. Then, R is a right hereditary right duo ring with classical right ring

of quotients Q such that .Q=R/R is not the direct sum of countably generated

submodules Ai=R where each Ai is a subring of Q.

Proof. Bessenrodt, Brungs, and Törner show in [6, Lemmas 1.4, 3.2] that R

is a right duo ring. Hence, every right ideal of R is two-sided. Moreover, R is a

right hereditary ring since every right ideal of R is principal [6, Lemma 3.1], and

R has a classical right ring of quotientsQ since every right Noetherian domain is

a right Ore domain.

We first show that RQ is not countably generated. If it were, then we could find

¹cn 2 RW n < !º such that Q D
P

n<! Rc
�1
n . We consider the right ideals cnR

of R , and observe that
T

n<! cnR ¤ 0 since � is of uncountable cardinality. We

pick a non-zero d 2
T

n<! cnR, and write d D cnrn for all n < !. In particular,
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we have qd 2 R for all q 2 Q. Specifically, c�1d 2 R for all 0 ¤ c 2 R. Thus,

d 2
T

c¤0 cR. In particular, 0 ¤ d2 and d2R � dR �
T

c¤0 cR � d
2R, and we

can find r 2 R such that d D d2r . Since R has no zero-divisors, 1 D dr . Hence,

d … J.R/ and d is a unit, from whence it follows R D Qd D Q, a contradiction.

Thus, RQ is not countably generated.

Now assume .Q=R/R Š
L

I Ai=R for some index set I , where Ai=R is

countably generated and Ai is a subring of Q containing R. By the discussion

following Theorem 2.2, each Ai is a two-sided submodule ofQ. Pick a countable

subset J0 � I , and write
P

J0
Aj D

P

n<!.rnc
�1
n /R. Then, rnc

�1
n 2

P

mRc
�1
m .

However, Rc�1
m is also an R-submodule of QR. To see this, let r 2 R and pick

s 2 R such that rcm D cms. This is possible since a right Noetherian, right

chain ring is right duo by [7]. Then c�1
m r D sc�1

m , and thus
P

J0
Aj �

P

mRc
�1
m .

Since RQ is not countably generated, we may assume that this inclusion is proper.

Otherwise, we can add Rd�1 to the sum on the right-hand side, and proceed with
P

mRc
�1
m CRd

�1 such that d�1 …
P

mRc
�1
m .

We can find a countable subset J1 of I such that J0 � J1 and c�1
m 2

P

J1
Aj .

Since each Aj is two-sided,

X

J0

Aj ¨
X

m

Rc�1
m �

X

J1

Aj :

Inductively, we obtain an ascending chain J0 � J1 � � � � of countable subsets of

I and a countable family ¹dnW n < !º � R such that J D
S

n<! Jn is a countable

subset of I with
P

J Aj D
P

n<! Rd
�1
n . If RQ ¤

P

n<! Rd
�1
n , then there exists

0 ¤ c 2 R such that c�1 …
P

n<! Rd
�1
n . Since R is a right chain ring, either

cR � dnR or dnR � cR. If the latter occurs, then dn D ctn for some tn 2 R and

c�1 D tnd
�1
n , a contradiction. Thus, c D dnsn for some sn 2 R and d�1

n D snc
�1.

It readily follows that
P

n<! Rd
�1
n � Rc

�1.

However, R � Rc�1, so that

X

J

Aj �
X

n<!

Rd�1
n � Rc

�1

implies
L

J Aj=R � Rc
�1=R. Thus,

Rc�1=R D
M

J

.Aj=R/˚ U=R

for someR � U � Rc�1 since
�

L

J Aj
�

=R is a direct summand ofQ=R. Observe

thatQ=R D
L

I Ai=R is a decomposition of both .Q=R/R and R.Q=R/ since Ai

is a two-sided submodule for each i 2 I . Moreover, the module
L

J .Aj =R/ is not
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finitely generated since
P

Jn
Aj ¨

P

JnC1
Aj for every n < !, and we obtain a

contradiction. Therefore, Q D
P

n<! Rd
�1
n , contradicting the fact that RQ is not

countably generated. Thus, .Q=R/R is not the direct sum of countably generated

submodules Ai=R where each Ai is a subring of Q. �

3. Duo rings and projective dimension

Kaplansky’s Change of Rings Lemmas investigate the relationship between the

projective dimensions of modules over the commutative ringsR andR=sR, where

s 2 R is a non-zero divisor. If one wants to attempt to extend them to a non-

commutative setting, some obvious restrictions need to be imposed on s to avoid

obvious counter-examples. In particular, Rs D sR has to be satisfied. The proof of

the next result carries over directly from the commutative setting and is therefore

omitted.

Lemma 3.1. Let R be a duo ring, and suppose that s 2 R is regular. If M is a

right R-module such that xs ¤ 0 for every 0 ¤ x 2 M , then pdR=sR.M=Ms/ �

pdR.M/:

We next consider two other versions of Kaplansky’s Change of Rings Lemmas,

namely [20, Proposition 8.39] and [10, Lemma VI.2.11]. In contrast to the last

result, these proofs fail to carry over to duo rings because they rely on the fact that

right multiplication by s is a right R-module homomorphism. More precisely,

either proof considers a right R-module M with Ms D 0 and a free resolution

0 ! K ! F ! M ! 0, and shows that the induced map F=K ! F s=Ks

defined by x C K ! xs C Ks is an isomorphism of R-modules. Unfortunately,

this map is an R-morphism only if s is a central element ofR [19, Theorem 9.33].

To prove the theorem in the case that s is not central, a different approach is needed

which we base on

Lemma 3.2 ([19, Theorem 9.32]). If 'WR! R� is a ring homomorphism and

A� is a right R�-module, then pdR.A
�/ � pdR�.A

�/C pdR.R
�/.

If R is a ring and � WR ! R is an automorphism of rings, then every right

R-module M carries another R-module structure induced by � : for x 2 M and

r 2 R, define x � r D x�.r/. Let M� denote the R-module M with the structure

induced by � . Since 1 � r D 1�.r/, we have that R� is a free right R-module.

Hence, pdR.R
�/ D 0 and pdR.M/ D pdR.M

�/ � pdR�.M�/ by Lemma 3.2.

Since � is an isomorphism, we can use ��1 to get the reverse inequality. Therefore,

pdR.M/ D pdR�.M�/.
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It is easy to see that the regular elements in a duo ring R satisfy the right and

left Ore condition. Thus, R has a classical right and left ring of quotients Q.

Proposition 3.3. Let R be a duo ring with classical right and left ring of

quotients Q, and let 0 ¤ s 2 R be regular. If � WR ! R is the automorphism

defined by �.r/ D s�1rs, then the map N� WR=sR! R=sR defined by N�.rC sR/ D

�.r/C sR is an automorphism of R=sR.

Proof. Observe that s is a unit of Q. For r 2 R, we can select r 0 2 R such

rs D sr 0 since R is duo. Computing in Q, we obtain s�1rs D s�1sr 0 2 R.

Hence, � WR! R. It is easy to see that � is one-to-one and a morphism of rings.

Moreover, if t 2 R, then we can find t 0 2 R with t 0s D st since R is duo. Then

�.t 0/ D s�1t 0s D S�1st D t , and � is an isomorphism of rings.

If r 0 D rCst for some t 2 R, then s�1r 0s D s�1rsCs�1sts D s�1rsCt s. Since

sR D Rs, we have N�.r 0CsR/ D N�.rCsR/, and hence N� is well-defined. It is easily

seen that N� is an epimorphism and an R-map. To see that N� is a monomorphism,

suppose that N�.rCsR/ D 0. The duo condition yields s�1rs D t s for some t 2 R.

Hence t D s�1r 2 Q, and r D st 2 sR. Therefore, N� is an automorphism of

R=sR. �

A right R=sR-module U can be viewed as a right R-module with Us D 0.

Moreover, using the maps � and N� from Proposition 3.3, we have

u � .r C sR/ D u N�.r C sR/ D u.�.r/C sR/ D u�.r/ D u � r

where � and � denote the module structures induced by N� and � , respectively.

Theorem 3.4. Let R be a right and left duo ring, and let 0 ¤ s 2 R be

regular. If M is a right R=sR-module such that pdR=sR.M/ D n < 1, then

pdR.M/ D nC 1.

Proof. To begin our induction, let pdR=sR.M/ D 1. Observe that Lemma 3.2

yields pdR.M/ � 2. We assume pdR.M/ � 1, and consider an exact sequence

0 ! P1 ! P0 ! M ! 0 of right R-modules with P0 and P1 projective.

Applying the functor ˝R R=sR induces the exact sequence

0 �! TorR1 .M;R=sR/ �! P1˝RR=sR �! P0˝RR=sR �!M˝RR=sR �! 0

of right R=sR-modules.

However,M ˝RR=sR ŠM sinceM is anR=sR-module. Furthermore, since

Pi ˝R R=sR is a projective R=sR-module for i D 0; 1, and pdR=sR.M/ D 1, we

have that TorR1 .M;R=sR/ is a projective R=sR-module.
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Now, the sequence 0 ! sR
�
�! R ! R=sR ! 0 is an exact sequence of

R-R-bimodules where �W sR ! R is the inclusion map. We consider the induced

sequence

0 �! TorR1 .M;R=sR/
@
�!M ˝R sR

��

�! M ˝R R:

Computing in M ˝R R, we have x ˝ st D xs ˝ t D 0 since M is a right

R-module satisfying Ms D 0. Thus, im �� D 0, and @ is an isomorphism.

Consequently, A D M ˝R sR Š TorR1 .M;R=sR/ as an R-module, and hence

as an R=sR-module. Therefore, A is a projective R=sR-module.

Let A� denote the R-module A with the module structure induced by N� as

defined in Proposition 3.3. For x ˝ t s 2 A, we have

.x ˝ t s/ � r D x ˝ t ss�1rs D x ˝ t rs:

However, �WA� !M defined by �.x˝t s/ D xt is an isomorphism ofR-modules,

and hence also of R=sR-modules. As previously shown, Lemma 3.2 implies that

A and A� have the same projective dimension as both R and R=sR-modules

since � and N� are automorphisms of R and R=sR, respectively. Thus, we have

a contradiction since this leads to

1 D pdR=sR.M/ D pdR=sR.A
�/ D pdR=sR.A/ D pdR=sR.TorR1 .M;R=sR// D 0:

Therefore, pdR.M/ > 1 and pdR.M/ D 2.

For the induction step, assume that pdR.M/ D n whenever pdR=sR.M/ D

n � 1. Suppose pdR=sR.M/ D n. If pdR.M/ � n, then there exists an exact

sequence 0 ! Pn ! � � � ! P1 ! P0 ! M ! 0 of right R-modules with

Pi projective for i D 0; 1; : : : ; n. As before, this induces the exact sequence

0 �! TorR1 .M;R=sR/ �! Pn ˝R R=sR �! � � �

�! P0 ˝R R=sR �!M ˝R R=sR �! 0

of rightR=sR-modules. Since pdR=sR.M/ D n and eachPi˝RR=sR is projective

as a right R=sR-module, we have pdR=sR.TorR1 .M;R=sR// D n � 1. By the

inductive hypothesis, pdR.TorR1 .M;R=sR// D n. Hence, pdR.A/ D n, which

leads to a contradiction since

n D pdR.A/ D pdR=sR.A/ D pdR=sR.TorR1 .M;R=sR// D n� 1:

Therefore, pdR.M/ > n and the claim follows using Lemma 3.2 once more. �
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4. Normal submonoids and prime ideals

IfQ is the classical right and left ring of quotients of R, then the ring of quotients

RT with respect to a right and left Ore-set T � R� can naturally be viewed as

a subring of Q, and we will identify RT with this subring. In the following, we

are particularly interested in subrings of Q arising as localizations at completely

prime ideals, where an ideal P of R is completely prime if xy 2 P implies that

x 2 P or y 2 P for every x; y 2 R. If R is a duo ring, then every prime ideal is

completely prime, and the localization at RnP , denoted RP , can be obtained as

in the commutative setting. However, although R n P is multiplicatively closed,

it may still contain zero divisors, so that RP cannot always be embedded into Q.

To avoid this additional complexity, we assume that R does not contain any zero

divisors. Furthermore, Brungs showed in [7] that the localizationRP of a duo ring

R at a prime ideal P need not be duo. However, RP is a duo ring if it satisfies the

ascending chain condition for principal right and left ideals.

A submonoid T of a monoid S is normal, denoted T GS , if sT D T s for every

s 2 S .

Proposition 4.1. LetR be a duo ring without zero-divisors with classical ring

of quotients Q. If T is a normal submonoid of R� and P is a prime ideal of R,

then

a) RTRP D ¹rt
�1sx�1 j r; s 2 R; t 2 T; x 2 R n P º is a subring of Q and the

same holds for RPRT ;

b) .RT /P D .RP /T D RTRP D RPRT � Q.

Proof. a) Let 0 ¤ r 2 R and t 2 T . Since R is a duo ring, we can find s 2 R

such that rt D t s. Thus, T is a right Ore-subset of R.

Moreover, to see that RTRP is a subring of Q, consider u1; u2 2 RT and

v1; v2 2 RP . We may find r1; r2; s1; s2 2 R, t 2 T and x 2 R n P such that

ui D ri t
�1 and vi D six

�1 or i D 1; 2. Since T is normal in R�, we can find

t1; t2 2 T such that si ti D t si so that t�1si D si t
�1
i . Since T is a right and left

Ore-set, there exists r 0
1; r

0
2 2 R and t3 2 T with t�1i D r

0
i t

�1
3 . Thus,

.u1 C u2/.v1 C v2/ D Œ.r1 C r2/t
�1s1 C .r1 C r2/t

�1s2�x
�1

D Œ.r1 C r2/s1t
�1
1 C .r1 C r2/s2t

�1
2 �x�1

D Œ.r1 C r2/s1r
0
1 C .r1 C r2/s2r

0
2�t

�1
3 x�1 2 RTRP :

A similar argument shows that RTRP is multiplicatively closed. The case RPRT

is treated similarly.
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b) We consider the commutative diagram

0 R˝R RP RT ˝R RP .RT =R/˝R RP 0

0 RP RTRP

 

!

 

!
˛

 !o �

 

!
ˇ

 !  

 

!

 

!

 

!
�

in which � and  are the multiplication maps. Clearly,  is onto. For r; s 2 R,

t 2 T and x 2 R nP , select s0 2 R such that st D t s0 using the fact that R is duo.

Then

Œrt�1 ˝ sx�1�xt D rt�1 ˝ st D rt�1 ˝ t s0 D rs0 ˝ 1;

which shows that .RT =R/˝R RP is a singular right R-module.

If y 2 ker  , then there is a regular element c 2 R such that yc D ˛.y0/.

Then 0 D  .yc/ D  ˛.y0/ D �.y0/ and thus yc D 0. Observe that RT ˝R RP is

non-singular since RT is a flat module. Hence, yc D 0 implies y D 0. Therefore,

.RT /P D RTRP .

For r; s 2 R, t 2 T and x 2 R n P , select s0; r 0 2 R such that st D t s0 and

rx D xr 0 using the fact that R is a duo ring. Since T is normal in R�, there are

t 0; t 00 2 T with xt D t 0x and tx D xt 00. Then

rt�1sx�1 D rs0t�1x�1 D rs0.xt/�1 D rs0.t 0x/�1 D rs0x�1t 0
�1
2 RPRT ;

and RTRP � RPRT : Moreover,

sx�1rt�1 D sr 0x�1t�1 D sr 0.tx/�1 D sr 0.xt 00/�1 D sr 0t"�1x�1 2 RTRP ;

and RPRT � RTRP : �

Lemma 4.2. Let R be a duo ring without zero-divisors. If T G S are normal

submonoids of R� such that pdR.RS / � 1 and pdR.RS=RT / � 1, and if P is

a prime ideal of R with T \ P ¤ 0, then RT =sRT is projective as a left R=sR-

module for any s 2 S .

Proof. Clearly, RT is a left R-module in view of r.at�1/ D .ra/t�1 2 RT

for any r 2 R and any at�1 2 RT . Since R is a duo ring, sR D Rs. Thus, for any

r 2 R, we can find r1 2 R such that rs D sr1. Hence, r.sat�1/ D sr1.at
�1/, and

sRT is a submodule of RRT . Since R is duo, sR is a two-sided ideal of R, and we

can view RT =sRT as a left R=sR-module.

Consider the exact sequence

0 �! RT �! RS �! RS=RT �! 0:
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By assumption, pdR.RS / � 1 and pdR.RS=RT / � 1. If pdR.RT / > 1, then

pdR.RT / > pdR.RS / and hence pdR.RS=RT / D pdR.RT /C 1 > 1 by [20, Exer-

cise 8.5]. However, this is a contradiction, and thus pdR.RT / � 1. Consequently,

pdR=sR.RT =sRT / � pdR.RT / � 1 by Lemma 3.1. Now, consider the exact se-

quence

0 �! RT =sRT �! RS=sRT �! RS=RT �! 0

of left R-modules. Since RS is s-divisible, sRS D RS and

RS=RT Š sRS=sRT D RS=sRT :

Thus, pdR.RS=RT / D pdR.RS=sRT /. Therefore,

pdR.RT =sRT / < pdR.RS=RT / D pdR.RS=sRT / � 1

using standard properties of the projective dimension. However, Theorem 3.4

shows that if pdR=Rs.RT =sRT / D 1 then pdR.RT =sRT / must be 2, which is a

contradiction. Therefore, pdR=sR.RT =sRT / D 0, and RT =sRT is projective as a

left R=sR-module. �

Lemma 4.3. Let R be a duo ring without zero-divisors. If T G S are normal

submonoids of R� such that pdR.RS / � 1 and pdR.RS=RT / � 1, and if P is a

prime ideal of R with T \P ¤ 0, then .RT /P D .RS/P andRT =R is S -divisible.

Proof. By Proposition 4.1, .RT /P D RTRP and .RS/P D RSRP . Observe

that RP is a local ring since P is completely prime. Hence, RP=sRP is local too.

Moreover, since R is a duo ring and T is a normal submonoid of R�, we can view

.RT /P as a leftRP -module. To see this, take .at�1/m�1 2 .RT /P and bn�1 2 RP

where n;m 2 R n P . The duo condition provides a1 2 R such that an D na1.

Since T is normal, we can find t1 2 T such that tn D nt1. Thus,

bn�1.at�1m�1/ D ba1n
�1t�1m�1 D .ba1t

�1
1 /.mn/�1 2 .RT /P :

Since localization at P is an exact functor, .RT /P=s.RT /P is projective as a

left .RP /=s.RP /-module by what was shown in the preceding paragraph. Since

projective modules over local rings are free (see for example [20, Theoerem 4.58]

and the note after it), .RT /P =s.RT /P is a free .RP /=s.RP /-module.

Now assume .RT /P =s.RT /P ¤ 0, and consider t 2 T \ P ¤ ;. Suppose t

is a unit of RP . Then there exists rm�1 2 RP such that t rm�1 D 1. However,

this leads to a contradiction since it implies that t�1 D rm�1 2 RP and hence

t 2 RnP . Furthermore, if .au�1/m�1 2 .RT /P , then the duo condition provides

a1 2 R such that

au�1m�1 D t t�1au�1m�1 D ta1.ut/
�1m�1 2 t .RT /P :

Hence, t .RT /P D .RT /P .
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Since .RT /P=s.RT /P is a free .RP /=s.RP /-module, there exists some index

set I such that .RT /P =s.RT /P Š
L

I .RP /=s.RP /. Moreover, since .RT /P is

divisible by t , it must also be the case that

L

I .RP /=s.RP / D t
�
L

I .RP /=s.RP /
�

:

However, this implies RP =sRP D t .RP=sRP /. But t 2 PRP , which is a con-

tradiction since t is not a unit in RP . Therefore, given any s 2 S , we have

.RT /P=s.RT /P D 0 and hence .RT /P D s.RT /P . That is, s�1.RT /P D .RT /P

for any s 2 S .

Now, to see that .RP /S � .RT /P , take .rm�1/u�1 2 .RP /S . Since S is a

normal submonoid of R� and m is regular, there exists u1 2 S such that um D

mu1, and hence m�1u�1 D u�1
1 m�1. Moreover, we can use the duo condition

to find r1 2 R such that u1r D r1u1, from whence it follows ru�1
1 D u�1

1 r1.

Observe also that r1m
�1 2 .RT /P since r1 2 R � RT and m 2 RnP . Therefore,

.RP /S � .RT /P since

.rm�1/u�1 D u�1
1 r1m

�1 2 u�1
1 .RT /P D .RT /P :

It is easily seen that .RT /P � .RP /S since xT D T x for every x 2 R� and

T � S . For if rt�1m�1 2 .RT /P , then there exists t1 2 T � S such that

rt�1m�1 D rm�1t�11 2 .RP /S :

Thus, .RT /P D .RP /S . By Proposition 4.1, .RP /S D .RS/P . Therefore, we have

.RT /P D .RP /S D .RS /P , and it readily follows from the S -divibility of RS

that .RT =R/P D .RT /P =RP D .RS /P=RP is S -divisible. Consequently, RT =R

is S -divisible. �

Theorem 4.4 (Step-Lemma). Let R be a duo ring without zero-divisors. If

T GS are normal submonoids ofR� such that pdR.RS /�1 and pdR.RS=RT /�1,

then RT =R is a direct summand of RS=R.

Proof. As a first step, we show that .RT =R/P is S -divisible for all prime

ideals P of R. Since R is a duo ring, P is completely prime, and RnP is multi-

plicatively closed. If T \ P D ;, then T � RnP , and so .RT =R/P D 0.

Now, assume T \ P ¤ ;. It follows from Lemma 4.3 that .RT =R/P is S -

divisible and .RT /P D .RS /P . Moreover, RT =sRT is projective as a left R=sR-

module by Lemma 4.2.
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Suppose s 2 S . By the S -divisibility of RT =R, we have s.RT =R/ D RT =R,

and hence sRT C R D RT . Furthermore, RT =sRT is projective as a left

R=sR-module. Hence,

R=.R \ sRT / Š .sRT CR/=sRT D RT =sRT

is projective as a left R=sR-module. The epimorphism � WR=sR! R=.R\ sRT /

defined by �.r C sR/ D r C .R \ sRT / induces the exact sequence

0 �! .R \ sRT /=sR �! R=sR �! R=.R \ sRT / �! 0

which splits since R=.R \ sRT / is projective as a R=sR-module. However, left

multiplication by s induces isomorphisms

s�1R=R Š R=sR

and

.s�1R \RT /=R Š .R \ sRT /=sR

of right R-modules. Hence

Œs�1R=R�=Œ.s�1R \RT /=R� Š s
�1R=Œ.s�1R \RT /� Š R=.R \ sRT /

is a projective R=sR-module. Thus,

Œs�1R=R� D Œ.s�1R \RT /=R�˚ C=R

for some submodule C of s�1R containing R. Observe that C=R Š RT =sRT .

Using the notation of Fuchs and Salce, let B D
T

P2W.RP \RS / where W is the

set of maximal ideals P with T \P ¤ ;. By Lemma 4.3, .RT /P D .RS /P in the

case that T \ P ¤ ;. Hence,

.C=R/P Š .RT =sRT /P D .RT /P =s.RT /P

D .RS/P =s.RS /P D .RS /P=.RS /P D 0

from which we obtain CP D RP . Since C � RS and .s�1R \ RT /=R � RT =R,

we have s�1R=R � RT =RC B=R for every s 2 S . Thus

RS=R D RT =R C B=R:

It remains to be seen that .RT =R/ \ .B=R/ D 0. Once this is established, we

have shown that

RS=R D .RT =R/˚ .B=R/:
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Again using the notation of Fuchs and Salce, let A D
T

P2V.RP \ RS /, where

V is the set of maximal ideals with T \ P D ;. Since RT is clearly contained in

A and RT \ B � A \ B , it suffices to show that A \ B D R. It is easily seen

that R � A \ B . For if x 2 R, then x 2 RT for any submonoid T of R�. Hence,

x 2 RP \ RS for every maximal ideal P and thus x 2 A \ B .

To see that A \ B � R, it suffices to show that

R D
�
T

P2m-SpecRP
�

\RS

where m-Spec is the set of all maximal ideals of R. Let x D us�1 2 RSnR

and consider the right ideal Ix D ¹r 2 RW xr 2 Rº. Note that Ix ¤ ¹0º since

xs D us�1s D u 2 R yields s 2 Ix . Moreover, Ix is a proper right ideal since

1 … Ix . Hence, it follows that there exists a maximal right ideal P containing Ix.

Since R is duo, P is a two-sided ideal. If x 2 RP , then x D rm�1 for some r 2 R

and m 2 RnP . However, xm D r 2 R implies that m 2 Ix � P , which is a

contradiction. Thus, given x 2 RSnR, there exists some maximal ideal P of R

such that x … RP . Hence, x 2 R whenever x 2 RP for every maximal ideal P

of R. Therefore, R D
�
T

P2m-SpecRP
�

\ RS and A \ B D R. �

5. Pre-Matlis duo domains and tight systems

We now turn to obtaining the desired direct sum decomposition of Q=R. For

a right R-module M , a set S D ¹Mi W i 2 I º of submodules of M is called a

G.@0/-family if the following are satisfied:

i) 0;M 2 S;

ii) S is closed under unions of chains;

iii) for every Mi 2 S and every countable subset X of M , there exists Mj 2 S

such that Mi �Mj , X �Mj and Mj=Mi is countably generated.

A submodule N of a right R-module M is called tight if pdR.M=N/ � pdR.M/.

For a right R-module M with pdR.M/ � 1, a family T D ¹Mi W i 2 I º of

tight submodules of M is called a tight system if it is a G.@0/-family such that

pdR.Mj =Mi / � pdR.M/ � 1 whenever Mi ;Mj 2 T with Mi � Mj . The

following result ensures the existence of a tight system in our setting in the case

that pdR.M/ � 1. The proof is similar to the integral domain case found in [10,

Proposition 5.1] and is therefore omitted.

Lemma 5.1 ([10]). Let R be a semi-prime right and left Goldie-ring and M a

right R-module. If pdR.M/ � 1, then M admits a tight system.
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Once we have an appropriate G.@0/-family of tight submodules, we will use

the following lemma to extract a well-ordered ascending chain of direct sum-

mands.

Lemma 5.2 ([15, Lemma 7.2]). LetR be a ring and letM be a rightR-module.

Let U be a family of submodules of M , and take U0 to be a subset of U. Assume

that for a suitable ordinal ˇ there exists a chain ¹M
º
�ˇ such that

i) for every 
 < ˇ, M
C1 DM
 ˚ U
 for some U
 2 U0;

ii) M0 D 0, and M
 D
S

�<
M� for every limit ordinal 
 � ˇ, and M DMˇ .

Then, M D
L


<ˇ U
 is a direct sum of modules with U
 2 U0 for every 
 < ˇ.

The monoid of regular elements R� has a �-filtration if it is the union of a

smooth well-ordered ascending chain

¹1º D T0 � T1 � � � � � T˛ � � � � � T� D R
�

of submonoids. We want to remind the reader that submonoids of R� are right

and left Ore-sets if R is a duo ring.

One of the main difficulties encountered in our discussion is that, in the non-

commutative setting, R� does not necessarily have �-filtrations with the same

properties as those in integral domains. In particular, if we consider a submonoid

T of R� and a countable subset S of R�, then it is not guaranteed that the

localization at the submonoid generated by T and S is countably generated over

the localization at T . For instance, Theorem 2.4 provides an example of a ring for

which R� does not have a desired filtration.

To overcome these difficulties, we introduce a notion similar to the Third

Axiom of Countability introduced by P. Griffith and P. Hill in [14]. A monoid

T satisfies the third axiom of countability if there exists a family C D ¹Ti W i 2 I º

of submonoids of T such that

i) 1 2 C;

ii) C is closed under unions of chains;

iii) if i 2 I andX � T is countable, then there exists i0 2 I such that Ti ; X � Ti0
and Ti0 is countably generated over Ti .

We refer to the family C as an Axiom III family of T .

Definition 5.3. A ring R is a pre-Matlis ring if R� is the union of a smooth

chain

¹1º D T0 � T1 � � � � � T˛ � � � � � T� D R
�

of submonoids with the following properties:
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(i) T˛ G R
� for every ˛ < �;

(ii) if ˛ < � and X � R� is countable, then there exists ˇ < � such that

T˛; X � Tˇ and Tˇ is countably generated over T˛.

We consider an example from Bessenrodt, Brungs, and Törner in [6] of a

ring whose monoid of regular elements has the desired filtration of normal sub-

monoids. For an ordered group .G;�/ with identity e, let GC D ¹g 2 GW e � gº

denote the positive cone of G. For a division algebra K, consider the collection

of power series of the form a D
P

g2G gag , with ag 2 K. Define the support of

a to be supp.a/ D ¹g 2 GW ag ¤ 0º, and refer to a as a generalized power series

if supp.a/ is a well-ordered subset of G. If ag D ga for every a 2 K and g 2 G,

then the set of all generalized power series, denotedKŒŒG��, is a ring with normal

power series addition and multiplication. Moreover, KŒŒG�� is a division ring and

[6, Proposition 1.24] shows thatKŒŒGC�� is a duo chain domain with quotient ring

KŒŒG��.

Theorem 5.4. Let .G;�/ be an ordered group which has an Axiom III family

of normal subgroups, and let R D KŒŒGC��. Then R is a pre-Matlis domain.

Proof. Suppose G has an Axiom III family C D ¹N˛W ˛ < �º of normal

subgroups. Since GC \N˛ is a normal subroup of GC for each ˛ < �, it is easily

seen that C 0 D ¹GC \ N˛W ˛ < �º is an Axiom III family of GC.

i) ¹eº D GC \ ¹eº 2 C 0 since ¹eº 2 C .

ii) If ¹GC \ Nˇ ºˇ<
 is a chain in C 0, then ¹Nˇ ºˇ<
 is a chain in C . Hence,
S

ˇ<
 Nˇ 2 C , from whence it follows GC \
�

S

ˇ<
 Nˇ
�

2 C 0.

iii) Let˛ < � and letX � GC � G be countable. SinceC is an Axiom III family,

there exists ˇ < � such thatN˛; X � Nˇ andNˇ is countably generated over

N˛ . Therefore,GC\N˛; X � G
C\Nˇ andGC\Nˇ is countably generated

over GC \N˛ .

For each ˛ < �, define T˛ D KŒŒGC \ N˛��n¹0º to be the set of all non-zero

generalized power series
P

gag over GC \ N˛ and K. By [6, Proposition 1.24],

we obtain thatKŒŒGC\N˛�� is a duo ring, and hence rT˛ D T˛r for every r 2 R�.

By extending property iii) of the Axiom III family of GC to ¹T˛º˛<� , we obtain

that the second condition of our filtration is satisfied. Therefore,KŒŒGC�� is a pre-

Matlis domain. �
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We are now ready for our main result, which extends the characterization

of Matlis domains to duo rings not containing zero-divisors. For a semi-prime

right and left Goldie-ring R with classical right and left ring of quotients Q, let

K D Q=R.

Theorem 5.5. The following conditions are equivalent if R is a right and left

duo pre-Matlis domain:

a) KR Š
L

I ŒAi=R� where each Ai is a subring of Q such that .Ai /R is

countably generated;

b) every divisible module is h-divisible;

c) pdR.Q=R/ � 1.

Proof. By Theorem 2.2, it remains to show c)H) a). Suppose pdR.Q=R/D1,

and assume that R has the desired filtration

¹1º D T0 � T1 � � � � � T˛ � � � � � T� D R
�:

Let U D ¹RT˛
=RW ˛ � �º. Observe that for each ˛ < �, RT˛

=R is a submodule

of Q=R. We show that U is a G.@0/-family of Q=R. Clearly, condition i) is

satisfied since ¹0º D R¹1º=R 2 U and Q=R D RR�=R 2 U. Moreover, U is

closed under unions of chains since ¹T˛º˛�� forms a smooth chain and includes

R� D
S

˛<� T˛.

To see that condition iii) is satisfied, take RT˛
=R 2 U and let

X D ¹rj s
�1
j CRW rj ; sj 2 R with sj regular; j < !º

be a countable subset of Q=R. Using condition ii) of the filtration, there exists

ˇ < � such that T˛ � Tˇ , ¹sj W j < !º � Tˇ , and Tˇ is countably generated over

T˛ . Hence,RT˛
=R;X � RTˇ

=R and there exists a countable subset S˛ � Tˇ such

that Tˇ D S˛T˛ D T˛S˛. Thus, if t 2 Tˇ , there exists s˛1
; s˛2

; : : : ; s˛n
2 S˛ and

t˛1
; t˛2

; : : : ; t˛n
2 T˛ such that

t D s˛1
t˛1
s˛2
t˛2
: : : s˛n

t˛n
:

Then if rt�1 CRT˛
2 RTˇ

=RT˛
, we have

rt�1 D rt�1˛n
s�1
˛n
: : : t�1˛2

s�1
˛2
t�1˛1

s�1
˛1
:

Therefore,

.RTˇ
=R/=.RT˛

=R/ Š RTˇ
=RT˛

is countably generated by ¹s�1W s 2 S˛nT˛º and U is a G.@0/-family of Q=R.
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It follows from Lemma 5.1 thatQ=R admits a tight system T. It is clear that T

is also a G.@0/-family of Q=R, and it is easily seen that U \ T is a G.@0/-family

of tight submodules of Q=R of the form RT˛
=R for ˛ < �. Thus, given any

RT˛
=R 2 U \ T,

pdR.Q=RT˛
/ D pdR..Q=R/=.RT˛

=R// � pdR.Q=R/ � 1:

Theorem 4.4 yields that RT˛
=R is a direct summand of Q=R for every ˛ < �.

Since R� D
S

˛<� T˛, we have Q=R D
S

˛<� RT˛
=R. Moreover, the smooth

filtration ensures that

RTˇ
=R D

[


<ˇ

RT

=R 2 U \ T;

and hence there exists ˇ � � and a continuous well-ordered ascending chain

¹RT

=RW 
 < ˇº � U \ T of submodules of Q=R such that RT


=R is a di-

rect summand of Q=R and RT
C1
=RT


is countably generated. Hence, Q=R D
L


<ˇ A
=R where each A
 is countably generated. Finally, since R is right and

left duo andRT

is a subring ofQ for each 
 , we have that each A
 is a two-sided

submodule of Q. �

Theorem 2.4 showed that, without some additional filtration properties, im-

plication f ) H) a) of Theorem 2.2 may fail if Qr is not countably generated.

However, we can find the following filtration of countable submonoids of R� if

.Q=R/R is generated by @1-many elements.

Corollary 5.6. Suppose R is a semi-prime right and left Goldie-ring such

that .Q=R/R is a direct sum of @1 many countable modules, then there exists a

smooth ascending chain T0 � T1 � � � � � T˛ � � � � , ˛ < @1, of countable

submonoids of R� such that R� D
S

˛<@1
T˛ .

Proof. Let T0 D ¹1º and let T� D
S

ˇ<� Tˇ for each limit ordinal � < @1.

Note that each T� is countable as the countable union of a countable set. Let

˛ < @1 and suppose that for each ˇ � ˛, Tˇ has been defined so that RTˇ
=R

is a direct sum of countably many A�=R. Then

RT˛
=R D

M

I˛

ŒA�=R�

is a direct summand of Q=R for some countable set I˛ . If RT˛
D Q, then we are

done. Otherwise, there exists � < @1 with A� ª RT˛
. Let A� D hrnt

�1
n W n < !i
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and define T 1˛ D hT˛; tnW n < !i. Observe that T 1˛ is countable since it is countably

generated by countable sets. Since

RT 1
˛
=R � Q=R D

M

�<@1

ŒA�=R�;

we can find a countable subset I 1˛ � I˛ such that RT 1
˛
=R �

L

I1
˛
ŒA�=R�:

If RT 1
˛
D Q, then we are done. Otherwise, there exists �2 < @1 with A�2

ª

RT 1
˛

. As before, let A�2
D hrnt

�1
n;2W n < !i and define T 2˛ D hT

1
˛ ; tn;2W n < !i.

Then, T 2˛ is countable and we can find a countable subset I 2˛ � I 1˛ such that

RT 2
˛
=R �

L

I2
˛
A�=R. Note that

RT 1
˛
=R �

M

I1
˛

A�=R � RT 2
˛
=R �

M

I2
˛

A�=R:

Continue this process to find

I˛ � I
1
˛ � I

2
˛ � � � � � I

n
˛ � � � �

and

T˛ � T
1
˛ � T

2
˛ � � � � � T

n
˛ � � � �

satisfying

RT n
˛
=R �

M

In
˛

ŒA�=R� � RT nC1
˛

=R �
M

I
nC1
˛

ŒA�=R�:

Let T˛C1 D
S

n<! T
n
˛ and let I D

S

n<! I
n
˛ . Observe that both T˛C1 and I

are countable since each T n˛ and each I n˛ are countable. If rt�1 CR 2 RT˛C1
=R,

then t 2 T n˛ for some n < !. Hence, rt�1 C R 2
L

In
˛
ŒA�=R� �

L

I ŒA�=R� and

so RT˛C1
=R �

L

I ŒA�=R�. On the other hand, if

x 2
M

I

ŒA�=R� D
[

n

M

In
˛

ŒA�=R�;

then x 2
L

In
˛
ŒA�=R� for some n < !, and thus x 2 RnC1

T˛
=R � RT˛C1

=R. Hence,

RT˛C1
=R D

M

I

ŒA�=R�

is a direct summand of Q=R: Therefore, T˛ is defined for every ˛ < @1 and

T0 � T1 � � � � � T˛ � : : :

with ˛ < @1 is a smooth ascending chain of countable submonoids of R�

such that R� D
S

˛<@1
T˛. �
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