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1. Introduction

There are various ways to extend the concept of divisibility from integral domains
to arbitrary rings. A right R-module D is divisible in the classical sense if Dc = D
for every regular element ¢ € R. E. Matlis extended upon this concept and called
a module D h-divisible if it is an epimorphic image of an injective module [18].
On the other hand, we can generalize using homological properties and define
D to be divisible if Exty(R/rR, D) = 0 for every r € R. The question of
when these various notions coincide for integral domains has been investigated
by several authors, and a summary of their results can be found in [10]. The non-
commutative case was addressed by one of the authors in [1], and is considered
further in Section 2 of this paper.

It is always the case that h-divisibility implies classic divisibility, but the
converse fails in general [1]. If R is a semi-prime right Goldie-ring, then a non-
singular module D is divisible if and only if it is divisible in the classical sense if
and only if it is injective [1, Corollary 4.5]. Here, a ring R is a right Goldie-ring
if it has finite right Goldie-dimension and satisfies the ascending chain condition
on right annihilators. A ring R has finite right Goldie-dimension if every direct
sum of nonzero right ideals of R contains only finitely many direct summands.
A semi-prime right and left Goldie-ring R has a semi-simple Artinian classical
right and left ring of quotients Q0 = Q" = Q!, which is also its right and left
maximal ring of quotients [12].

In [10, Theorem VIIL.2.8], Fuchs and Salce show that all three notions of
divisibility coincide for countable integral domains (see also [18]). This does not
hold true if R is a non-commutative domain (see [2, sections 4 and 5]). However, it
will hold if R is a semi-prime right and left Goldie p.p.-ring for which the maximal
ring of quotients Q is countably generated as a right R-module [1, Theorem 5.5].
Moreover, questions concerning divisibility are closely related to the projective
dimension of Q. An integral domain R with pdiz(Q) < 1 is called a Matlis
domain. E. Matlis [18], S. B. Lee [17], and L. Fuchs and L. Salce [10, Chapter VII,
Theorem 2.8] characterize Matlis domains by showing that the following three
conditions are equivalent for an integral domain R:

a) R is a Matlis domain;
b) divisible R-modules are /-divisible;
¢) Q/R is adirect sum of countably generated (divisible) submodules.

Furthermore, L. Fuchs and S. B. Lee show in [9, Theorem 6.4] that a com-
mutative ring R is a Matlis ring if and only if Q/R is a direct sum of countably
presented modules if and only if divisible R-modules are i-divisible. It is the main
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focus of this paper to investigate whether the equivalence of the above conditions
extends to a non-commutative setting. We want to remind the reader of the fol-
lowing result from [1]:

THeoreM 1.1 ([1, Theorem 5.2]). Let R be a semi-prime right and left Goldie-
ring. If Q /R is a direct sum of countably generated submodules, then pdg(Q) < 1.

We begin our discussion in Section 2 by focusing on the various notions of
divisibility and related concepts. Our results will establish that c) = b) and
b) = a) remain valid for semi-prime right and left Goldie rings (Theorem 2.2).
However, we give an example that a) —> c¢) may fail in the non-commutative
setting (Theorem 2.4). Therefore, the remaining part of this paper will focus on
establishing a non-commutative setting in which a) = c¢) is valid (sections 3, 4,
and 5). In the course of our discussion, we extend several of Kaplansky’s Change
of Rings Lemmas to a non-commutative setting (Section 3). We will obtain a direct
sum decomposition as in c) via a transfinite induction, at the core of which is a
Step-Lemma (Theorem 4.4) similar to the one used in applications of set-theoretic
methods to groups and modules [11].

2. Divisibility and projective dimension
We want to remind the reader that
Z(M) = {x € M: xI = 0 for some essential right ideal / of R}

denotes the singular submodule of M. Moreover, a right R-module A has pro-
jective dimension < n, denoted pdgp(A) < n, if there exists a finite projective
resolution

0O—P,—--— P —Pp—A—0

in which Py, ..., P, are projective.

A ring R is a right p.p.-ring if aR is projective for all @ € R. Equivalently,
R is right p.p. if and only if right annihilators of elements are generated by an
idempotent. If R is a right and left Goldie-ring, then right p.p.-rings are also
left p.p.-rings [21]. In this case, we simply call R a p.p.-ring. Clearly, every ring
without zero-divisors is a p.p.-ring.

Prorposition 2.1 ([1, Corollary 4.6a]). If R is a semi-prime right and left
Goldie p.p.-ring, then the class of divisible modules coincides with the class of
modules which are divisible in the classical sense.
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A right R-module M is weakly cotorsion if Ext}Q(Q’ ,M)=0.

THeEOREM 2.2. Consider the following conditions for a semi-prime right and
left Goldie-ring R with classical right and left ring of quotients Q, and let K =

O/R:
a) Kr = ; Ai/R where each A; is a subring of Q such that (A;)r is
countably generated.

b) KRr is a direct sum of countably generated submodules;
¢) every divisible module is h-divisible;
d) all divisible modules are weakly cotorsion;

e) Z(D) is a direct summand of D whenever D is divisible;

f) pdgr(Q/R) < L
Thena) = b) = c). Furthermore, if R is a p.p.-ring in addition, then we get
c) = d) = e) = f). Theorem 2.4 will show that f) = a) may fail even
if R is a semi-prime right and left Goldie p.p.-ring.

Proor. Sincea) = b)isobvious, weturntob) = c). Let D be a divisible
right R-module, and consider a € Z(D). Since R is a semi-prime right and left
Goldie-ring, there is a regular element 5o of R such that asy = 0.

Write K(R) = @; K;/R where each K; is a countably generated submodule
of Qg containing R. Since R is a semi-prime right and left Goldie-ring, Q is the
classical right and left ring of quotients of R. Therefore, every element of Q can
be written as ¢~ !r for some regular element ¢ of R. Hence, if U is a countably
generated submodule of Qg, then we can find regular elements {c,|n < w} of
R suchthat U C X, <, L R. At the same time, there is a countable subset J of
I such that U C X;¢;K;. Using a standard back and forth argument beginning
with U, we can find a countable subset {d,|n < w} of regular elements of R such
that V = (Z,<»d, ' R)/R is a direct summand of Q/R. In fact, V will be a direct
sum of countably many of the K;.

Applying the construction from the last paragraph to U = sy ' R, we select
regular elements {s1, 52, ...} of R suchthat E = (En<ws;1R)/R is a direct sum-
mand of Q/R. Inductively, we show that we can find regular elements 7, of R
with 79 = so such that Ri,4+1 € Rty foralln <  and <5, 'R € U, -, 1, ' R.
Assume that we have already constructed ¢, ..., t, with the desired properties
such that s;1,...,s; 1 € 7, 'R. Since R is a semi-prime right and left Goldie
ring, Rt, and Rs,4+ are essential left ideals of R because ¢, and s, are regular.
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Thus, Rt, N Rs,41 is an essential left ideal, and it contains a regular element
th+1 of R. We can find r,+1,f € R such that t,+1 = 15,41 = rp+1t,. Observe
that 7,41 has to be left regular since ¢,4+ is regular. Since R is a semi-prime
right and left Goldie-ring, r, is regular. Inside Q, we obtain s, }, = 1, !, and

7t =t rat1. Therefore, 5,1 .1, € ;71| R. In particular,

RSiy'RCi'!c--Cr7'RC -

Then, V = J,_, ¢, ' R contains R, and E C V/R.

To show that Z(D) is h-divisible, we let a9 = a and ro = s¢. Select {a, € D:
n < w} such that ay 417,41 = a, forn < w where t,41 = rp41t, as in the last
paragraph. Since 7, ! R is a free right R-module, setting a,, (¢, ') = a, defines a

map ay,: 1, 'R — D. Moreover,
—1 —1 —1
Ant1(t, ) = Ant1(t 1 )Tn+1 = Ani1Tn+1 = an = an(l, ).

Therefore, oy 41]t;,' R = a,. Moreover, ao(1) = ao(fy's0) = agso = 0 yields
an(R) = 0 for all n < . Thus, the ¢, induce a map a:V/R — D with
a(ty' + R) = a. However, t;' + R = s5' + R € E. Consequently, a is
contained in the image of ¢|E: E — D. Since FE is a direct summand of Q/R,
we obtain a map f: K(R) = Qr/R — D suchthata € im B. Because Q/R
is singular, (Q/R) C Z(D). In particular, Z(D) is an epimorphic image of
a direct sum of copies of K(R). But then, Z(D) is an image of copies of Qg,
and hence h-divisible. By Part b) of Theorem 1.1, Z(D) is divisible and weakly
cotorsion. Since R is a semi-prime right and left Goldie-ring, every non-singular
module, which is divisible in the classical sense, is actually a O-module, and hence
injective. This holds in particular for D/Z (D), and so Ext}Q (D/Z(D),Z(D)) =0.
This shows that D = Z(D) & D/Z(D) is h-divisible.

From this point on, we will assume that R is a p.p.-ring in addition to being a
semi-prime right and left Goldie-ring.

¢) = d). Let D be a divisible module. By c), D is h-divisible. Hence, Z(D)
is a direct summand of D by Theorem 4.1 of [1]. Moreover, all divisible modules
are divisible in the classical sense and vice-versa by Proposition 2.1. Combining
these two observations yields that all divisible modules are weakly cotorsion by
Part b) of [1, Corollary 4.6].

d) = e). Since all divisible modules are divisible in the classical sense
and vice-versa by Proposition 2.1, the fact that every divisible module D is
weakly cotorsion yields that Z(D) is a direct summand of D by Part b) of [1,
Corollary 4.6].

Finally, e) = f) follows directly from Proposition 2.1 and [, Proposi-
tion 5.1]. O
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The equivalence of a) and b) was discussed in [1, Proposition 5.3]. A decom-
position Q/R = A/R & B/R, where A and B are submodules of Q g containing
R, has the additional property that A and B are subrings of Q exactly if A and B
are also submodules of g Q.

Although h-divisible modules are divisible in the classical sense, they need not
be divisible.

Prorosrtion 2.3. [1, Corollary 4.2] The following are equivalent for a right
non-singular ring R of finite right Goldie-dimension:

a) Risarightp.p.-ring;
b) every h-divisible right R-module is divisible.

Therefore, it is not surprising that p.p-rings entered the discussion in Theo-
rem 2.2. Moreover, the ring M, (Z[x]) is an example of a ring for which not all
h-divisible modules are divisible [2].

The next result shows that f) = a) may fail, even if R is a semi-prime right
and left Goldie p.p.-ring, by constructing a right hereditary ring R for which
(Q/R)R is not the direct sum of countably generated submodules A;/R where
each A; is a subring of Q. Since R is right hereditary, pdg(Qr) < 1.

We want to remind the reader that a ring R is a right duo ring if Ra C aR for
every a € R, and it is a a duo ring if it is both a right and left duo ring. It is easy
to see that M r is a submodule of M for all right R-modules M if and only if R is
a left duo ring.

THEOREM 2.4. Let R be a right Noetherian, right chain domain whose lattice
of right ideals is inversely order isomorphic to an ordinal o of uncountable
cardinality. Then, R is a right hereditary right duo ring with classical right ring
of quotients Q such that (Q/R)Rr is not the direct sum of countably generated
submodules A; /R where each A; is a subring of Q.

Proor. Bessenrodt, Brungs, and Torner show in [6, Lemmas 1.4, 3.2] that R
is a right duo ring. Hence, every right ideal of R is two-sided. Moreover, R is a
right hereditary ring since every right ideal of R is principal [6, Lemma 3.1], and
R has a classical right ring of quotients Q since every right Noetherian domain is
a right Ore domain.

We first show that g Q is not countably generated. If it were, then we could find
{cn € R:in < w}suchthat Q = Y, __ Rc,'. We consider the right ideals ¢, R
of R, and observe that (), _, c» R # 0 since o is of uncountable cardinality. We
pick a non-zero d € (), ., c» R, and write d = ¢,r, for all n < w. In particular,
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we have gd € R for all ¢ € Q. Specifically, c™'d € R for all 0 # ¢ € R. Thus,
d € (o0 ¢R. In particular, 0 # d? and d>R € dR C (),zocR S d*R, and we
can find r € R such that d = d?r. Since R has no zero-divisors, 1 = dr. Hence,
d ¢ J(R) and d is a unit, from whence it follows R = Qd = Q, a contradiction.
Thus, g Q is not countably generated.

Now assume (Q/R)gr =~ &P, Ai/R for some index set I, where A4;/R is
countably generated and A; is a subring of O containing R. By the discussion
following Theorem 2.2, each A; is a two-sided submodule of Q. Pick a countable
subset Jo C 7, and write }_; A; = 3, _,(rac,")R. Then, rpe,' € 3, Rey, '
However, Rc;1 is also an R-submodule of Qg. To see this, let r € R and pick
s € R such that r¢;; = cs. This is possible since a right Noetherian, right
chain ring is right duo by [7]. Then ¢,,'r = sc,,', and thus )~ ; A4; € Y, Rc,'.
Since g Q is not countably generated, we may assume that this inclusion is proper.
Otherwise, we can add Rd ! to the sum on the right-hand side, and proceed with
> Reyt + Rd~ ' suchthatd ™' ¢ >, Reb.

We can find a countable subset J; of I such that Jo € J; andc,,! € 3" 7 Aj
Since each A4; is two-sided,

ZAJ' - ZRC,;I - ZAJ'.
Jo m J1

Inductively, we obtain an ascending chain Jo € J; C --- of countable subsets of
I and a countable family {d,:n < w} € R such that J =, _, Jn is a countable
subsetof 7 with ", A; =, _, Rd;V.If RO # >, _, Rd; !, then there exists
0 #c € Rsuchthatc™! ¢ > _ Rd, ! Since R is a right chain ring, either

¢cR C d,Rord,R C cR. If the latter occurs, then d,, = ct, for some ¢, € R and
-1

¢! =1,d; !, acontradiction. Thus, ¢ = dys, for some s, € Rand d, ! = sy,c¢
It readily follows that >, _, Rd, ' € Rc™L.
However, R € Rc™!, so that

> A4, ) Rd;' S R
J

n<w

implies @; Aj/R € Rc™1/R. Thus,

Re™'/R=(4;/R) & U/R
J
forsome R € U € Rc™'since (D, 4;)/R isadirect summand of Q /R. Observe

that O /R = @; A; /R is a decomposition of both (Q/R)r and g(Q/R) since A;
is a two-sided submodule for each i € I. Moreover, the module § ;(A4;/R) is not
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finitely generated since »; A4; & >, ., A4j forevery n < w, and we obtain a
contradiction. Therefore, Q = )", _, Rd, !, contradicting the fact that g Q is not
countably generated. Thus, (Q/R)r is not the direct sum of countably generated
submodules A;/R where each A; is a subring of Q. O

3. Duo rings and projective dimension

Kaplansky’s Change of Rings Lemmas investigate the relationship between the
projective dimensions of modules over the commutative rings R and R/sR, where
s € R is a non-zero divisor. If one wants to attempt to extend them to a non-
commutative setting, some obvious restrictions need to be imposed on s to avoid
obvious counter-examples. In particular, Rs = sR has to be satisfied. The proof of
the next result carries over directly from the commutative setting and is therefore
omitted.

LemMma 3.1. Let R be a duo ring, and suppose that s € R is regular. If M is a
right R-module such that xs # 0 for every 0 # x € M, then pdg,;g(M/Ms) <

pdg(M).

We next consider two other versions of Kaplansky’s Change of Rings Lemmas,
namely [20, Proposition 8.39] and [10, Lemma VI.2.11]. In contrast to the last
result, these proofs fail to carry over to duo rings because they rely on the fact that
right multiplication by s is a right R-module homomorphism. More precisely,
either proof considers a right R-module M with Ms = 0 and a free resolution
0 > K > F - M — 0, and shows that the induced map F/K — Fs/Ks
defined by x + K — xs + K is an isomorphism of R-modules. Unfortunately,
this map is an R-morphism only if s is a central element of R [19, Theorem 9.33].
To prove the theorem in the case that s is not central, a different approach is needed
which we base on

LemMma 3.2 ([19, Theorem 9.32]). If ¢: R — R* is a ring homomorphism and
A* is a right R*-module, then pdg(A*) < pdg,(4*) + pdg(R™).

If Ris aring and 0: R — R is an automorphism of rings, then every right
R-module M carries another R-module structure induced by o: for x € M and
r € R, define x * r = xo(r). Let M* denote the R-module M with the structure
induced by o. Since 1 * r = 1o (r), we have that R* is a free right R-module.
Hence, pdg(R*) = 0 and pdgz(M) = pdr(M*) < pdg+«(M*) by Lemma 3.2.
Since o is an isomorphism, we canuse 0! to get the reverse inequality. Therefore,
pdg(M) = pdg«(M™).
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It is easy to see that the regular elements in a duo ring R satisfy the right and
left Ore condition. Thus, R has a classical right and left ring of quotients Q.

ProposiTion 3.3. Let R be a duo ring with classical right and left ring of
quotients Q, and let 0 # s € R be regular. If 0: R — R is the automorphism
defined by o (r) = s~ 'rs, then the map 6: R/sR — R/sR defined by 5(r +sR) =
o(r) + sR is an automorphism of R/sR.

Proor. Observe that s is a unit of Q. For r € R, we can select r’ € R such
rs = sr’ since R is duo. Computing in Q, we obtain s~! Isr’ € R.
Hence, 0: R — R. It is easy to see that ¢ is one-to-one and a morphism of rings.
Moreover, if ¢ € R, then we can find ¢ € R with t's = st since R is duo. Then
o(t')y = s~ !t's = S™lst =1, and o is an isomorphism of rings.

If 7' = r+st forsomer € R,thens™'r's = s rs+s~sts = s 1rs+ts. Since
SR = Rs,wehave o (r'+sR) = o(r +sR), and hence o is well-defined. It is easily
seen that ¢ is an epimorphism and an R-map. To see that o is a monomorphism,
suppose that 6 (r +sR) = 0. The duo condition yields s~!rs = ts for some t € R.
Hence t = s7'r € Q,and r = st € sR. Therefore, & is an automorphism of
R/sR. O

rs = s

A right R/sR-module U can be viewed as a right R-module with Us = 0.
Moreover, using the maps o and ¢ from Proposition 3.3, we have

u*x(r+sR)=uc(r +sR)=u(o(r)+sR)=uo(r) =uxr
where * and x denote the module structures induced by ¢ and o, respectively.

THEOREM 3.4. Let R be a right and left duo ring, and let 0 # s € R be
regular. If M is a right R/sR-module such that pdg,;g(M) = n < oo, then
pdr(M) =n+ 1.

Proor. To begin our induction, let pdg ;g (M) = 1. Observe that Lemma 3.2
yields pdg(M) < 2. We assume pdgz(M) < 1, and consider an exact sequence
0 - Pi > Pp > M — 0 of right R-modules with Py and P; projective.
Applying the functor _ ® g R/sR induces the exact sequence

0 —> Tor®(M, R/sR) —> P1®grR/sR —> Po®grR/sR —> M®gR/sR —> 0

of right R/sR-modules.

However, M ® g R/sR =~ M since M is an R/sR-module. Furthermore, since
P; ® g R/sR is a projective R/sR-module fori = 0, 1, and de/SR (M) =1, we
have that Torf (M, R/sR) is a projective R/sR-module.



90 U. Albrecht — B. McQuaig

Now, the sequence 0 — sR S5 R > R /sR — 0 is an exact sequence of
R-R-bimodules where 1: sR — R is the inclusion map. We consider the induced
sequence

3 *
0 —> Tor®(M, R/sR) = M ®g sR — M ®r R.

Computing in M ®r R, we have x ® st = xs ® t = 0 since M is a right
R-module satisfying Ms = 0. Thus, im * = 0, and 9 is an isomorphism.
Consequently, A = M Qg SR = Torf(M, R/sR) as an R-module, and hence
as an R/sR-module. Therefore, A is a projective R/sR-module.

Let A* denote the R-module A with the module structure induced by & as
defined in Proposition 3.3. For x ® ts € A, we have

(XQ1s)*kr =xQtss rs=xQtrs.

However, A: A* — M defined by A(x®ts) = xt is an isomorphism of R-modules,
and hence also of R/sR-modules. As previously shown, Lemma 3.2 implies that
A and A* have the same projective dimension as both R and R/sR-modules
since o and & are automorphisms of R and R/sR, respectively. Thus, we have
a contradiction since this leads to

1 =pdg/sr(M) = pdgg(A*) = pdg /g (A) = pdg g (Torf (M. R/sR)) = 0.

Therefore, pdp(M) > 1 and pdx(M) = 2.

For the induction step, assume that pdg (M) = n whenever pdg,g(M) =
n — 1. Suppose pdg,g(M) = n. If pdg(M) < n, then there exists an exact
sequence 0 - P, — --- > Py —»> Py - M — 0 of right R-modules with
P; projective fori = 0, 1, ..., n. As before, this induces the exact sequence

0 — TorR(M, R/sR) — P, ®g R/sR —> -
—> Py®gr R/sSR — M ®g R/sR —> 0

of right R/sR-modules. Since pdg ;g (M) = n and each P; ® g R/sR is projective
as a right R/sR-module, we have de/sR(Torf(M, R/sR)) = n — 1. By the
inductive hypothesis, pdg (Torf(M, R/sR)) = n. Hence, pdg(A) = n, which
leads to a contradiction since

n = pdg(A) = pdg/,r(A) = pdgsg (Torf (M, R/sR)) = n — 1.

Therefore, pdz (M) > n and the claim follows using Lemma 3.2 once more. [
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4. Normal submonoids and prime ideals

If Q is the classical right and left ring of quotients of R, then the ring of quotients
Rt with respect to a right and left Ore-set T € R* can naturally be viewed as
a subring of Q, and we will identify R with this subring. In the following, we
are particularly interested in subrings of Q arising as localizations at completely
prime ideals, where an ideal P of R is completely prime if xy € P implies that
x € Pory e P forevery x,y € R.If R is a duo ring, then every prime ideal is
completely prime, and the localization at R\ P, denoted Rp, can be obtained as
in the commutative setting. However, although R \ P is multiplicatively closed,
it may still contain zero divisors, so that Rp cannot always be embedded into Q.
To avoid this additional complexity, we assume that R does not contain any zero
divisors. Furthermore, Brungs showed in [7] that the localization Rp of a duo ring
R ata prime ideal P need not be duo. However, Rp is a duo ring if it satisfies the
ascending chain condition for principal right and left ideals.

A submonoid T of a monoid S is normal, denoted T' < S, if sT = T's for every
seSs.

ProrosiTioN 4.1. Let R be a duo ring without zero-divisors with classical ring
of quotients Q. If T is a normal submonoid of R* and P is a prime ideal of R,
then

a) RrRp = {rt ™ 'sx ' |r,s € R,t € T,x € R\ P} is a subring of O and the
same holds for Rp Rr;

b) (RT)p = (Rp)T = RrRp = RpRT C Q.

Proor. a)Let0# r € Rand¢ € T. Since R is a duo ring, we can find s € R
such that r# = ¢s. Thus, T is a right Ore-subset of R.

Moreover, to see that Ry Rp is a subring of Q, consider u;,u, € Rr and
V1,02 € Rp. We may find r,r2, 81,85 € R,t € T and x € R \ P such that
u; = rit v andv; = s;x L ori = 1,2. Since T is normal in R*, we can find
f1,1> € T such that s;z; = 1s; so that t~'s; = s;¢7!. Since T is a right and left
Ore-set, there exists 7,75 € Rand t3 € T with 17! = r/t3!. Thus,

1 1

(u1 + uz2)(v1 + v2) = [(r1 + r2)t 7 sy + (11 + r2)t sl
= [(r1 + r2)sity ' 4 (11 + r2)saty x !
= [(r1 + ra)siry + (r1 + r2)sar5]t; 'x~' € RTRp.

A similar argument shows that R7 Rp is multiplicatively closed. The case Rp Rt
is treated similarly.
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b) We consider the commutative diagram

0 — R®r Rp % Rr ®g Rp 2> (Rr/R) ®g Rp — 0

zl¢ lx/f

0 — Rp i) RrRp

in which ¢ and v are the multiplication maps. Clearly, ¢ is onto. For r,s € R,
t € Tandx € R\ P, selects’ € R such that st = s’ using the fact that R is duo.
Then

Frtl@sx xt =rt ' @st =rt7 ' @ts' =rs' @1,

which shows that (R7/R) ® g Rp is a singular right R-module.

If y € ker ¥, then there is a regular element ¢ € R such that yc = a(y’).
Then 0 = ¥ (yc) = Ya(y') = ¢(y’) and thus yc = 0. Observe that R ® g Rp is
non-singular since Rt is a flat module. Hence, yc = 0 implies y = 0. Therefore,
(RT)p = RTRp.

Forr,s € R,t € T and x € R\ P, selects’,r’ € R such that st = s’ and
rx = xr’ using the fact that R is a duo ring. Since 7 is normal in R*, there are
t',t" € T with xt = t'x and rx = x¢”. Then

1 - - _ 1,1
rt syt =rs'tT T = rs'(xt) L = ' ('x) = rs’x7 YT € RpRy,

and R Rp € Rp Rp. Moreover,

1 1

sx TV =sr'x T =1 = s/ (tx) " = s/ (") = sr/t""Ix 7! € RrRp,

and RpR7 C RTRp. O

LemMma 4.2. Let R be a duo ring without zero-divisors. If T < S are normal
submonoids of R* such that pdg(Rs) < 1 and pdg(Rs/Rr) < 1, and if P is
a prime ideal of R with T N P # 0, then R /sRT is projective as a left R/sR-
module for any s € S.

Proor. Clearly, Rr is a left R-module in view of r(at™!) = (ra)t™! € Rr
for any r € R and any at~! € Rr. Since R is a duo ring, sR = Rs. Thus, for any
r € R, we can find r; € R such that rs = sry. Hence, r(sat™!) = sri(at™'), and
SRt is a submodule of g R7. Since R is duo, sR is a two-sided ideal of R, and we
can view Rr/sRrt as a left R/sR-module.

Consider the exact sequence

0 — Ry — Rs — Rs/Ry — 0.
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By assumption, pdg(Rs) < 1 and pdgr(Rs/R7r) < 1. If pdg(R7) > 1, then
pdr(RT) > pdr(Rs) and hence pdp(Rs/Rr) = pdgr(RT) + 1 > 1 by [20, Exer-
cise 8.5]. However, this is a contradiction, and thus pdz(R7) < 1. Consequently,
pdg/sr(Rr/sRr) < pdg(Rr) =< 1 by Lemma 3.1. Now, consider the exact se-
quence

0 — Rr/sRt — Rs/sRt — Rs/Rt — 0

of left R-modules. Since Ry is s-divisible, sRs = Rg and
Rs/Rr =~ sRs/sRr = Rs/sRr.
Thus, pdg(Rs/R7) = pdg(Rs/sRr). Therefore,
pdg(R7/sRr) < pdg(Rs/Rr) = pdg(Rs/sRr) <1

using standard properties of the projective dimension. However, Theorem 3.4
shows that if pdg, g (R7/sRr) = 1 then pdg(Rr/sRr) must be 2, which is a
contradiction. Therefore, pdg /sg(Rr/sRr) = 0, and Ry /sRr is projective as a
left R/sR-module. O

LemMma 4.3. Let R be a duo ring without zero-divisors. If T < S are normal
submonoids of R* such that pdg(Rs) < 1 and pdgr(Rs/Rt) < 1, and if P is a
prime ideal of Rwith T N P # 0, then (Rt)p = (Rs)p and Rt /R is S-divisible.

Proor. By Proposition 4.1, (Rt)p = RTRp and (Rs)p = RsRp. Observe
that Rp is a local ring since P is completely prime. Hence, Rp/sRp is local too.
Moreover, since R is a duo ring and 7 is a normal submonoid of R*, we can view
(R7)p as aleft Rp-module. To see this, take (at~")m™ € (Rr)p andbn~! € Rp
where n,m € R\ P. The duo condition provides a; € R such that an = na;.
Since T is normal, we can find #; € T such that tn = nt;. Thus,

bnY(at'm™Y) = bayn 't 'm™ = (bayt; ') (mn)"! € (R7)p.

Since localization at P is an exact functor, (R7)p/s(Rr)p is projective as a
left (Rp)/s(Rp)-module by what was shown in the preceding paragraph. Since
projective modules over local rings are free (see for example [20, Theoerem 4.58]
and the note after it), (R7)p/s(Rr)p is a free (Rp)/s(Rp)-module.

Now assume (R7)p/s(Rr)p # 0, and consider t € T N P # @. Suppose ¢
is a unit of Rp. Then there exists rm~! € Rp such that trm~! = 1. However,
this leads to a contradiction since it implies that t~! = rm™! € Rp and hence
t € R\ P. Furthermore, if (au~')m~! € (Rr)p, then the duo condition provides
ai € R such that

au'm™ =t lautmm = tay(ut) 'm™ € t(R7)p.

Hence, 1(R7)p = (R1)P.
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Since (R7)p/s(Rr)p is a free (Rp)/s(Rp)-module, there exists some index
set I such that (R7)p/s(Rr)p = ;(Rp)/s(Rp). Moreover, since (Rt)p is
divisible by ¢, it must also be the case that

@ (Rp)/s(Rp) = t[ @;(Rp)/s(Rp)].

However, this implies Rp/sRp = t(Rp/sRp). Butt € PRp, which is a con-
tradiction since ¢ is not a unit in Rp. Therefore, given any s € S, we have
(Rr)p/s(Rr)p = 0 and hence (R7)p = s(Rr)p. Thatis, s™'(Rr)p = (R7)p
forany s € S.

Now, to see that (Rp)s < (R7)p, take (rm~Yu~! € (Rp)s. Since S is a
normal submonoid of R* and m is regular, there exists u; € S such that um =
muy, and hence m~1u~! 1;n=1. Moreover, we can use the duo condition
to find r; € R such that uyr = rjuy, from whence it follows ruy! = ujylr;.
Observe also that rym™! € (R7)p since ry € R € Ry and m € R\ P. Therefore,
(Rp)s € (Rr)p since

U = uj

(rm_l)u_1 = ul_lrlm_1 € ul_l(RT)p = (R7)p.

It is easily seen that (R7)p € (Rp)s since xT = Tx for every x € R* and
T € S.Forif rt='m™' € (Rr)p, then there exists 1; € T C S such that

-1 = rm_ltl_l € (Rp)s.

rt 'm
Thus, (R7)p = (Rp)s. By Proposition 4.1, (Rp)s = (Rs)p. Therefore, we have
(Rr)p = (Rp)s = (Rs)p, and it readily follows from the S-divibility of Rg
that (Rr/R)p = (Rr)p/Rp = (Rs)p/Rp is S-divisible. Consequently, Ry /R
is S-divisible. O

THeOREM 4.4 (Step-Lemma). Let R be a duo ring without zero-divisors. If
T <« S are normal submonoids of R* such that pdg(Rs) <1 andpdgx(Rs/RT) <],
then Rt /R is a direct summand of Rs/R.

Proor. As a first step, we show that (Rr/R)p is S-divisible for all prime
ideals P of R. Since R is a duo ring, P is completely prime, and R\ P is multi-
plicatively closed. f T N P = @, then T € R\ P, and so (R7/R)p = 0.

Now, assume 7 N P # @. It follows from Lemma 4.3 that (Rr/R)p is S-
divisible and (Rr)p = (Rs)p. Moreover, Rt /sRr is projective as a left R/sR-
module by Lemma 4.2.
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Suppose s € S. By the S-divisibility of R7/R, we have s(R7/R) = Rr/R,
and hence sRT + R = Rr. Furthermore, R7/sRt is projective as a left
R/sR-module. Hence,

R/(R NsRt) = (sRT + R)/SRT = RT/SRT

is projective as a left R/sR-module. The epimorphism 7: R/sR — R/(RNsRt)
defined by = (r + sR) = r + (R N sR7) induces the exact sequence

0— (RNsR7)/sR— R/sR— R/(RNsRt) — 0

which splits since R/(R N sRr) is projective as a R/sR-module. However, left
multiplication by s induces isomorphisms

sT'R/R = R/sR

and
(s"'RN R7)/R = (RN sRT)/sR

of right R-modules. Hence
[s"'R/R]/[(sT'RN R7)/R] = s 'R/[(s"'RN Rr)] = R/(RN sRT)
is a projective R/sR-module. Thus,
[s"'R/R]=[(s"'RNRT)/R]® C/R

for some submodule C of s™'R containing R. Observe that C/R =~ Rp/sRr.
Using the notation of Fuchs and Salce, let B = () pcyy (Rp N Rs) where W is the
set of maximal ideals P with T N P # @. By Lemma 4.3, (Rr)p = (Rs)p in the
case that TN P # @. Hence,

(C/R)p = (R7/sRT)p = (RT)p/s(RT)P
= (Rs)p/s(Rs)p = (Rs)p/(Rs)p =0
from which we obtain Cp = Rp. Since C € Rg and (s"'RN Rr)/R < R7/R,
we have s"'R/R < R7/R + B/R for every s € S. Thus
Rs/R = Rr/R + B/R.

It remains to be seen that (R7/R) N (B/R) = 0. Once this is established, we
have shown that
Rs/R = (Rr/R) & (B/R).
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Again using the notation of Fuchs and Salce, let A = (\pcy(Rp N Rg), Where
V is the set of maximal ideals with T N P = @. Since Rr is clearly contained in
A and Rt N B < AN B, it suffices to show that A N B = R. It is easily seen
that R € AN B. Forif x € R, then x € Ry for any submonoid T of R*. Hence,
x € Rp N Ry for every maximal ideal P and thus x € A N B.

To see that A N B C R, it suffices to show that

R = [mPem—Spec RP] N Rs

where m-Spec is the set of all maximal ideals of R. Let x = us™! € Rg\R
and consider the right ideal I, = {r € R:xr € R}. Note that I, # {0} since
xs = us~'s = u € R yields s € I.. Moreover, I is a proper right ideal since
1 ¢ I,.. Hence, it follows that there exists a maximal right ideal P containing /.
Since R is duo, P is a two-sided ideal. If x € Rp, then x = rm~! for some r € R
and m € R\ P. However, xm = r € R implies that m € I, € P, which is a
contradiction. Thus, given x € Rg\R, there exists some maximal ideal P of R
such that x ¢ Rp. Hence, x € R whenever x € Rp for every maximal ideal P
of R. Therefore, R = [ (\pem.spec RP] N Rs and AN B = R. O

5. Pre-Matlis duo domains and tight systems

We now turn to obtaining the desired direct sum decomposition of Q/R. For
a right R-module M, aset 8§ = {M;:i € I} of submodules of M is called a
G (Ro)-family if the following are satisfied:

i) O,M €8;
ii) 8 is closed under unions of chains;

iii) for every M; € & and every countable subset X of M, there exists M; € &
such that M; < M;, X € M; and M;/M; is countably generated.

A submodule N of aright R-module M is called tight if pdg(M/N) < pdr(M).
For a right R-module M with pdg(M) < 1, a family T = {M;:i € I} of
tight submodules of M is called a tight system if it is a G(R¢)-family such that
pdr(M;/M;) < pdr(M) < 1 whenever M;, M; € T with M; € M;. The
following result ensures the existence of a tight system in our setting in the case
that pdx (M) < 1. The proof is similar to the integral domain case found in [10,
Proposition 5.1] and is therefore omitted.

LemMma 5.1 ([10]). Let R be a semi-prime right and left Goldie-ring and M a
right R-module. If pdg (M) < 1, then M admits a tight system.



Divisibility and duo-rings 97

Once we have an appropriate G(R)-family of tight submodules, we will use
the following lemma to extract a well-ordered ascending chain of direct sum-
mands.

LemMma 5.2 ([15, Lemma 7.2]). Let R be a ring and let M be a right R-module.
Let U be a family of submodules of M, and take Uy to be a subset of U. Assume
that for a suitable ordinal B there exists a chain {M, }, <g such that

i) foreveryy < B, M,41 = M, & U, for some U, € Up;
ii) Mo =0, and M,, = Uv<y M, for every limit ordinal y < B, and M = Mpg.

Then, M = U, is a direct sum of modules with U, € Uy for every y < p.

y<B

The monoid of regular elements R* has a k-filtration if it is the union of a
smooth well-ordered ascending chain

(3=To<Th =--<Ty<---<T, = R”

of submonoids. We want to remind the reader that submonoids of R* are right
and left Ore-sets if R is a duo ring.

One of the main difficulties encountered in our discussion is that, in the non-
commutative setting, R* does not necessarily have «-filtrations with the same
properties as those in integral domains. In particular, if we consider a submonoid
T of R* and a countable subset S of R*, then it is not guaranteed that the
localization at the submonoid generated by 7" and S is countably generated over
the localization at 7'. For instance, Theorem 2.4 provides an example of a ring for
which R* does not have a desired filtration.

To overcome these difficulties, we introduce a notion similar to the Third
Axiom of Countability introduced by P. Griffith and P. Hill in [14]. A monoid
T satisfies the third axiom of countability if there exists a family C = {T;:i € I}
of submonoids of T such that

i) 1€¢G;
ii) Cis closed under unions of chains;
iii) ifi € I and X C T is countable, then there exists iop € I suchthat7;, X C T;,
and T;, is countably generated over T;.

We refer to the family € as an Axiom III family of 7.

DEFINITION 5.3. A ring R is a pre-Matlis ring if R* is the union of a smooth
chain
(B=To<Th =--<Ty<---<T, = R”

of submonoids with the following properties:
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(i) Ty <« R* for every a < k;

(i) if « < k and X € R* is countable, then there exists 8 < « such that
Ty, X C Tg and Tg is countably generated over Ty.

We consider an example from Bessenrodt, Brungs, and Torner in [6] of a
ring whose monoid of regular elements has the desired filtration of normal sub-
monoids. For an ordered group (G, <) with identity e, let GT = {g € G:e < g}
denote the positive cone of G. For a division algebra K, consider the collection
of power series of the forma = Y, . gag, with a; € K. Define the support of
a to be supp(a) = {g € G:ay # 0}, and refer to a as a generalized power series
if supp(a) is a well-ordered subset of G. If ag = ga foreverya € K and g € G,
then the set of all generalized power series, denoted K[[G]], is a ring with normal
power series addition and multiplication. Moreover, K[[G]] is a division ring and
[6, Proposition 1.24] shows that K[[G *]] is a duo chain domain with quotient ring
K[G]].

THEOREM 5.4. Let (G, <) be an ordered group which has an Axiom III family
of normal subgroups, and let R = K[[G™]]. Then R is a pre-Matlis domain.

Proor. Suppose G has an Axiom III family C = {N,:o < «} of normal
subgroups. Since G N N, is a normal subroup of G for each o < «, it is easily
seen that C' = {GT N Ny:a < «k} is an Axiom III family of G ™.

i) {e} =Gt N{e} € C'since{e} € C.

i) If {G* N Ng}p<, is a chain in C’, then {Ng}g<, is a chain in C. Hence,
Up<, N € C, from whence it follows G+ N (g, Ng) € C".

iii) Leta < kandlet X € G C G be countable. Since C is an Axiom III family,
there exists B < « such that N, X € Ng and Ng is countably generated over
Ny. Therefore, GT NNy, X € GTNNg and G* N Ny is countably generated
over GT N N,.

For each o < «, define T, = K[[GT N Ng]]\{0} to be the set of all non-zero
generalized power series Y ga, over GT N N, and K. By [6, Proposition 1.24],
we obtain that K[[GT N Ny]] is a duo ring, and hence rT,, = T,r forevery r € R*.
By extending property iii) of the Axiom III family of G* to {T,}y<«, We obtain
that the second condition of our filtration is satisfied. Therefore, K[[G ]| is a pre-
Matlis domain. U
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We are now ready for our main result, which extends the characterization
of Matlis domains to duo rings not containing zero-divisors. For a semi-prime
right and left Goldie-ring R with classical right and left ring of quotients Q, let
K = Q/R.

THEOREM 5.5. The following conditions are equivalent if R is a right and left
duo pre-Matlis domain:
a) Kr = @;[Ai/R] where each A; is a subring of Q such that (A;)R is
countably generated,

b) every divisible module is h-divisible;
¢) pdr(Q/R) < 1.

Proor. By Theorem 2.2, it remains to show ¢) = a). Suppose pdg(Q/R) =1,
and assume that R has the desired filtration

(B=Ty<Th<---<Ty<--<Tc=R"

Let U = {R7,/R:a < k}. Observe that for each « < «, Rr, /R is a submodule
of Q/R. We show that U is a G(R¢)-family of Q/R. Clearly, condition i) is
satisfied since {0} = Ry;3/R € UWand Q/R = Rg=x/R € U. Moreover, U is
closed under unions of chains since {7y }o<, forms a smooth chain and includes
R* = Ua<lc Ty.

To see that condition iii) is satisfied, take R7,/R € U and let

X ={rjs;' + R:rj.s; € R with 5; regular, j < w}

be a countable subset of Q/R. Using condition ii) of the filtration, there exists
B < k such that T, € Tg, {s;: ] < w} € Tg, and Tg is countably generated over
Ty.Hence, R7, /R, X C Rr,/R and there exists a countable subset Sy € T such
that Tg = SuTy = ToSq. Thus, if 1 € Tg, there exists Sq; . Say, - - -, Sa, € So and
tay>tays - - - ta, € Ty such that

n

t = Sqlay Sanlay - - - Saylay -

Then if rt~' + Rr, € Rr,/Rr,, we have

-1 _ . —1 -1 -1 —1,-1 _—1
=iy, Say -+ lay S lay Sy -

Therefore,
(Rrg/R)/(Rt,/R) = Rry/Rr,
is countably generated by {s7!:s € Sy\Ty} and U is a G(Rg)-family of Q/R.
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It follows from Lemma 5.1 that Q /R admits a tight system 7. It is clear that T
is also a G(Rg)-family of Q/R, and it is easily seen that U N T is a G(Ro)-family
of tight submodules of Q/R of the form R7,/R for « < k. Thus, given any
R, /ReUNT,

pdr(Q/Rr,) = pdr((Q/R)/(Rr,/R)) < pdr(Q/R) < 1.

Theorem 4.4 yields that Rr, /R is a direct summand of Q/R for every o < «.
Since R* = U, Ta» We have O/R = |J,-, Rr,/R. Moreover, the smooth
filtration ensures that

Rry/R= | Rr,/ReUNT,
y<B

and hence there exists § < « and a continuous well-ordered ascending chain
{Rr,/R:y < B} € UN T of submodules of Q/R such that Rz, /R is a di-
rect summand of Q/R and R, ,/Rr, is countably generated. Hence, Q /R =
D, < Ay/R where each 4, is countably generated. Finally, since R is right and
left duo and Ry, is a subring of Q for each y, we have that each A, is a two-sided
submodule of Q. O

Theorem 2.4 showed that, without some additional filtration properties, im-
plication f) = a) of Theorem 2.2 may fail if Q" is not countably generated.
However, we can find the following filtration of countable submonoids of R* if
(Q/R)r is generated by R;-many elements.

CoRrROLLARY 5.6. Suppose R is a semi-prime right and left Goldie-ring such
that (Q/R)R is a direct sum of Ry many countable modules, then there exists a
smooth ascending chain T9 < Ty < --- < T, < ---, a < Ry, of countable
submonoids of R* such that R* = J, .y, Ta-

Proor. Let Ty = {l}andlet 7, = |J B<o Tg for each limit ordinal o0 < Rj.
Note that each T, is countable as the countable union of a countable set. Let
a < Rp and suppose that for each f < «, Tg has been defined so that Rz, /R
is a direct sum of countably many A4, /R. Then

Rr,/R = EDIA4u/R]
Iy

is a direct summand of Q/R for some countable set /. If R7, = Q, then we are
done. Otherwise, there exists 1 < 8y with 4, € Ry,. Let A, = (rat;,;':n < o)



Divisibility and duo-rings 101

and define T} = (T, 1,:n < w). Observe that T} is countable since it is countably
generated by countable sets. Since

Rp1 /RS Q/R = E[Au/R),
v<R1
we can find a countable subset I} D I, such that Rri /R C EBI& [A,/R].

If RT& = (O, then we are done. Otherwise, there exists pu, < Ny with 4,
Rri1. As before, let A, = (rntn_é:n < o) and define T2 = (T}, tn2:n < ).
Then, T2 is countable and we can find a countable subset /2 2 ! such that
Rp2/R S EBID% Ay /R. Note that

Rpi/RSEPA/RCS Rp2/RSEP AR,

1} 12

Continue this process to find

Iy Sl ClyS--CIyc-
and

Ta STy CT;C--C Ty C
satisfying

Rrz/R < @IAw/RI S Rpnei /R € @D [Av/R).
14 I&H-l
Let To41 = U<, T and let I = |, I[. Observe that both Ty, and /

are countable since each 7! and each I/ are countable. If r#~! + R € Ry, /R,
thent € T for some n < w. Hence, rt™! + R € DnlAv/R] € D;[A4,/R] and
so Rr,.,/R < @;[A,/R]. On the other hand, if

x e Plav/R = Plav/RI.
1 n Ik
then x € »[A4,/R] for somen < », and thus x € R’}II/R C Rr,,,/R. Hence,
Ry, /R = EPlA,/R]
I
is a direct summand of Q /R. Therefore, T, is defined for every o < Ry and

To<Th < <Ty =<...

with @ < N; is a smooth ascending chain of countable submonoids of R*
such that R* = (Jyox, Ta- O
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