

Divisibility and duo-rings

ULRICH ALBRECHT (*) – BRADLEY MCQUAIG (**)

ABSTRACT – This paper investigates the projective dimension of the maximal right ring of quotients $Q^r(R)$ of a right non-singular ring R . Our discussion addresses the question under which conditions $\text{pd}(Q) \leq 1$ guarantees that the module Q/R is a direct sum of countably generated modules extending Matlis’ Theorem for integral domains to a non-commutative setting.

MATHEMATICS SUBJECT CLASSIFICATION (2010). Primary: 16D10; Secondary: 16D40, 16E30, 16P50, 16P60, 16S85.

KEYWORDS. Divisible, duo-rings, pre-Matlis

CONTENTS

1. Introduction	82
2. Divisibility and projective dimension	83
3. Duo rings and projective dimension	88
4. Normal submonoids and prime ideals	91
5. Pre-Matlis duo domains and tight systems	96
REFERENCES	102

(*) *Indirizzo dell’A.:* Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, U.S.A.

E-mail: albreuf@auburn.edu

(**) *Indirizzo dell’A.:* Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, U.S.A.

E-mail: bsm0012@auburn.edu

1. Introduction

There are various ways to extend the concept of divisibility from integral domains to arbitrary rings. A right R -module D is *divisible in the classical sense* if $Dc = D$ for every regular element $c \in R$. E. Matlis extended upon this concept and called a module D *h-divisible* if it is an epimorphic image of an injective module [18]. On the other hand, we can generalize using homological properties and define D to be *divisible* if $\text{Ext}_R^1(R/rR, D) = 0$ for every $r \in R$. The question of when these various notions coincide for integral domains has been investigated by several authors, and a summary of their results can be found in [10]. The non-commutative case was addressed by one of the authors in [1], and is considered further in Section 2 of this paper.

It is always the case that *h*-divisibility implies classic divisibility, but the converse fails in general [1]. If R is a semi-prime right Goldie-ring, then a non-singular module D is divisible if and only if it is divisible in the classical sense if and only if it is injective [1, Corollary 4.5]. Here, a ring R is a *right Goldie-ring* if it has finite right Goldie-dimension and satisfies the ascending chain condition on right annihilators. A ring R has *finite right Goldie-dimension* if every direct sum of nonzero right ideals of R contains only finitely many direct summands. A semi-prime right and left Goldie-ring R has a semi-simple Artinian classical right and left ring of quotients $Q = Q^r = Q^l$, which is also its right and left maximal ring of quotients [12].

In [10, Theorem VII.2.8], Fuchs and Salce show that all three notions of divisibility coincide for countable integral domains (see also [18]). This does not hold true if R is a non-commutative domain (see [2, sections 4 and 5]). However, it will hold if R is a semi-prime right and left Goldie p.p.-ring for which the maximal ring of quotients Q is countably generated as a right R -module [1, Theorem 5.5]. Moreover, questions concerning divisibility are closely related to the projective dimension of Q . An integral domain R with $\text{pd}_R(Q) \leq 1$ is called a *Matlis domain*. E. Matlis [18], S. B. Lee [17], and L. Fuchs and L. Salce [10, Chapter VII, Theorem 2.8] characterize Matlis domains by showing that the following three conditions are equivalent for an integral domain R :

- a) R is a Matlis domain;
- b) divisible R -modules are *h*-divisible;
- c) Q/R is a direct sum of countably generated (divisible) submodules.

Furthermore, L. Fuchs and S. B. Lee show in [9, Theorem 6.4] that a commutative ring R is a Matlis ring if and only if Q/R is a direct sum of countably presented modules if and only if divisible R -modules are *h*-divisible. It is the main

focus of this paper to investigate whether the equivalence of the above conditions extends to a non-commutative setting. We want to remind the reader of the following result from [1]:

THEOREM 1.1 ([1, Theorem 5.2]). *Let R be a semi-prime right and left Goldie-ring. If Q/R is a direct sum of countably generated submodules, then $\text{pd}_R(Q) \leq 1$.*

We begin our discussion in Section 2 by focusing on the various notions of divisibility and related concepts. Our results will establish that c) \Rightarrow b) and b) \Rightarrow a) remain valid for semi-prime right and left Goldie rings (Theorem 2.2). However, we give an example that a) \Rightarrow c) may fail in the non-commutative setting (Theorem 2.4). Therefore, the remaining part of this paper will focus on establishing a non-commutative setting in which a) \Rightarrow c) is valid (sections 3, 4, and 5). In the course of our discussion, we extend several of Kaplansky's Change of Rings Lemmas to a non-commutative setting (Section 3). We will obtain a direct sum decomposition as in c) via a transfinite induction, at the core of which is a Step-Lemma (Theorem 4.4) similar to the one used in applications of set-theoretic methods to groups and modules [11].

2. Divisibility and projective dimension

We want to remind the reader that

$$Z(M) = \{x \in M : xI = 0 \text{ for some essential right ideal } I \text{ of } R\}$$

denotes the *singular submodule* of M . Moreover, a right R -module A has *projective dimension* $\leq n$, denoted $\text{pd}_R(A) \leq n$, if there exists a finite projective resolution

$$0 \longrightarrow P_n \longrightarrow \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow A \longrightarrow 0$$

in which P_0, \dots, P_n are projective.

A ring R is a *right p.p.-ring* if aR is projective for all $a \in R$. Equivalently, R is right p.p. if and only if right annihilators of elements are generated by an idempotent. If R is a right and left Goldie-ring, then right p.p.-rings are also left p.p.-rings [21]. In this case, we simply call R a p.p.-ring. Clearly, every ring without zero-divisors is a p.p.-ring.

PROPOSITION 2.1 ([1, Corollary 4.6a]). *If R is a semi-prime right and left Goldie p.p.-ring, then the class of divisible modules coincides with the class of modules which are divisible in the classical sense.*

A right R -module M is *weakly cotorsion* if $\text{Ext}_R^1(Q^r, M) = 0$.

THEOREM 2.2. *Consider the following conditions for a semi-prime right and left Goldie-ring R with classical right and left ring of quotients Q , and let $K = Q/R$:*

- a) $K_R \cong \bigoplus_I A_i/R$ where each A_i is a subring of Q such that $(A_i)_R$ is countably generated.
- b) K_R is a direct sum of countably generated submodules;
- c) every divisible module is h -divisible;
- d) all divisible modules are weakly cotorsion;
- e) $Z(D)$ is a direct summand of D whenever D is divisible;
- f) $\text{pd}_R(Q/R) \leq 1$.

Then a) \Rightarrow b) \Rightarrow c). Furthermore, if R is a p.p.-ring in addition, then we get c) \Rightarrow d) \Rightarrow e) \Rightarrow f). Theorem 2.4 will show that f) \Rightarrow a) may fail even if R is a semi-prime right and left Goldie p.p.-ring.

PROOF. Since a) \Rightarrow b) is obvious, we turn to b) \Rightarrow c). Let D be a divisible right R -module, and consider $a \in Z(D)$. Since R is a semi-prime right and left Goldie-ring, there is a regular element s_0 of R such that $as_0 = 0$.

Write $K(R) = \bigoplus_I K_i/R$ where each K_i is a countably generated submodule of Q_R containing R . Since R is a semi-prime right and left Goldie-ring, Q is the classical right and left ring of quotients of R . Therefore, every element of Q can be written as $c^{-1}r$ for some regular element c of R . Hence, if U is a countably generated submodule of Q_R , then we can find regular elements $\{c_n | n < \omega\}$ of R such that $U \subseteq \sum_{n < \omega} c_n^{-1}R$. At the same time, there is a countable subset J of I such that $U \subseteq \sum_{j \in J} K_j$. Using a standard back and forth argument beginning with U , we can find a countable subset $\{d_n | n < \omega\}$ of regular elements of R such that $V = (\sum_{n < \omega} d_n^{-1}R)/R$ is a direct summand of Q/R . In fact, V will be a direct sum of countably many of the K_i .

Applying the construction from the last paragraph to $U = s_0^{-1}R$, we select regular elements $\{s_1, s_2, \dots\}$ of R such that $E = (\sum_{n < \omega} s_n^{-1}R)/R$ is a direct summand of Q/R . Inductively, we show that we can find regular elements t_n of R with $t_0 = s_0$ such that $Rt_{n+1} \subseteq Rt_n$ for all $n < \omega$ and $\sum_{n < \omega} s_n^{-1}R \subseteq \bigcup_{n < \omega} t_n^{-1}R$. Assume that we have already constructed t_0, \dots, t_n with the desired properties such that $s_0^{-1}, \dots, s_n^{-1} \in t_n^{-1}R$. Since R is a semi-prime right and left Goldie ring, Rt_n and Rs_{n+1} are essential left ideals of R because t_n and s_{n+1} are regular.

Thus, $Rt_n \cap Rs_{n+1}$ is an essential left ideal, and it contains a regular element t_{n+1} of R . We can find $r_{n+1}, t \in R$ such that $t_{n+1} = ts_{n+1} = r_{n+1}t_n$. Observe that r_{n+1} has to be left regular since t_{n+1} is regular. Since R is a semi-prime right and left Goldie-ring, r_{n+1} is regular. Inside Q , we obtain $s_{n+1}^{-1} = t_{n+1}^{-1}t$ and $t_n^{-1} = t_{n+1}^{-1}r_{n+1}$. Therefore, $s_{n+1}^{-1}, t_n^{-1} \in t_{n+1}^{-1}R$. In particular,

$$R \subseteq t_0^{-1}R \subseteq t_1^{-1} \subseteq \cdots \subseteq t_n^{-1}R \subseteq \cdots.$$

Then, $V = \bigcup_{n < \omega} t_n^{-1}R$ contains R , and $E \subseteq V/R$.

To show that $Z(D)$ is h-divisible, we let $a_0 = a$ and $r_0 = s_0$. Select $\{a_n \in D : n < \omega\}$ such that $a_{n+1}r_{n+1} = a_n$ for $n < \omega$ where $t_{n+1} = r_{n+1}t_n$ as in the last paragraph. Since $t_n^{-1}R$ is a free right R -module, setting $\alpha_n(t_n^{-1}) = a_n$ defines a map $\alpha_n: t_n^{-1}R \rightarrow D$. Moreover,

$$\alpha_{n+1}(t_n^{-1}) = \alpha_{n+1}(t_{n+1}^{-1})r_{n+1} = a_{n+1}r_{n+1} = a_n = \alpha_n(t_n^{-1}).$$

Therefore, $\alpha_{n+1}|t_n^{-1}R = \alpha_n$. Moreover, $\alpha_0(1) = \alpha_0(t_0^{-1}s_0) = a_0s_0 = 0$ yields $\alpha_n(R) = 0$ for all $n < \omega$. Thus, the α_n induce a map $\alpha: V/R \rightarrow D$ with $\alpha(t_0^{-1} + R) = a$. However, $t_0^{-1} + R = s_0^{-1} + R \in E$. Consequently, a is contained in the image of $\alpha|E: E \rightarrow D$. Since E is a direct summand of Q/R , we obtain a map $\beta: K(R) = Q_R/R \rightarrow D$ such that $a \in \text{im } \beta$. Because Q/R is singular, $\beta(Q/R) \subseteq Z(D)$. In particular, $Z(D)$ is an epimorphic image of a direct sum of copies of $K(R)$. But then, $Z(D)$ is an image of copies of Q_R , and hence h-divisible. By Part b) of Theorem 1.1, $Z(D)$ is divisible and weakly cotorsion. Since R is a semi-prime right and left Goldie-ring, every non-singular module, which is divisible in the classical sense, is actually a Q -module, and hence injective. This holds in particular for $D/Z(D)$, and so $\text{Ext}_R^1(D/Z(D), Z(D)) = 0$. This shows that $D \cong Z(D) \oplus D/Z(D)$ is h-divisible.

From this point on, we will assume that R is a p.p.-ring in addition to being a semi-prime right and left Goldie-ring.

c) \Rightarrow d). Let D be a divisible module. By c), D is h-divisible. Hence, $Z(D)$ is a direct summand of D by Theorem 4.1 of [1]. Moreover, all divisible modules are divisible in the classical sense and vice-versa by Proposition 2.1. Combining these two observations yields that all divisible modules are weakly cotorsion by Part b) of [1, Corollary 4.6].

d) \Rightarrow e). Since all divisible modules are divisible in the classical sense and vice-versa by Proposition 2.1, the fact that every divisible module D is weakly cotorsion yields that $Z(D)$ is a direct summand of D by Part b) of [1, Corollary 4.6].

Finally, e) \Rightarrow f) follows directly from Proposition 2.1 and [1, Proposition 5.1]. \square

The equivalence of a) and b) was discussed in [1, Proposition 5.3]. A decomposition $Q/R = A/R \oplus B/R$, where A and B are submodules of Q_R containing R , has the additional property that A and B are subrings of Q exactly if A and B are also submodules of ${}_RQ$.

Although h-divisible modules are divisible in the classical sense, they need not be divisible.

PROPOSITION 2.3. [1, Corollary 4.2] *The following are equivalent for a right non-singular ring R of finite right Goldie-dimension:*

- a) R is a right p.p.-ring;
- b) every h-divisible right R -module is divisible.

Therefore, it is not surprising that p.p.-rings entered the discussion in Theorem 2.2. Moreover, the ring $M_2(\mathbb{Z}[x])$ is an example of a ring for which not all h-divisible modules are divisible [2].

The next result shows that f) \Rightarrow a) may fail, even if R is a semi-prime right and left Goldie p.p.-ring, by constructing a right hereditary ring R for which $(Q/R)_R$ is not the direct sum of countably generated submodules A_i/R where each A_i is a subring of Q . Since R is right hereditary, $\text{pd}_R(Q_R) \leq 1$.

We want to remind the reader that a ring R is a *right duo ring* if $Ra \subseteq aR$ for every $a \in R$, and it is a *a duo ring* if it is both a right and left duo ring. It is easy to see that M_r is a submodule of M for all right R -modules M if and only if R is a left duo ring.

THEOREM 2.4. *Let R be a right Noetherian, right chain domain whose lattice of right ideals is inversely order isomorphic to an ordinal σ of uncountable cardinality. Then, R is a right hereditary right duo ring with classical right ring of quotients Q such that $(Q/R)_R$ is not the direct sum of countably generated submodules A_i/R where each A_i is a subring of Q .*

PROOF. Bessenrodt, Brungs, and Törner show in [6, Lemmas 1.4, 3.2] that R is a right duo ring. Hence, every right ideal of R is two-sided. Moreover, R is a right hereditary ring since every right ideal of R is principal [6, Lemma 3.1], and R has a classical right ring of quotients Q since every right Noetherian domain is a right Ore domain.

We first show that ${}_RQ$ is not countably generated. If it were, then we could find $\{c_n \in R : n < \omega\}$ such that $Q = \sum_{n < \omega} R c_n^{-1}$. We consider the right ideals $c_n R$ of R , and observe that $\bigcap_{n < \omega} c_n R \neq 0$ since σ is of uncountable cardinality. We pick a non-zero $d \in \bigcap_{n < \omega} c_n R$, and write $d = c_n r_n$ for all $n < \omega$. In particular,

we have $qd \in R$ for all $q \in Q$. Specifically, $c^{-1}d \in R$ for all $0 \neq c \in R$. Thus, $d \in \bigcap_{c \neq 0} cR$. In particular, $0 \neq d^2$ and $d^2R \subseteq dR \subseteq \bigcap_{c \neq 0} cR \subseteq d^2R$, and we can find $r \in R$ such that $d = d^2r$. Since R has no zero-divisors, $1 = dr$. Hence, $d \notin J(R)$ and d is a unit, from whence it follows $R = Qd = Q$, a contradiction. Thus, RQ is not countably generated.

Now assume $(Q/R)_R \cong \bigoplus_I A_i/R$ for some index set I , where A_i/R is countably generated and A_i is a subring of Q containing R . By the discussion following Theorem 2.2, each A_i is a two-sided submodule of Q . Pick a countable subset $J_0 \subseteq I$, and write $\sum_{J_0} A_j = \sum_{n < \omega} (r_n c_n^{-1})R$. Then, $r_n c_n^{-1} \in \sum_m R c_m^{-1}$. However, $R c_m^{-1}$ is also an R -submodule of Q_R . To see this, let $r \in R$ and pick $s \in R$ such that $rc_m = c_m s$. This is possible since a right Noetherian, right chain ring is right duo by [7]. Then $c_m^{-1}r = sc_m^{-1}$, and thus $\sum_{J_0} A_j \subseteq \sum_m R c_m^{-1}$. Since RQ is not countably generated, we may assume that this inclusion is proper. Otherwise, we can add Rd^{-1} to the sum on the right-hand side, and proceed with $\sum_m R c_m^{-1} + R d^{-1}$ such that $d^{-1} \notin \sum_m R c_m^{-1}$.

We can find a countable subset J_1 of I such that $J_0 \subseteq J_1$ and $c_m^{-1} \in \sum_{J_1} A_j$. Since each A_j is two-sided,

$$\sum_{J_0} A_j \subsetneq \sum_m R c_m^{-1} \subseteq \sum_{J_1} A_j.$$

Inductively, we obtain an ascending chain $J_0 \subseteq J_1 \subseteq \dots$ of countable subsets of I and a countable family $\{d_n : n < \omega\} \subseteq R$ such that $J = \bigcup_{n < \omega} J_n$ is a countable subset of I with $\sum_J A_j = \sum_{n < \omega} R d_n^{-1}$. If $RQ \neq \sum_{n < \omega} R d_n^{-1}$, then there exists $0 \neq c \in R$ such that $c^{-1} \notin \sum_{n < \omega} R d_n^{-1}$. Since R is a right chain ring, either $cR \subseteq d_n R$ or $d_n R \subseteq cR$. If the latter occurs, then $d_n = ct_n$ for some $t_n \in R$ and $c^{-1} = t_n d_n^{-1}$, a contradiction. Thus, $c = d_n s_n$ for some $s_n \in R$ and $d_n^{-1} = s_n c^{-1}$. It readily follows that $\sum_{n < \omega} R d_n^{-1} \subseteq R c^{-1}$.

However, $R \subseteq R c^{-1}$, so that

$$\sum_J A_j \subseteq \sum_{n < \omega} R d_n^{-1} \subseteq R c^{-1}$$

implies $\bigoplus_J A_j/R \subseteq R c^{-1}/R$. Thus,

$$R c^{-1}/R = \bigoplus_J (A_j/R) \oplus U/R$$

for some $R \subseteq U \subseteq R c^{-1}$ since $(\bigoplus_J A_j)/R$ is a direct summand of Q/R . Observe that $Q/R = \bigoplus_I A_i/R$ is a decomposition of both $(Q/R)_R$ and $R(Q/R)$ since A_i is a two-sided submodule for each $i \in I$. Moreover, the module $\bigoplus_J (A_j/R)$ is not

finitely generated since $\sum_{J_n} A_j \subsetneq \sum_{J_{n+1}} A_j$ for every $n < \omega$, and we obtain a contradiction. Therefore, $Q = \sum_{n < \omega} R d_n^{-1}$, contradicting the fact that RQ is not countably generated. Thus, $(Q/R)_R$ is not the direct sum of countably generated submodules A_i/R where each A_i is a subring of Q . \square

3. Duo rings and projective dimension

Kaplansky's Change of Rings Lemmas investigate the relationship between the projective dimensions of modules over the commutative rings R and R/sR , where $s \in R$ is a non-zero divisor. If one wants to attempt to extend them to a non-commutative setting, some obvious restrictions need to be imposed on s to avoid obvious counter-examples. In particular, $Rs = sR$ has to be satisfied. The proof of the next result carries over directly from the commutative setting and is therefore omitted.

LEMMA 3.1. *Let R be a duo ring, and suppose that $s \in R$ is regular. If M is a right R -module such that $xs \neq 0$ for every $0 \neq x \in M$, then $\text{pd}_{R/sR}(M/Ms) \leq \text{pd}_R(M)$.*

We next consider two other versions of Kaplansky's Change of Rings Lemmas, namely [20, Proposition 8.39] and [10, Lemma VI.2.11]. In contrast to the last result, these proofs fail to carry over to duo rings because they rely on the fact that right multiplication by s is a right R -module homomorphism. More precisely, either proof considers a right R -module M with $Ms = 0$ and a free resolution $0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0$, and shows that the induced map $F/K \rightarrow Fs/Ks$ defined by $x + K \mapsto xs + Ks$ is an isomorphism of R -modules. Unfortunately, this map is an R -morphism only if s is a central element of R [19, Theorem 9.33]. To prove the theorem in the case that s is not central, a different approach is needed which we base on

LEMMA 3.2 ([19, Theorem 9.32]). *If $\varphi: R \rightarrow R^*$ is a ring homomorphism and A^* is a right R^* -module, then $\text{pd}_R(A^*) \leq \text{pd}_{R^*}(A^*) + \text{pd}_R(R^*)$.*

If R is a ring and $\sigma: R \rightarrow R$ is an automorphism of rings, then every right R -module M carries another R -module structure induced by σ : for $x \in M$ and $r \in R$, define $x * r = x\sigma(r)$. Let M^* denote the R -module M with the structure induced by σ . Since $1 * r = 1\sigma(r)$, we have that R^* is a free right R -module. Hence, $\text{pd}_R(R^*) = 0$ and $\text{pd}_R(M) = \text{pd}_R(M^*) \leq \text{pd}_{R^*}(M^*)$ by Lemma 3.2. Since σ is an isomorphism, we can use σ^{-1} to get the reverse inequality. Therefore, $\text{pd}_R(M) = \text{pd}_{R^*}(M^*)$.

It is easy to see that the regular elements in a duo ring R satisfy the right and left Ore condition. Thus, R has a classical right and left ring of quotients Q .

PROPOSITION 3.3. *Let R be a duo ring with classical right and left ring of quotients Q , and let $0 \neq s \in R$ be regular. If $\sigma: R \rightarrow R$ is the automorphism defined by $\sigma(r) = s^{-1}rs$, then the map $\bar{\sigma}: R/sR \rightarrow R/sR$ defined by $\bar{\sigma}(r + sR) = \sigma(r) + sR$ is an automorphism of R/sR .*

PROOF. Observe that s is a unit of Q . For $r \in R$, we can select $r' \in R$ such $rs = sr'$ since R is duo. Computing in Q , we obtain $s^{-1}rs = s^{-1}sr' \in R$. Hence, $\sigma: R \rightarrow R$. It is easy to see that σ is one-to-one and a morphism of rings. Moreover, if $t \in R$, then we can find $t' \in R$ with $t's = st$ since R is duo. Then $\sigma(t') = s^{-1}t's = S^{-1}st = t$, and σ is an isomorphism of rings.

If $r' = r + st$ for some $t \in R$, then $s^{-1}r's = s^{-1}rs + s^{-1}sts = s^{-1}rs + ts$. Since $sR = Rs$, we have $\bar{\sigma}(r' + sR) = \bar{\sigma}(r + sR)$, and hence $\bar{\sigma}$ is well-defined. It is easily seen that $\bar{\sigma}$ is an epimorphism and an R -map. To see that $\bar{\sigma}$ is a monomorphism, suppose that $\bar{\sigma}(r + sR) = 0$. The duo condition yields $s^{-1}rs = ts$ for some $t \in R$. Hence $t = s^{-1}r \in Q$, and $r = st \in sR$. Therefore, $\bar{\sigma}$ is an automorphism of R/sR . \square

A right R/sR -module U can be viewed as a right R -module with $Us = 0$. Moreover, using the maps σ and $\bar{\sigma}$ from Proposition 3.3, we have

$$u * (r + sR) = u\bar{\sigma}(r + sR) = u(\sigma(r) + sR) = u\sigma(r) = u \times r$$

where $*$ and \times denote the module structures induced by $\bar{\sigma}$ and σ , respectively.

THEOREM 3.4. *Let R be a right and left duo ring, and let $0 \neq s \in R$ be regular. If M is a right R/sR -module such that $\text{pd}_{R/sR}(M) = n < \infty$, then $\text{pd}_R(M) = n + 1$.*

PROOF. To begin our induction, let $\text{pd}_{R/sR}(M) = 1$. Observe that Lemma 3.2 yields $\text{pd}_R(M) \leq 2$. We assume $\text{pd}_R(M) \leq 1$, and consider an exact sequence $0 \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0$ of right R -modules with P_0 and P_1 projective. Applying the functor $\underline{\otimes}_R R/sR$ induces the exact sequence

$$0 \longrightarrow \text{Tor}_1^R(M, R/sR) \longrightarrow P_1 \otimes_R R/sR \longrightarrow P_0 \otimes_R R/sR \longrightarrow M \otimes_R R/sR \longrightarrow 0$$

of right R/sR -modules.

However, $M \otimes_R R/sR \cong M$ since M is an R/sR -module. Furthermore, since $P_i \otimes_R R/sR$ is a projective R/sR -module for $i = 0, 1$, and $\text{pd}_{R/sR}(M) = 1$, we have that $\text{Tor}_1^R(M, R/sR)$ is a projective R/sR -module.

Now, the sequence $0 \rightarrow sR \xrightarrow{\iota} R \rightarrow R/sR \rightarrow 0$ is an exact sequence of R - R -bimodules where $\iota: sR \rightarrow R$ is the inclusion map. We consider the induced sequence

$$0 \longrightarrow \text{Tor}_1^R(M, R/sR) \xrightarrow{\partial} M \otimes_R sR \xrightarrow{\iota^*} M \otimes_R R.$$

Computing in $M \otimes_R R$, we have $x \otimes st = xs \otimes t = 0$ since M is a right R -module satisfying $Ms = 0$. Thus, $\text{im } \iota^* = 0$, and ∂ is an isomorphism. Consequently, $A = M \otimes_R sR \cong \text{Tor}_1^R(M, R/sR)$ as an R -module, and hence as an R/sR -module. Therefore, A is a projective R/sR -module.

Let A^* denote the R -module A with the module structure induced by $\bar{\sigma}$ as defined in Proposition 3.3. For $x \otimes ts \in A$, we have

$$(x \otimes ts) * r = x \otimes tss^{-1}rs = x \otimes trs.$$

However, $\lambda: A^* \rightarrow M$ defined by $\lambda(x \otimes ts) = xt$ is an isomorphism of R -modules, and hence also of R/sR -modules. As previously shown, Lemma 3.2 implies that A and A^* have the same projective dimension as both R and R/sR -modules since σ and $\bar{\sigma}$ are automorphisms of R and R/sR , respectively. Thus, we have a contradiction since this leads to

$$1 = \text{pd}_{R/sR}(M) = \text{pd}_{R/sR}(A^*) = \text{pd}_{R/sR}(A) = \text{pd}_{R/sR}(\text{Tor}_1^R(M, R/sR)) = 0.$$

Therefore, $\text{pd}_R(M) > 1$ and $\text{pd}_R(M) = 2$.

For the induction step, assume that $\text{pd}_R(M) = n$ whenever $\text{pd}_{R/sR}(M) = n - 1$. Suppose $\text{pd}_{R/sR}(M) = n$. If $\text{pd}_R(M) \leq n$, then there exists an exact sequence $0 \rightarrow P_n \rightarrow \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0$ of right R -modules with P_i projective for $i = 0, 1, \dots, n$. As before, this induces the exact sequence

$$\begin{aligned} 0 \longrightarrow \text{Tor}_1^R(M, R/sR) &\longrightarrow P_n \otimes_R R/sR \longrightarrow \cdots \\ &\longrightarrow P_0 \otimes_R R/sR \longrightarrow M \otimes_R R/sR \longrightarrow 0 \end{aligned}$$

of right R/sR -modules. Since $\text{pd}_{R/sR}(M) = n$ and each $P_i \otimes_R R/sR$ is projective as a right R/sR -module, we have $\text{pd}_{R/sR}(\text{Tor}_1^R(M, R/sR)) = n - 1$. By the inductive hypothesis, $\text{pd}_R(\text{Tor}_1^R(M, R/sR)) = n$. Hence, $\text{pd}_R(A) = n$, which leads to a contradiction since

$$n = \text{pd}_R(A) = \text{pd}_{R/sR}(A) = \text{pd}_{R/sR}(\text{Tor}_1^R(M, R/sR)) = n - 1.$$

Therefore, $\text{pd}_R(M) > n$ and the claim follows using Lemma 3.2 once more. \square

4. Normal submonoids and prime ideals

If Q is the classical right and left ring of quotients of R , then the ring of quotients R_T with respect to a right and left Ore-set $T \subseteq R^\times$ can naturally be viewed as a subring of Q , and we will identify R_T with this subring. In the following, we are particularly interested in subrings of Q arising as localizations at completely prime ideals, where an ideal P of R is *completely prime* if $xy \in P$ implies that $x \in P$ or $y \in P$ for every $x, y \in R$. If R is a duo ring, then every prime ideal is completely prime, and the localization at $R \setminus P$, denoted R_P , can be obtained as in the commutative setting. However, although $R \setminus P$ is multiplicatively closed, it may still contain zero divisors, so that R_P cannot always be embedded into Q . To avoid this additional complexity, we assume that R does not contain any zero divisors. Furthermore, Brungs showed in [7] that the localization R_P of a duo ring R at a prime ideal P need not be duo. However, R_P is a duo ring if it satisfies the ascending chain condition for principal right and left ideals.

A submonoid T of a monoid S is *normal*, denoted $T \triangleleft S$, if $sT = Ts$ for every $s \in S$.

PROPOSITION 4.1. *Let R be a duo ring without zero-divisors with classical ring of quotients Q . If T is a normal submonoid of R^\times and P is a prime ideal of R , then*

- a) $R_T R_P = \{rt^{-1}sx^{-1} \mid r, s \in R, t \in T, x \in R \setminus P\}$ is a subring of Q and the same holds for $R_P R_T$;
- b) $(R_T)_P = (R_P)_T = R_T R_P = R_P R_T \subseteq Q$.

PROOF. a) Let $0 \neq r \in R$ and $t \in T$. Since R is a duo ring, we can find $s \in R$ such that $rt = ts$. Thus, T is a right Ore-subset of R .

Moreover, to see that $R_T R_P$ is a subring of Q , consider $u_1, u_2 \in R_T$ and $v_1, v_2 \in R_P$. We may find $r_1, r_2, s_1, s_2 \in R$, $t \in T$ and $x \in R \setminus P$ such that $u_i = r_i t^{-1}$ and $v_i = s_i x^{-1}$ or $i = 1, 2$. Since T is normal in R^\times , we can find $t_1, t_2 \in T$ such that $s_i t_i = t s_i$ so that $t^{-1} s_i = s_i t_i^{-1}$. Since T is a right and left Ore-set, there exists $r'_1, r'_2 \in R$ and $t_3 \in T$ with $t_i^{-1} = r'_i t_3^{-1}$. Thus,

$$\begin{aligned} (u_1 + u_2)(v_1 + v_2) &= [(r_1 + r_2)t^{-1}s_1 + (r_1 + r_2)t^{-1}s_2]x^{-1} \\ &= [(r_1 + r_2)s_1 t_1^{-1} + (r_1 + r_2)s_2 t_2^{-1}]x^{-1} \\ &= [(r_1 + r_2)s_1 r'_1 + (r_1 + r_2)s_2 r'_2]t_3^{-1}x^{-1} \in R_T R_P. \end{aligned}$$

A similar argument shows that $R_T R_P$ is multiplicatively closed. The case $R_P R_T$ is treated similarly.

b) We consider the commutative diagram

$$\begin{array}{ccccccc}
 0 & \longrightarrow & R \otimes_R R_P & \xrightarrow{\alpha} & R_T \otimes_R R_P & \xrightarrow{\beta} & (R_T/R) \otimes_R R_P \longrightarrow 0 \\
 & & \downarrow \phi & & \downarrow \psi & & \\
 0 & \longrightarrow & R_P & \xrightarrow{\subseteq} & R_T R_P & &
 \end{array}$$

in which ϕ and ψ are the multiplication maps. Clearly, ψ is onto. For $r, s \in R$, $t \in T$ and $x \in R \setminus P$, select $s' \in R$ such that $st = ts'$ using the fact that R is duo. Then

$$[rt^{-1} \otimes sx^{-1}]xt = rt^{-1} \otimes st = rt^{-1} \otimes ts' = rs' \otimes 1,$$

which shows that $(R_T/R) \otimes_R R_P$ is a singular right R -module.

If $y \in \ker \psi$, then there is a regular element $c \in R$ such that $yc = \alpha(y')$. Then $0 = \psi(yc) = \psi\alpha(y') = \phi(y')$ and thus $yc = 0$. Observe that $R_T \otimes_R R_P$ is non-singular since R_T is a flat module. Hence, $yc = 0$ implies $y = 0$. Therefore, $(R_T)_P = R_T R_P$.

For $r, s \in R$, $t \in T$ and $x \in R \setminus P$, select $s', r' \in R$ such that $st = ts'$ and $rx = xr'$ using the fact that R is a duo ring. Since T is normal in R^\times , there are $t', t'' \in T$ with $xt = t'x$ and $tx = xt''$. Then

$$rt^{-1}sx^{-1} = rs't^{-1}x^{-1} = rs'(xt)^{-1} = rs'(t'x)^{-1} = rs'x^{-1}t'^{-1} \in R_P R_T,$$

and $R_T R_P \subseteq R_P R_T$. Moreover,

$$sx^{-1}rt^{-1} = sr'x^{-1}t^{-1} = sr'(tx)^{-1} = sr'(xt'')^{-1} = sr't''^{-1}x^{-1} \in R_T R_P,$$

and $R_P R_T \subseteq R_T R_P$. □

LEMMA 4.2. *Let R be a duo ring without zero-divisors. If $T \triangleleft S$ are normal submonoids of R^\times such that $\text{pd}_R(R_S) \leq 1$ and $\text{pd}_R(R_S/R_T) \leq 1$, and if P is a prime ideal of R with $T \cap P \neq 0$, then R_T/sR_T is projective as a left R/sR -module for any $s \in S$.*

PROOF. Clearly, R_T is a left R -module in view of $r(at^{-1}) = (ra)t^{-1} \in R_T$ for any $r \in R$ and any $at^{-1} \in R_T$. Since R is a duo ring, $sR = Rs$. Thus, for any $r \in R$, we can find $r_1 \in R$ such that $rs = sr_1$. Hence, $r(sr_1t^{-1}) = sr_1(at^{-1})$, and sR_T is a submodule of R_T . Since R is duo, sR is a two-sided ideal of R , and we can view R_T/sR_T as a left R/sR -module.

Consider the exact sequence

$$0 \longrightarrow R_T \longrightarrow R_S \longrightarrow R_S/R_T \longrightarrow 0.$$

By assumption, $\text{pd}_R(R_S) \leq 1$ and $\text{pd}_R(R_S/R_T) \leq 1$. If $\text{pd}_R(R_T) > 1$, then $\text{pd}_R(R_T) > \text{pd}_R(R_S)$ and hence $\text{pd}_R(R_S/R_T) = \text{pd}_R(R_T) + 1 > 1$ by [20, Exercise 8.5]. However, this is a contradiction, and thus $\text{pd}_R(R_T) \leq 1$. Consequently, $\text{pd}_{R/sR}(R_T/sR_T) \leq \text{pd}_R(R_T) \leq 1$ by Lemma 3.1. Now, consider the exact sequence

$$0 \longrightarrow R_T/sR_T \longrightarrow R_S/sR_T \longrightarrow R_S/R_T \longrightarrow 0$$

of left R -modules. Since R_S is s -divisible, $sR_S = R_S$ and

$$R_S/R_T \cong sR_S/sR_T = R_S/sR_T.$$

Thus, $\text{pd}_R(R_S/R_T) = \text{pd}_R(R_S/sR_T)$. Therefore,

$$\text{pd}_R(R_T/sR_T) < \text{pd}_R(R_S/R_T) = \text{pd}_R(R_S/sR_T) \leq 1$$

using standard properties of the projective dimension. However, Theorem 3.4 shows that if $\text{pd}_{R/R_S}(R_T/sR_T) = 1$ then $\text{pd}_R(R_T/sR_T)$ must be 2, which is a contradiction. Therefore, $\text{pd}_{R/sR}(R_T/sR_T) = 0$, and R_T/sR_T is projective as a left R/sR -module. \square

LEMMA 4.3. *Let R be a duo ring without zero-divisors. If $T \triangleleft S$ are normal submonoids of R^\times such that $\text{pd}_R(R_S) \leq 1$ and $\text{pd}_R(R_S/R_T) \leq 1$, and if P is a prime ideal of R with $T \cap P \neq \emptyset$, then $(R_T)_P = (R_S)_P$ and R_T/R is S -divisible.*

PROOF. By Proposition 4.1, $(R_T)_P = R_T R_P$ and $(R_S)_P = R_S R_P$. Observe that R_P is a local ring since P is completely prime. Hence, R_P/sR_P is local too. Moreover, since R is a duo ring and T is a normal submonoid of R^\times , we can view $(R_T)_P$ as a left R_P -module. To see this, take $(at^{-1})m^{-1} \in (R_T)_P$ and $bn^{-1} \in R_P$ where $n, m \in R \setminus P$. The duo condition provides $a_1 \in R$ such that $an = na_1$. Since T is normal, we can find $t_1 \in T$ such that $tn = nt_1$. Thus,

$$bn^{-1}(at^{-1}m^{-1}) = ba_1n^{-1}t^{-1}m^{-1} = (ba_1t_1^{-1})(mn)^{-1} \in (R_T)_P.$$

Since localization at P is an exact functor, $(R_T)_P/s(R_T)_P$ is projective as a left $(R_P)/s(R_P)$ -module by what was shown in the preceding paragraph. Since projective modules over local rings are free (see for example [20, Theorem 4.58] and the note after it), $(R_T)_P/s(R_T)_P$ is a free $(R_P)/s(R_P)$ -module.

Now assume $(R_T)_P/s(R_T)_P \neq 0$, and consider $t \in T \cap P \neq \emptyset$. Suppose t is a unit of R_P . Then there exists $rm^{-1} \in R_P$ such that $trm^{-1} = 1$. However, this leads to a contradiction since it implies that $t^{-1} = rm^{-1} \in R_P$ and hence $t \in R \setminus P$. Furthermore, if $(au^{-1})m^{-1} \in (R_T)_P$, then the duo condition provides $a_1 \in R$ such that

$$au^{-1}m^{-1} = tt^{-1}au^{-1}m^{-1} = ta_1(ut)^{-1}m^{-1} \in t(R_T)_P.$$

Hence, $t(R_T)_P = (R_T)_P$.

Since $(R_T)_P/s(R_T)_P$ is a free $(R_P)/s(R_P)$ -module, there exists some index set I such that $(R_T)_P/s(R_T)_P \cong \bigoplus_I (R_P)/s(R_P)$. Moreover, since $(R_T)_P$ is divisible by t , it must also be the case that

$$\bigoplus_I (R_P)/s(R_P) = t \left[\bigoplus_I (R_P)/s(R_P) \right].$$

However, this implies $R_P/sR_P = t(R_P/sR_P)$. But $t \in PR_P$, which is a contradiction since t is not a unit in R_P . Therefore, given any $s \in S$, we have $(R_T)_P/s(R_T)_P = 0$ and hence $(R_T)_P = s(R_T)_P$. That is, $s^{-1}(R_T)_P = (R_T)_P$ for any $s \in S$.

Now, to see that $(R_P)_S \subseteq (R_T)_P$, take $(rm^{-1})u^{-1} \in (R_P)_S$. Since S is a normal submonoid of R^\times and m is regular, there exists $u_1 \in S$ such that $um = mu_1$, and hence $m^{-1}u^{-1} = u_1^{-1}m^{-1}$. Moreover, we can use the duo condition to find $r_1 \in R$ such that $u_1r = r_1u_1$, from whence it follows $ru_1^{-1} = u_1^{-1}r_1$. Observe also that $r_1m^{-1} \in (R_T)_P$ since $r_1 \in R \subseteq R_T$ and $m \in R \setminus P$. Therefore, $(R_P)_S \subseteq (R_T)_P$ since

$$(rm^{-1})u^{-1} = u_1^{-1}r_1m^{-1} \in u_1^{-1}(R_T)_P = (R_T)_P.$$

It is easily seen that $(R_T)_P \subseteq (R_P)_S$ since $xT = Tx$ for every $x \in R^\times$ and $T \subseteq S$. For if $rt^{-1}m^{-1} \in (R_T)_P$, then there exists $t_1 \in T \subseteq S$ such that

$$rt^{-1}m^{-1} = rm^{-1}t_1^{-1} \in (R_P)_S.$$

Thus, $(R_T)_P = (R_P)_S$. By Proposition 4.1, $(R_P)_S = (R_S)_P$. Therefore, we have $(R_T)_P = (R_P)_S = (R_S)_P$, and it readily follows from the S -divisibility of R_S that $(R_T/R)_P = (R_T)_P/R_P = (R_S)_P/R_P$ is S -divisible. Consequently, R_T/R is S -divisible. \square

THEOREM 4.4 (Step-Lemma). *Let R be a duo ring without zero-divisors. If $T \triangleleft S$ are normal submonoids of R^\times such that $\text{pd}_R(R_S) \leq 1$ and $\text{pd}_R(R_S/R_T) \leq 1$, then R_T/R is a direct summand of R_S/R .*

PROOF. As a first step, we show that $(R_T/R)_P$ is S -divisible for all prime ideals P of R . Since R is a duo ring, P is completely prime, and $R \setminus P$ is multiplicatively closed. If $T \cap P = \emptyset$, then $T \subseteq R \setminus P$, and so $(R_T/R)_P = 0$.

Now, assume $T \cap P \neq \emptyset$. It follows from Lemma 4.3 that $(R_T/R)_P$ is S -divisible and $(R_T)_P = (R_S)_P$. Moreover, R_T/sR_T is projective as a left R/sR -module by Lemma 4.2.

Suppose $s \in S$. By the S -divisibility of R_T/R , we have $s(R_T/R) = R_T/R$, and hence $sR_T + R = R_T$. Furthermore, R_T/sR_T is projective as a left R/sR -module. Hence,

$$R/(R \cap sR_T) \cong (sR_T + R)/sR_T = R_T/sR_T$$

is projective as a left R/sR -module. The epimorphism $\pi: R/sR \rightarrow R/(R \cap sR_T)$ defined by $\pi(r + sR) = r + (R \cap sR_T)$ induces the exact sequence

$$0 \longrightarrow (R \cap sR_T)/sR \longrightarrow R/sR \longrightarrow R/(R \cap sR_T) \longrightarrow 0$$

which splits since $R/(R \cap sR_T)$ is projective as a R/sR -module. However, left multiplication by s induces isomorphisms

$$s^{-1}R/R \cong R/sR$$

and

$$(s^{-1}R \cap R_T)/R \cong (R \cap sR_T)/sR$$

of right R -modules. Hence

$$[s^{-1}R/R]/[(s^{-1}R \cap R_T)/R] \cong s^{-1}R/[(s^{-1}R \cap R_T)] \cong R/(R \cap sR_T)$$

is a projective R/sR -module. Thus,

$$[s^{-1}R/R] = [(s^{-1}R \cap R_T)/R] \oplus C/R$$

for some submodule C of $s^{-1}R$ containing R . Observe that $C/R \cong R_T/sR_T$. Using the notation of Fuchs and Salce, let $B = \bigcap_{P \in \mathcal{W}} (R_P \cap R_S)$ where \mathcal{W} is the set of maximal ideals P with $T \cap P \neq \emptyset$. By Lemma 4.3, $(R_T)_P = (R_S)_P$ in the case that $T \cap P \neq \emptyset$. Hence,

$$\begin{aligned} (C/R)_P &\cong (R_T/sR_T)_P = (R_T)_P/s(R_T)_P \\ &= (R_S)_P/s(R_S)_P = (R_S)_P/(R_S)_P = 0 \end{aligned}$$

from which we obtain $C_P = R_P$. Since $C \subseteq R_S$ and $(s^{-1}R \cap R_T)/R \subseteq R_T/R$, we have $s^{-1}R/R \leq R_T/R + B/R$ for every $s \in S$. Thus

$$R_S/R = R_T/R + B/R.$$

It remains to be seen that $(R_T/R) \cap (B/R) = 0$. Once this is established, we have shown that

$$R_S/R = (R_T/R) \oplus (B/R).$$

Again using the notation of Fuchs and Salce, let $A = \bigcap_{P \in \mathcal{V}} (R_P \cap R_S)$, where \mathcal{V} is the set of maximal ideals with $T \cap P = \emptyset$. Since R_T is clearly contained in A and $R_T \cap B \leq A \cap B$, it suffices to show that $A \cap B = R$. It is easily seen that $R \subseteq A \cap B$. For if $x \in R$, then $x \in R_T$ for any submonoid T of R^\times . Hence, $x \in R_P \cap R_S$ for every maximal ideal P and thus $x \in A \cap B$.

To see that $A \cap B \subseteq R$, it suffices to show that

$$R = \left[\bigcap_{P \in \text{m-Spec}} R_P \right] \cap R_S$$

where m-Spec is the set of all maximal ideals of R . Let $x = us^{-1} \in R_S \setminus R$ and consider the right ideal $I_x = \{r \in R : xr \in R\}$. Note that $I_x \neq \{0\}$ since $xs = us^{-1}s = u \in R$ yields $s \in I_x$. Moreover, I_x is a proper right ideal since $1 \notin I_x$. Hence, it follows that there exists a maximal right ideal P containing I_x . Since R is duo, P is a two-sided ideal. If $x \in R_P$, then $x = rm^{-1}$ for some $r \in R$ and $m \in R \setminus P$. However, $xm = r \in R$ implies that $m \in I_x \subseteq P$, which is a contradiction. Thus, given $x \in R_S \setminus R$, there exists some maximal ideal P of R such that $x \notin R_P$. Hence, $x \in R$ whenever $x \in R_P$ for every maximal ideal P of R . Therefore, $R = \left[\bigcap_{P \in \text{m-Spec}} R_P \right] \cap R_S$ and $A \cap B = R$. \square

5. Pre-Matlis duo domains and tight systems

We now turn to obtaining the desired direct sum decomposition of Q/R . For a right R -module M , a set $\mathcal{S} = \{M_i : i \in I\}$ of submodules of M is called a $G(\aleph_0)$ -family if the following are satisfied:

- i) $0, M \in \mathcal{S}$;
- ii) \mathcal{S} is closed under unions of chains;
- iii) for every $M_i \in \mathcal{S}$ and every countable subset X of M , there exists $M_j \in \mathcal{S}$ such that $M_i \leq M_j$, $X \subseteq M_j$ and M_j/M_i is countably generated.

A submodule N of a right R -module M is called *tight* if $\text{pd}_R(M/N) \leq \text{pd}_R(M)$. For a right R -module M with $\text{pd}_R(M) \leq 1$, a family $\mathcal{T} = \{M_i : i \in I\}$ of tight submodules of M is called a *tight system* if it is a $G(\aleph_0)$ -family such that $\text{pd}_R(M_j/M_i) \leq \text{pd}_R(M) \leq 1$ whenever $M_i, M_j \in \mathcal{T}$ with $M_i \subseteq M_j$. The following result ensures the existence of a tight system in our setting in the case that $\text{pd}_R(M) \leq 1$. The proof is similar to the integral domain case found in [10, Proposition 5.1] and is therefore omitted.

LEMMA 5.1 ([10]). *Let R be a semi-prime right and left Goldie-ring and M a right R -module. If $\text{pd}_R(M) \leq 1$, then M admits a tight system.*

Once we have an appropriate $G(\aleph_0)$ -family of tight submodules, we will use the following lemma to extract a well-ordered ascending chain of direct summands.

LEMMA 5.2 ([15, Lemma 7.2]). *Let R be a ring and let M be a right R -module. Let \mathcal{U} be a family of submodules of M , and take \mathcal{U}_0 to be a subset of \mathcal{U} . Assume that for a suitable ordinal β there exists a chain $\{M_\gamma\}_{\gamma \leq \beta}$ such that*

i) *for every $\gamma < \beta$, $M_{\gamma+1} = M_\gamma \oplus U_\gamma$ for some $U_\gamma \in \mathcal{U}_0$;*

ii) *$M_0 = 0$, and $M_\gamma = \bigcup_{\nu < \gamma} M_\nu$ for every limit ordinal $\gamma \leq \beta$, and $M = M_\beta$.*

Then, $M = \bigoplus_{\gamma < \beta} U_\gamma$ is a direct sum of modules with $U_\gamma \in \mathcal{U}_0$ for every $\gamma < \beta$.

The monoid of regular elements R^\times has a κ -filtration if it is the union of a smooth well-ordered ascending chain

$$\{1\} = T_0 \leq T_1 \leq \cdots \leq T_\alpha \leq \cdots \leq T_\kappa = R^\times$$

of submonoids. We want to remind the reader that submonoids of R^\times are right and left Ore-sets if R is a duo ring.

One of the main difficulties encountered in our discussion is that, in the non-commutative setting, R^\times does not necessarily have κ -filtrations with the same properties as those in integral domains. In particular, if we consider a submonoid T of R^\times and a countable subset S of R^\times , then it is not guaranteed that the localization at the submonoid generated by T and S is countably generated over the localization at T . For instance, Theorem 2.4 provides an example of a ring for which R^\times does not have a desired filtration.

To overcome these difficulties, we introduce a notion similar to the Third Axiom of Countability introduced by P. Griffith and P. Hill in [14]. A monoid T satisfies the *third axiom of countability* if there exists a family $\mathcal{C} = \{T_i : i \in I\}$ of submonoids of T such that

- i) $1 \in \mathcal{C}$;
- ii) \mathcal{C} is closed under unions of chains;
- iii) if $i \in I$ and $X \subseteq T$ is countable, then there exists $i_0 \in I$ such that $T_i, X \subseteq T_{i_0}$ and T_{i_0} is countably generated over T_i .

We refer to the family \mathcal{C} as an *Axiom III* family of T .

DEFINITION 5.3. A ring R is a *pre-Matlis ring* if R^\times is the union of a smooth chain

$$\{1\} = T_0 \leq T_1 \leq \cdots \leq T_\alpha \leq \cdots \leq T_\kappa = R^\times$$

of submonoids with the following properties:

- (i) $T_\alpha \triangleleft R^\times$ for every $\alpha < \kappa$;
- (ii) if $\alpha < \kappa$ and $X \subseteq R^\times$ is countable, then there exists $\beta < \kappa$ such that $T_\alpha, X \subseteq T_\beta$ and T_β is countably generated over T_α .

We consider an example from Bessenrodt, Brungs, and Törner in [6] of a ring whose monoid of regular elements has the desired filtration of normal submonoids. For an ordered group (G, \leq) with identity e , let $G^+ = \{g \in G : e \leq g\}$ denote the positive cone of G . For a division algebra K , consider the collection of power series of the form $a = \sum_{g \in G} g a_g$, with $a_g \in K$. Define the support of a to be $\text{supp}(a) = \{g \in G : a_g \neq 0\}$, and refer to a as a generalized power series if $\text{supp}(a)$ is a well-ordered subset of G . If $ag = ga$ for every $a \in K$ and $g \in G$, then the set of all generalized power series, denoted $K[[G]]$, is a ring with normal power series addition and multiplication. Moreover, $K[[G]]$ is a division ring and [6, Proposition 1.24] shows that $K[[G^+]]$ is a duo chain domain with quotient ring $K[[G]]$.

THEOREM 5.4. *Let (G, \leq) be an ordered group which has an Axiom III family of normal subgroups, and let $R = K[[G^+]]$. Then R is a pre-Matlis domain.*

PROOF. Suppose G has an Axiom III family $C = \{N_\alpha : \alpha < \kappa\}$ of normal subgroups. Since $G^+ \cap N_\alpha$ is a normal subgroup of G^+ for each $\alpha < \kappa$, it is easily seen that $C' = \{G^+ \cap N_\alpha : \alpha < \kappa\}$ is an Axiom III family of G^+ .

- i) $\{e\} = G^+ \cap \{e\} \in C'$ since $\{e\} \in C$.
- ii) If $\{G^+ \cap N_\beta\}_{\beta < \gamma}$ is a chain in C' , then $\{N_\beta\}_{\beta < \gamma}$ is a chain in C . Hence, $\bigcup_{\beta < \gamma} N_\beta \in C$, from whence it follows $G^+ \cap (\bigcup_{\beta < \gamma} N_\beta) \in C'$.
- iii) Let $\alpha < \kappa$ and let $X \subseteq G^+ \subseteq G$ be countable. Since C is an Axiom III family, there exists $\beta < \kappa$ such that $N_\alpha, X \subseteq N_\beta$ and N_β is countably generated over N_α . Therefore, $G^+ \cap N_\alpha, X \subseteq G^+ \cap N_\beta$ and $G^+ \cap N_\beta$ is countably generated over $G^+ \cap N_\alpha$.

For each $\alpha < \kappa$, define $T_\alpha = K[[G^+ \cap N_\alpha]] \setminus \{0\}$ to be the set of all non-zero generalized power series $\sum g a_g$ over $G^+ \cap N_\alpha$ and K . By [6, Proposition 1.24], we obtain that $K[[G^+ \cap N_\alpha]]$ is a duo ring, and hence $r T_\alpha = T_\alpha r$ for every $r \in R^\times$. By extending property iii) of the Axiom III family of G^+ to $\{T_\alpha\}_{\alpha < \kappa}$, we obtain that the second condition of our filtration is satisfied. Therefore, $K[[G^+]]$ is a pre-Matlis domain. \square

We are now ready for our main result, which extends the characterization of Matlis domains to duo rings not containing zero-divisors. For a semi-prime right and left Goldie-ring R with classical right and left ring of quotients Q , let $K = Q/R$.

THEOREM 5.5. *The following conditions are equivalent if R is a right and left duo pre-Matlis domain:*

- a) $K_R \cong \bigoplus_I [A_i/R]$ where each A_i is a subring of Q such that $(A_i)_R$ is countably generated;
- b) every divisible module is h -divisible;
- c) $\text{pd}_R(Q/R) \leq 1$.

PROOF. By Theorem 2.2, it remains to show c) \Rightarrow a). Suppose $\text{pd}_R(Q/R) = 1$, and assume that R has the desired filtration

$$\{1\} = T_0 \leq T_1 \leq \cdots \leq T_\alpha \leq \cdots \leq T_\kappa = R^\times.$$

Let $\mathcal{U} = \{R_{T_\alpha}/R : \alpha \leq \kappa\}$. Observe that for each $\alpha < \kappa$, R_{T_α}/R is a submodule of Q/R . We show that \mathcal{U} is a $G(\aleph_0)$ -family of Q/R . Clearly, condition i) is satisfied since $\{0\} = R_{\{1\}}/R \in \mathcal{U}$ and $Q/R = R_{R^\times}/R \in \mathcal{U}$. Moreover, \mathcal{U} is closed under unions of chains since $\{T_\alpha\}_{\alpha \leq \kappa}$ forms a smooth chain and includes $R^\times = \bigcup_{\alpha < \kappa} T_\alpha$.

To see that condition iii) is satisfied, take $R_{T_\alpha}/R \in \mathcal{U}$ and let

$$X = \{r_j s_j^{-1} + R : r_j, s_j \in R \text{ with } s_j \text{ regular, } j < \omega\}$$

be a countable subset of Q/R . Using condition ii) of the filtration, there exists $\beta < \kappa$ such that $T_\alpha \subseteq T_\beta$, $\{s_j : j < \omega\} \subseteq T_\beta$, and T_β is countably generated over T_α . Hence, $R_{T_\alpha}/R, X \subseteq R_{T_\beta}/R$ and there exists a countable subset $S_\alpha \subseteq T_\beta$ such that $T_\beta = S_\alpha T_\alpha = T_\alpha S_\alpha$. Thus, if $t \in T_\beta$, there exists $s_{\alpha_1}, s_{\alpha_2}, \dots, s_{\alpha_n} \in S_\alpha$ and $t_{\alpha_1}, t_{\alpha_2}, \dots, t_{\alpha_n} \in T_\alpha$ such that

$$t = s_{\alpha_1} t_{\alpha_1} s_{\alpha_2} t_{\alpha_2} \dots s_{\alpha_n} t_{\alpha_n}.$$

Then if $rt^{-1} + R_{T_\alpha} \in R_{T_\beta}/R_{T_\alpha}$, we have

$$rt^{-1} = rt_{\alpha_n}^{-1} s_{\alpha_n}^{-1} \dots t_{\alpha_2}^{-1} s_{\alpha_2}^{-1} t_{\alpha_1}^{-1} s_{\alpha_1}^{-1}.$$

Therefore,

$$(R_{T_\beta}/R)/(R_{T_\alpha}/R) \cong R_{T_\beta}/R_{T_\alpha}$$

is countably generated by $\{s^{-1} : s \in S_\alpha \setminus T_\alpha\}$ and \mathcal{U} is a $G(\aleph_0)$ -family of Q/R .

It follows from Lemma 5.1 that Q/R admits a tight system \mathcal{T} . It is clear that \mathcal{T} is also a $G(\aleph_0)$ -family of Q/R , and it is easily seen that $\mathcal{U} \cap \mathcal{T}$ is a $G(\aleph_0)$ -family of tight submodules of Q/R of the form R_{T_α}/R for $\alpha < \kappa$. Thus, given any $R_{T_\alpha}/R \in \mathcal{U} \cap \mathcal{T}$,

$$\text{pd}_R(Q/R_{T_\alpha}) = \text{pd}_R((Q/R)/(R_{T_\alpha}/R)) \leq \text{pd}_R(Q/R) \leq 1.$$

Theorem 4.4 yields that R_{T_α}/R is a direct summand of Q/R for every $\alpha < \kappa$. Since $R^\times = \bigcup_{\alpha < \kappa} T_\alpha$, we have $Q/R = \bigcup_{\alpha < \kappa} R_{T_\alpha}/R$. Moreover, the smooth filtration ensures that

$$R_{T_\beta}/R = \bigcup_{\gamma < \beta} R_{T_\gamma}/R \in \mathcal{U} \cap \mathcal{T},$$

and hence there exists $\beta \leq \kappa$ and a continuous well-ordered ascending chain $\{R_{T_\gamma}/R : \gamma < \beta\} \subseteq \mathcal{U} \cap \mathcal{T}$ of submodules of Q/R such that R_{T_γ}/R is a direct summand of Q/R and $R_{T_{\gamma+1}}/R_{T_\gamma}$ is countably generated. Hence, $Q/R = \bigoplus_{\gamma < \beta} A_\gamma/R$ where each A_γ is countably generated. Finally, since R is right and left duo and R_{T_γ} is a subring of Q for each γ , we have that each A_γ is a two-sided submodule of Q . \square

Theorem 2.4 showed that, without some additional filtration properties, implication f) \Rightarrow a) of Theorem 2.2 may fail if Q^r is not countably generated. However, we can find the following filtration of countable submonoids of R^\times if $(Q/R)_R$ is generated by \aleph_1 -many elements.

COROLLARY 5.6. *Suppose R is a semi-prime right and left Goldie-ring such that $(Q/R)_R$ is a direct sum of \aleph_1 many countable modules, then there exists a smooth ascending chain $T_0 \leq T_1 \leq \dots \leq T_\alpha \leq \dots$, $\alpha < \aleph_1$, of countable submonoids of R^\times such that $R^\times = \bigcup_{\alpha < \aleph_1} T_\alpha$.*

PROOF. Let $T_0 = \{1\}$ and let $T_\sigma = \bigcup_{\beta < \sigma} T_\beta$ for each limit ordinal $\sigma < \aleph_1$. Note that each T_σ is countable as the countable union of a countable set. Let $\alpha < \aleph_1$ and suppose that for each $\beta \leq \alpha$, T_β has been defined so that R_{T_β}/R is a direct sum of countably many A_ν/R . Then

$$R_{T_\alpha}/R = \bigoplus_{I_\alpha} [A_\nu/R]$$

is a direct summand of Q/R for some countable set I_α . If $R_{T_\alpha} = Q$, then we are done. Otherwise, there exists $\mu < \aleph_1$ with $A_\mu \not\subseteq R_{T_\alpha}$. Let $A_\mu = \langle r_n t_n^{-1} : n < \omega \rangle$

and define $T_\alpha^1 = \langle T_\alpha, t_n : n < \omega \rangle$. Observe that T_α^1 is countable since it is countably generated by countable sets. Since

$$R_{T_\alpha^1}/R \subseteq Q/R = \bigoplus_{\nu < \aleph_1} [A_\nu/R],$$

we can find a countable subset $I_\alpha^1 \supseteq I_\alpha$ such that $R_{T_\alpha^1}/R \subseteq \bigoplus_{I_\alpha^1} [A_\nu/R]$.

If $R_{T_\alpha^1} = Q$, then we are done. Otherwise, there exists $\mu_2 < \aleph_1$ with $A_{\mu_2} \not\subseteq R_{T_\alpha^1}$. As before, let $A_{\mu_2} = \langle r_n t_{n,2}^{-1} : n < \omega \rangle$ and define $T_\alpha^2 = \langle T_\alpha^1, t_{n,2} : n < \omega \rangle$. Then, T_α^2 is countable and we can find a countable subset $I_\alpha^2 \supseteq I_\alpha^1$ such that $R_{T_\alpha^2}/R \subseteq \bigoplus_{I_\alpha^2} A_\nu/R$. Note that

$$R_{T_\alpha^1}/R \subseteq \bigoplus_{I_\alpha^1} A_\nu/R \subseteq R_{T_\alpha^2}/R \subseteq \bigoplus_{I_\alpha^2} A_\nu/R.$$

Continue this process to find

$$I_\alpha \subseteq I_\alpha^1 \subseteq I_\alpha^2 \subseteq \cdots \subseteq I_\alpha^n \subseteq \cdots$$

and

$$T_\alpha \subseteq T_\alpha^1 \subseteq T_\alpha^2 \subseteq \cdots \subseteq T_\alpha^n \subseteq \cdots$$

satisfying

$$R_{T_\alpha^n}/R \subseteq \bigoplus_{I_\alpha^n} [A_\nu/R] \subseteq R_{T_\alpha^{n+1}}/R \subseteq \bigoplus_{I_\alpha^{n+1}} [A_\nu/R].$$

Let $T_{\alpha+1} = \bigcup_{n < \omega} T_\alpha^n$ and let $I = \bigcup_{n < \omega} I_\alpha^n$. Observe that both $T_{\alpha+1}$ and I are countable since each T_α^n and each I_α^n are countable. If $rt^{-1} + R \in R_{T_{\alpha+1}}/R$, then $t \in T_\alpha^n$ for some $n < \omega$. Hence, $rt^{-1} + R \in \bigoplus_{I_\alpha^n} [A_\nu/R] \subseteq \bigoplus_I [A_\nu/R]$ and so $R_{T_{\alpha+1}}/R \subseteq \bigoplus_I [A_\nu/R]$. On the other hand, if

$$x \in \bigoplus_I [A_\nu/R] = \bigcup_n \bigoplus_{I_\alpha^n} [A_\nu/R],$$

then $x \in \bigoplus_{I_\alpha^n} [A_\nu/R]$ for some $n < \omega$, and thus $x \in R_{T_\alpha^n}/R \subseteq R_{T_{\alpha+1}}/R$. Hence,

$$R_{T_{\alpha+1}}/R = \bigoplus_I [A_\nu/R]$$

is a direct summand of Q/R . Therefore, T_α is defined for every $\alpha < \aleph_1$ and

$$T_0 \leq T_1 \leq \cdots \leq T_\alpha \leq \cdots$$

with $\alpha < \aleph_1$ is a smooth ascending chain of countable submonoids of R^\times such that $R^\times = \bigcup_{\alpha < \aleph_1} T_\alpha$. \square

REFERENCES

- [1] U. ALBRECHT, *Right Utumi p.p.-rings*, Rend. Semin. Mat. Univ. Padova 124 (2010), pp. 25–42.
- [2] U. ALBRECHT – J. DAUNS – L. FUCHS, *Torsion-freeness and non-singularity over right p.p.-rings*, J. Algebra 285 (2005), no. 1, pp. 98–119.
- [3] U. ALBRECHT – J. TRLIFAJ, *Cotilting classes of torsion-free modules*, J. Algebra Appl. 5 (2006), no. 6, pp. 747–763.
- [4] R. BAER, *Abelian groups without elements of finite order*, Duke Math. J. 3 (1937), no. 1, pp. 68–122.
- [5] S. BAZZONI – P. EKLOF – J. TRLIFAJ, *Tilting cotorsion pairs*, Bull. London Math. Soc. 37 (5) (2005), pp. 683–696.
- [6] C. BESSENRODT – H. H. BRUNGS – G. TÖRNER, *Right chain rings*, Part 1, Schriftenreihe des Fachbereichs Mathematik der Universität Duisburg, Heft 74, 1985.
- [7] H. H. BRUNGS, *Three questions on duo rings*, Pacific J. Math. 58 (1975), no. 2, pp. 345–349.
- [8] E. ENOCKS – O. JENDA, *Relative homological algebra*, De Gruyter Expositions in Mathematics, 30. Walter de Gruyter & Co., Berlin, 2000.
- [9] L. FUCHS – S. B. LEE, *On modules over commutative rings*, J. Aust. Math. Soc. 103 (2017), no. 3, 341–356.
- [10] L. FUCHS – L. SALCE, *Modules over non-Noetherian domains*, Mathematical Surveys and Monographs 84, American Mathematical Society, Providence, R.I., 2001.
- [11] R. GÖBEL – J. TRLIFAJ, *Approximations and endomorphism algebras of modules*, De Gruyter Expositions in Mathematics 41, Walter de Gruyter GmbH & Co. KG, Berlin, 2006.
- [12] K. GOODEARL, *Ring theory*, Nonsingular rings and modules, Pure and Applied Mathematics 33, Marcel Dekker, New York and Basel, 1976.
- [13] A. HATTORI, *A foundation of torsion theory for modules over general rings*, Nagoya Math. J. 17 (1960), pp. 147–158.
- [14] P. HILL, *The third axiom of countability for Abelian groups*, Proc. Amer. Math. Soc. 82 (1981), no. 3, pp. 347–350.
- [15] L. A. HÜGEL – D. HERBERA – J. TRLIFAJ, *Divisible modules and localization*, J. Algebra 294 (2005), no. 2, pp. 519–551.
- [16] J. JANS, *Rings and homology*, Holt, Rinehart, and Winston, New York, 1964.
- [17] S. B. LEE, *On divisible modules over domains*, Arch. Math. (Basel) 53 (1989), no. 3, pp. 259–262.

- [18] E. MATLIS, *Divisible modules*, Proc. Amer. Math. Soc. 11 (1960), pp. 385–391.
- [19] J. ROTMAN, *An introduction to homological algebra*, 1st edition, Pure and Applied Mathematics 85, Academic Press, New York and London, 1979.
- [20] J. ROTMAN, *An introduction to homological algebra*, 2nd edition, Universitext, Springer, New York, 2009.
- [21] B. STENSTRÖM, *Ring of quotients*, An introduction to methods of ring theory, Die Grundlehren der Mathematischen Wissenschaften 217, Springer-Verlag, Berlin etc., 1975.

Manoscritto pervenuto in redazione l'11 dicembre 2018.