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On the rationality of period integrals

and special value formulas in the compact case

Matthew Greenberg (�) – Marco Adamo Seveso (��)

Abstract – We study rationality properties of period integrals that appear in the Gan–

Gross–Prasad conjectures in the compact case using Gross’ theory of algebraic modular

forms. In situations where the refined Gan–Gross–Prasad are known, our rationality re-

sult for period can be interpreted as a special value formula for automorphicL-functions

which proves automorphic versions of Deligne’s conjecture on rationality of periods.

Moreover, this special value formula is well suited to p-adic interpolation, as illustrated

in [10].
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1. Introduction

Suppose that �W H � G is an inclusion of algebraic subgroups (over Q, for

simplicity, in this introduction) such that H.R/ and G.R/ are connected and such

that G.R/=SG.R/ is compact, where SG � ZG (resp. SH � ZH) is the maximal

split torus in the center ZG of G (resp. ZH of H). Let A be the adele ring (over

Q) and suppose that !W SH.A/ ! C� and !�W H.A/ ! C� are two continuous

characters that are trivial on SH.Q/ and, respectively, H.Q/, that ! is unitary and

that they are related by !
�

jSH.A/
D !jSH.A/. In this paper, we study the rationality

properties of period integrals of the form

(1) I�.f / WD
R

ŒH.A/�SH
f .�.x//!��.x/d�ŒH.A/�SH

.x/,

where f 2 L2.G.A/=G.Q/; !/, ŒH.A/�SH
WD SH.R/nH.A/=H.Q/ and the mea-

sure is normalized in a suitable way (as explained after .8/). We set

mSHnH;1 WD �SHnH;1.SH.R/nH.R//.

Roughly speaking, we prove that, if we restrict I� to a suitable subspace of

“algebraic automorphic forms,” the assignmentf 7! I�.f / turns out to be defined

over a Galois splitting fieldE of G with respect to suitable rational structures. This

is the content of Theorem 7.6, expressing m�1
SHnH;1

I� as a morphism

(2) m�1
SHnH;1I� D J�WMŒG; �; !0�=E.!f / �! A1

=E.!f /,

where !0 is an appropriate twist of !f and MŒG; �; !0�=E.!f / is a suitable space

of Gross’ style algebraic modular forms, as that we are going to explain.

Writing A.G.A/; !/ � L2.G.A/=G.Q/; !/ for the dense submodule of finite

vectors, we may write

A.G.A/; !/ D
L

�u
1
A.G.A/; !/Œ�u

1�,

where �u
1 runs over all the unitary irreducible representations of G.R/ with

central character !�1
1 . Let us suppose, for simplicity, that G.R/ is compact. In this

case, the Borel–Weil theorem implies the existence of (canonical) rational models

� of �u
1 over E. Then, for every E.!f /-algebra R, we can consider Gross’ style

algebraic modular forms MŒG; �; !0�=E.!f /.R/ that are defined over R and we

have

MŒG; �; !0�=E.!f /.R/ ' R˝E.!f / MŒG; �; !0�=E.!f /

(see .27/, Definition 3.3 and Proposition 4.1 .3/ for the above identification). The

C-points of the source of .2/ are identified, by means of an adelic Peter–Weyl
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theorem (see Proposition 6.1), with

MŒG; �; !0�=E.!f /.C/ ' A.G.A/; !/Œ�u
1�.

When G.R/ may be non-compact (as in our application to the interpolation

problem, see below), i.e. SG.R/ ¤ ¹1º, it is important to take into account

possible twists �1 of �u
1. Assuming that �1 is even (and parallel when Q is

replaced by a more general totally real number field - see Definition 7.4), we prove

thatm�1
SHnH;1

I� , when restricted toMŒG; �; !0�=E.!f /.C/ � L2.G.A/=G.Q/; !/,

equals the C-points of a morphism of functors J� WMŒG; �; !0�=E.!f / ! A1
=E.!f /

.

This special value formula m�1
SHnH;1

I� D J� is our rationality statement.

Remark 1.1. According to [14, Proposition 2.2], E is a CM -field with totally

real fieldE 0. In particular, when�1 is a real representation, .2/ descend toE 0.!f /

(see Theorem 7.6).

The interest in this kind of integrals is motivated by the fact that this formalism

presents itself in many central value formulas, such as the special value formulas

for the Rankin L-functions (see [31]), the special value formulas for the triple

product L-functions (see [17, §11] and [20]) and, more generally, in the Gan–

Gross–Prasad conjectures of [7, §24]. Motivated by these conjectures, we expect

these period integrals I� to be frequently related to special values formulas: hence

our rationality result is consistent with Deligne period conjectures and could

be viewed as a generalization of some of the rationality results of [17, §11] to

a broader context (given their formula). For example (under our compactness

assumptions), it applies to the more general triple productL-functions considered

in [20] and to the (mainly conjectural) formulas appearing in the refined Gan–

Gross–Prasad conjectures of [21], [16] and [26], as discussed below. In order to

place our result in this broader context, let us describe the inclusion of classical

algebraic groups �W H � G that appears in the Gan–Gross–Prasad conjectures

temporarily removing our compactness assumption in G.

Let K=Q be a Galois field extension with Galois group GK=Q D ¹1; cº (where

we may have c D 1), let V be a finite dimensional vector space over K and

suppose that h�;�iWV ˝Q V ! K is a non-degenerate, c-sesquilinear form on V ,

which is "-symmetric for " 2 ¹˙1º � K�. These data define an algebraic group

G.V; h�;�i/ over Q and we set GV WD G.V; h�;�i/ı. Take W � V which is

non-degenerate for h�;�i, i.e. such that V D W ˚W ?; then G.W; h�;�ijW / �

G.V; h�;�i/ is embedded as the subgroup of transformations acting as the identity

onW ?. Suppose thatW ? is a split space and .�1/di m.W ?/ D �". Explicitly, when

" D 1 (resp. " D �1) this means that dim.W ?/ D 2r C 1 (resp. dim.W ?/ D 2r)
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andW ? is the orthogonal direct sumW ? D X˚X_ ˚L (resp.W ? D X˚X_),

with X isotropic, X_ isotropic and dual to X and L a non-isotropic line. Setting

G WD GV � GW , one may define H � G as follows. Let PX � GV be the

parabolic subgroup which stabilizes a complete flag of isotropic subspaces in X ;

since GW fixes both X and X_, we have that it is contained in a Levi subgroup

L of PX and acts by conjugation on the unipotent radical of N of PX D N Ì L.

Setting H WD N Ì GW , the inclusion H � G is defined to be the product of

the inclusion H � PX � GV and the projection H ! GW . Let � D �V � �W

be an irreducible cuspidal representation of G, with �V (resp. �W ) an irreducible

cuspidal representation of GV (resp. GW ), and suppose that �V and�W are almost

locally generic (see [26, After Remark 2.4]). It is defined in [7, §12 and §23] a

unitary automorphic representation � of H and it is proved that

(3) di mC.HomH.Qv/.�V;v ˝ �W;v ˝ N�v;C// � 1

in [23] and [7] (the proof reduces to the r D 0 case handled in [1], [30], and

[32]). Indeed, up to changing G by a pure inner form G0
� , the equality should

be achieved: this rule should be governed by symplectic local root numbers.

We suppose from now these root numbers place ourselves on the right group

G D G0
� . Then the Gan–Gross–Prasad conjecture exhibits a close relationship

between the period integral .1/ with !� replaced by � and the central values of the

automorphic L-functions associated to symplectic representations of the L-group

of G: these two quantities should vanish or not at the same time (see [33] for

a proof in the unitary case). Indeed, when " D 1, �W H.A/ ! C� is a generic

automorphic character and a refinement of the Gan–Gross–Prasad conjecture has

been proposed in [26], generalizing the r D 0 orthogonal and unitary cases

discussed in [21] and, respectively, [16]. After a suitable normalization (see [26,

Remark 2.6]), it takes the form of the formula .5/ below where I�.f / is replaced

by
R

H.A/=H.Q/ f .�.x//�
�1.x/d�H.A/=H.Q/.x/. We remark that, when r D 0, the

refined conjectures of [26] is known in the orthogonal case when dim.V / D 3

or 4 (by [31] and [17] or [20], as explained in [21]) and 5 when �V is a theta lift

(see [8]). When r D 0 it is known in the unitary case when dim.V / D 2 or 3 (see

[16]) and in general, up to a non-zero factor c.�V;1 ˝ �W;1/ 2 C� which only

depends on the archimedean components of �V ˝�W under suitable assumptions

(see [34]). See also [26] for two examples in the r D 1 and orthogonal case.

Remark 1.2. Suppose that G WD GV � GW as above. Then G.R/=SG.R/ is

compact if and only if G.R/ is compact and this means that " D 1 and h�;�i

should be definite: then GV .R/ and GW .R/ are either ' SO.n/ or ' U.n/

according to whenever c is trivial or not and r D 0 (there is no isotropic vector by
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compactness of GV .R/). In fact, in this case SH � SG D ¹1º is trivial and there

is no condition placed on the character !� appearing in .1/, that could be taken

!� D �.

Suppose from now on that

(4) G D GV � GW , G D G0
� and G.R/ is compact.

It follows from Remark 1.2 and the discussion before it that we are in the setting of

the refined Gan–Gross–Prasad conjecture (because " D 1) and that, taking!� D �

in .1/, the conjecture predicts that

(5)
ˇ

ˇI�.f /
ˇ

ˇ

2
D

1

2ˇ

�GV
L.1=2; �V � �W /

L.1; �V ;Ad/L.1; �W ;Ad/

Y

v
˛v.fv/

for f D ˝vfv 2 �V � �W . Here ˛v are appropriately regularized integral of

matrix coefficients which should be non-zero on �V;v ˝ �W;v ˝ ��1
v because

G D G0
� (see [26, Conjecture 2.5 .2/]), �GV

is a product of abelian L-values

(attached to dual Gross motives) and ˇ is an integer. This explains the relationship

between our investigation and the Gan–Gross–Prasad conjecture. In particular, we

obtain the following result as a direct application of .2/, whereE.�/ (resp.E 0.�/)

denotes the field generated over E.!f / (resp. E 0.!f /) by the eigenvalues of � .

Theorem A. If .4/ hold, the period integralsm�1
H;1

I� with !� D � considered

in [7, §24] are defined over E.!f /. Hence, depending on the validity of .5/, also

the right hand side is defined over E. Explicitly, this means that a test vector f

can be chosen so that m�1
H;1

I�.f / 2 E.�/.

Let us write !i for the weight of ^iVR or its restriction to SUV .R/ in the

Hermitian case and, in the orthogonal case, let ˛ and ˇ be the weights of the half-

spin representations. Then �V;1 (resp. �V;1jSUV .R/) is classified by its dominant

weight, that can be written in the form ��V;1
D

Pdim.V /=2
iD1 ni!i C n˛˛ C nˇˇ

(orthogonal case) or �V;1jSUV .R/ D
Pdim.V /�1

iD1 ni!i (unitary case).

Theorem B. Suppose that .4/ hold. If we are in the orthogonal case, suppose

that either dim.V / � 1; 3; 4 mod.4/ or that dim.V / � 2 mod.4/ and n˛ D nˇ .

If we are in the unitary case, suppose that ni D ndim.V /�1�i for every i and that

�V;1 is trivial when restricted to the center. Then the period integrals m�1
H;1

I�

with !� D � considered in [7, §24] are defined over E 0.!f /, which is totally real

when !2
f

D 1. Hence a test vector can be chosen so that m�1
H;1

I�.f / 2 E 0.�/

and, when !2
f

D 1 and the eigenvalues of � are real, jI�.f /j
2 D I�.f /

2.

(For example, one can take E 0 D Q in the setting of triple product L-functions,

see [17, §11] and Theorem 8.2).
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Proof of Theorem B. Indeed, the above assumptions implies that �V;1 is

either real or quaternionic (see [6, Propositions 26.4, 26.6 and 26.7]), so that

the same property is enjoyed by �_
V;1jH.R/

. It follows from .3/ with v D 1 that

�W;1 ˝ ��1
1 appears with multiplicity one in �_

V;1jH.R/
; hence the morphism c

such that c2 D ˙1 which gives the real or quaternionic structure on �V;1 induces

the same kind of structure on �W;1 ˝ ��1
1 . Since �1 D �1, we know that ��1

1 is

real; it follows that �W;1 is real and we deduce that �V;1 � �W;1 is also real as

a representation of G.R/. Now the claim follows from Remark 1.1 �

Another application of Theorem 7.6 is the following result (to be proved in

§7.2), which assumes the validity of .5/, [26, Conjecture 2.3] and, hence, it is

a theorem in the cases discussed before Remark 1.2 above. In order to state the

result, let E.�;Ad/ be the field generated over E.�/ by the coefficients of the

polynomials Lv.1; �V ;Ad/ and the values �GV ;v at finite primes v and then set

E�.�/ WD E.�;Ad/E.�;Ad/. If we are given a; b 2 C, we write a � b to mean

that b ¤ 0 and a
b

2 E�.�/. Hence, we have fixed E.�;Ad/ � C and write

x 7! Nx for the induced complex conjugation on x. Recall that, in the general

unitary case, eq. .5/ is only known up to c.�V;1 ˝�W;1/ 2 C� in order to justify

the assumptions we are going to make.

Theorem C. Suppose that .4/ hold and that the refined Gan–Gross–Prasad

conjecture holds, possibly with .5/ satisfied up to some non-zero constant

c.�V;1 ˝ �W;1/ 2 C� which only depends on the archimedean components of

�V ˝ �W . Then

L.1=2; �V � �W /

L1.1=2; �V � �W /

� c.�V;1 ˝ �W;1/
�GV ;1

�GV

L.1; �V ;Ad/L.1; �W ;Ad/

L1.1; �V ;Ad/L1.1; �W ;Ad/
.

(6)

The above result provides evidences to conjectures of Deligne and Shimura.

We refer the reader to [15] for the relations with Deligne’s conjectures and to [13]

for a proof of a similar result in the unitary case (see also the remark at the end of

this introduction).

The period integral .1/ is first studied in Theorem 7.2, while Theorem 7.6

provides conditions for its applicability. As explained above, the result is .2/which

gives, when .5/ is known, explicit special value formulas. We exemplify this fact

in §8, where we specialize our result to the case of triple product L-functions

and Rankin L-functions, thus getting, respectively, an explicit Harris–Kudla–

Ichino and explicit Waldspurger formula. The former yields a generalization and
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simplification (of the proof) of the special value formula [4, Theorem 5.7] which

removes the squarefree level assumptions there (see Theorem 8.2). The latter

removes the assumption that the conductors of the modular form and the character

should be coprime which appears in the Hatcher-Hui formulas proved in [18]

and [19] (see .44/). Our generalization is due to the fact that, rather than focusing

ourselves on theL-functions, we focus ourselves on making explicit .1/ regarded as

a functional, without trying to include the theta correspondence and the test vector

in the special value formula itself. In other words, justified by .5/, the problem

of studying the special values of complex L-functions is split in two parts: relate

special values to period integrals (which is .5/) and then study the period integrals

themselves getting the “almost algebraic” expression of Theorem 7.2 (which is a

considerably more modest task). The pay-off of this approach is that, although

less explicit in the computation of local constants (because we do not specify a

test vector), it works in greater generality (removing, for example, all the level

assumptions) and it is still suitable for p-adic interpolation. It suffices indeed to

apply this philosophy in the p-adic realm: p-adic L-functions arise from p-adic

variation of J� D m�1
SHnH;1

I� regarded as a functional. Indeed, motivated by the

above general rationality results, we expect that these periods could be frequently

p-adically interpolated and we hope this formalism could be useful in order

to address this issue. Although a further general investigation in this direction

requires a better understanding of the Hecke operators at p of the Ash-Stevens

distribution modules appearing in the definition of a p-adic family (see [2]), an

application of our results in the case of triple product p-adic L-functions yields

triple product p-adic L-functions which interpolate in the balanced region: this is

the content of [10]. Also, as an application of our explicit Waldspurger formula,

it is possible to generalize the construction of the p-adic L-functions considered

in [3] (see [11] for details).

Remark 1.3. We end the introduction with few remarks.

.1/ In this paper, we prove the rationality results discussed above in the case

where Q is replaced, more generally, by a totally real field F . The (re-

fined) Gan–Gross–Prasad conjectures and the formulas .5/ have been formu-

lated/proved in this more general setting. Let us remark once again that .6/

depends on the validity of .5/ up to c.�V;1˝�W;1/ 2 C�, which is known in

the orthogonal cases discussed before Remark 1.2 with c.�V;1 ˝�W;1/ D 1,

but the general unitary case requires the assumptions [34, §1.2, RH(I) and

RH(II)] and the local factor c.�V;1 ˝ �W;1/ is not known.
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.2/ The rationality issues of .1/ should not involve the condition G D G0
� in the

context of Gan–Gross–Prasad conjectures G D GV �GW ; indeed one should

expect that I�.f / D 0 when f 2 � but G ¤ G0
� (for example, when r D 0

and HomH.F1/.�V;1˝�W;1˝��1
1 ;C/ D 0, this can be easily checked) and,

hence, I� should be rational also on this portion of the space of automorphic

forms. This is indeed the case when G.R/ is compact (because, of course,

the first rationality statement of Theorem A does not depend on G D G0
� ).

.3/ After a first version of our paper appeared, we have been warned that our

Theorem C has been obtained in some cases also in [13]. More precisely, if

we specialize it to the case F D Q and to the unitary case and make the

assumptions of [34, §1.2, RH(I) and RH(II)] ensuring that .5/ is in force (up

to c.�V;1 ˝ �W;1/), our Theorem C is [13, Theorem 1.5]. Our compactness

assumption G D G0
� corresponds in loc.cit. to the fact that the representa-

tions under consideration should arise as the base change from automorphic

representation of a definite unitary group. Our method is different and much

more elementary than Grobner-Harris’s strategy, this latter being based on

Rankin-Selberg L-functions for GLn=K � GLn�1=K over an imaginary qua-

dratic fieldK=Q, Zhang’s proof of refined Gan–Gross–Prasad conjecture for

unitary groups (see [34]), rational structures arising both from Whittaker

models and from the cohomology of the relevant Shimura varieties and base

change results from definite unitary groups over Q to general linear groups

over K. Rather, we construct and study the needed global and local rational

structures to prove Theorem C without abandoning our group G over a totally

real field F and we deduce Theorem C from Theorem A. Of course, in order

to have .5/ in force in the unitary case (up to c.�V;1 ˝ �W;1/), as remarked

we need to appeal to [34] and, hence, definitely the same kind of assumptions

of [13, Theorem 1.5] are needed.

2. Automorphic forms and the period integrals

In this section, we precisely define the period integrals central to our study. Let G

be a reductive algebraic group over a field F with adele ring A D Af � F1 and

let ZG be its center. Let

�GW G.F / �! G.A/ and �G;f W G.F / �! G.Af /

be the diagonal embedding and, for a closed, algebraic subgroup Z of ZG, set

ŒG.A/�Z WD Z.A/nG.A/=G.F / and ŒG.Af /�Z WD Z.Af /nG.Af /=G.F /:
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Let

PGZ D G=Z:

We make the following assumptions on the pair .G;Z/:

(A1) PGZ.F1/ is compact;

(A2) �G;f embeds G.F / as a discrete subgroup of G.Af /;

(A3) G.Af /=G.F / is compact.

Remark 2.1. Let SG be the maximal split torus in the center of G. Applying

[14, Proposition 1.4] after restricting scalars from F to Q shows that (A2) implies

(A2) and (A3). When Z D SG and F D Q, it is proved in [14, Proposition 1.4] that

(A1) is indeed equivalent to (A2) (and to (A3)). We also remark that (A1) (for any

Z) implies that G D ZG or F is totally real.

Thanks to our assumptions (A2) and (A3), the results of the following §3.1

applies. In particular, we may normalize the non-zero left G.Af /-invariant Radon

measures �G.Af / on G.Af /, �G.Af /=G.F / on G.Af /=G.F / and �ŒG.Af /�Z on

ŒG.Af /�Z so that�G.Af /.K/ 2 Q for some (and hence every)K 2 K,�G.Af /=G.F /

satisfies .11/ and restricts to�ŒG.Af /�Z on Z.Af /-invariant functions. Furthermore,

it easily follows from (A1) and (A2) that we may normalize the left G.A/-invariant

(resp. G.F1/-invariant) non-zero Radon measure �ŒG.A/�Z (resp. �ZnG;1) on

ŒG.A/�Z (resp. Z.F1/nG.F1/) so that the following formula is satisfied:
R

ŒG.A/�Z
f .x/d�ŒG.A/�Z.x/

D
R

ŒG.Af /�Z
.
R

Z.F1/nG.F1/
f .xf x1/d�ZnG;1.x1//d�ŒG.Af /�Z.xf /.

(7)

For the remainder of this paper, we suppose that we are given two pairs .H;ZH/

and .G;Z/ D .G;ZG/ as above and a morphism of algebraic groups

(8) �W H �! G

such that �.ZH/ � ZG. We assume (A1), (A2) and (A3) for the pairs .H;ZH/

and .G;ZG/. In addition, we impose the above-mentioned normalizations to the

measures obtained from the couple .H;ZH/. We use the abbreviations ŒK.A/� WD

ŒK.A/�ZK , ŒK.Af /� WD ŒK.Af /�ZK and �ZKnK;1 D �K;1 for K 2 ¹H;Gº. We

define m�1
ZHnH;1

WD �ZHnH;1.PHZH.F1//.

Fix once and for all a continuous and unitary character !W ZG.A/

ZG.F /
! C�. Let

S.G.A/; !/ be the space of functions f W G.A/ ! C such that

f .zx/ D !.z/f .x/ for every z 2 ZG.A/,
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endowed with the .G.A/;G.A//-action defined by the rule

.
'u/.x/ WD '.ux
/ for every 
 2 G.A/ and u 2 G.A/.

We write L2.G.A/=G.F /; !/ for the right Hilbert space G.A/-representation of

L2-automorphic forms with right G.A/-invariant scalar product

hf1; f2i WD
R

ŒG.A/� f1.x/f2.x/�ŒG.A/�.x/.

We recall that, if S1-fin.G.A/; !/ denotes the subspace of right G.F1/-finite

vectors in S.G.A/; !/ and S1-fin.G.A/=G.F /; !/ WD S1-fin.G.A/; !/.G.F /;1/,

then

A.G.A/; !/ WD
S

K2K S
1-fin.G.A/; !/.G.F /;K/ D .S1-fin.G.A/=G.F /; !//K

is a right G.Af /-submodule ofL2.G.A/=G.F /; !/, which is known to be dense in

it. Indeed, due to the compactness of PGZ.F1/, it is even a right G.A/-submodule

of it. In particular, if �u
1 2 Irru.G.F1/; !

�1
1 /, it makes sense to talk about the

�u
1-isotypic component A.G.A/; !/Œ�u

1� of A.G.A/; !/.

We suppose that there is a character !�W H.A/ ! C� such that !� is trivial on

H.F / and !
�

jZH.A/
D ! ı �AjZH.A/. We write !�� WD .!�/�1.

Definition 2.2 (Global period integral). Define the global period integral

I� WL2.G.A/=G.F /; !/ �! C

by the rule

(9) I�.f / WD
R

ŒH.A/�
ZH
f .�.x//!��.x/d�ŒH.A/�

ZH
.x/.

It is easily seen to be well defined and to satisfy the following H.F1/-

equivariance property:

(10) I�.f �.h// D !�.h/I�.f / for every h 2 H.A/.

Our goal is to study the rationality properties of (9). As discussed in the intro-

duction, in establishing rationality it is natural to work with one G.F1/-isotypic

component of (the subspace of automorphic forms in) L2.G.A/=G.F /; !/ at a

time; this component can be conveniently described by means of Gross algebraic

modular forms (see [14]). In §3 we develop a formalism of vector valued modular



On the rationality of period integrals 45

forms in the sense of Gross and define formal period integrals J . Using this lan-

guage, we can define analytic and algebraic formal integrals JF1
and JC. Roughly,

the rationality property of (9) is proved showing that

m�1
ZHnH;1

I�

.1/
' JF1

.2/
' JC.

More precisely, we first prove .2/ (Proposition 5.6) and then .1/ (Theorem 7.2)

assuming that the isotypic component we are working with has a rational model

and is well behaved under twists; then we provide quite general conditions for

these assumptions being satisfied in §7.1. These formal period integrals will also

prove useful in our subsequent study of p-adic analogues of (9).

3. The formalism of profinite groups

3.1 – Vector valued modular forms and the formal period integral

In this section, we consider a data of the form

.�; Gf ; Zf / D .�; Gf ; Z
G
f /

subject to the following assumptions. We suppose that Gf is a locally profinite

unimodular group, let � � Gf be a discrete subgroup such that Gf =� is compact

and let Zf � ZGf
be a closed subgroup. We write K D K.Gf / to denote the set

of its open and compact subgroups of Gf . We may normalize the Haar measure

�Gf
on Gf in such a way that �Gf

.K/ 2 Q for some (hence, every) K 2 K. Let

�Gf =� be a nonzero, left Gf -invariant Radon measure on Gf =�, normalized so

that

(11)
R

Gf
f .g/d�Gf

.g/ D
R

Gf =�

P

f .g
/d�Gf
.g/;

Its existence is guaranteed by triviality of the module of�Gf
on� (the discreteness

of � is used here) and the unimodularity of Gf . It is unique up to nonzero scalar

multiple. By compactness of Gf =� there is a nonzero, left Gf -invariant Radon

measure �Zf nGf =� onZf nGf =�, also unique up to nonzero scalar multiple, such

that �Zf nGf =� and �Gf =� agree on C.Zf nGf =�/. (We view C.Zf nGf =�/ as a

subspace of C.Gf =�/ in the obvious way.)

Let G1 be a group and let � ! G1 be a group homomorphism, so that

� � Gf � G1 DW G. If g 2 G, we write gf 2 Gf and g1 2 G1 for its

components. Let .V; �/ be a right representation of G1 with coefficients in some

commutative ringR. When � is understood, we simply write vg1 for v�.g1/. Let

!0WZf �! R�be a character.
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Definition 3.1. Define S.Gf ; �/ to be the space of maps 'WGf ! V endowed

with the .G;Gf /-action given by

.g'u/.x/ WD '.uxgf /�.g
�1
1 /; where g 2 G and u 2 Gf .

Let

S.Gf ; �; !0/ D ¹' 2 S.Gf ; �/W 'z D !0.z/' for all z 2 Zf º:

Then S.Gf ; �; !0/ is a .G;Gf /-submodule of S.Gf ; �/. We also write

S.Gf =�; �=� ; !0/ WD S.Gf ; �; !0/
.�;1/:

Remark 3.2. The following facts is easily verified.

.1/ If S.Gf ; �; !0/
.1;K/ ¤ 0 and V is R-torsion free, then !0.Zf \ K/ D 1 for

some K 2 K. It follows that if R� is given any topology with the “no small

subgroups” property (i.e., there is an open neighbourhood of 1 in R� whose

only compact subgroup is ¹1º), then !0 is continuous.

.2/ If S.Gf ; �; !0/
.�;1/ ¤ 0, V is R-torsion free and .V; �/ has central character

!�, then !0.
/ D !�.
/ for every 
 2 Z \ZG1
\ � � Z� . In particular, if

Z \ � D Z� and ZG1
\ � D Z� then !0.
/ D !�.
/ for all 
 2 Z� .

Definition 3.3 (Vector-valued modular forms). Define the space of �-valued

modular forms on Gf by

M.Gf ; �/ D M�.Gf ; �/ WD S.Gf ; �/
.�;K/

and the subspace of �-valued modular forms on Gf with character !0 by

M.Gf ; �; !0/ D M�.Gf ; �; !0/ WD S.Gf ; �; !0/
.�;K/:

Observe that

M�.Gf ;C/ D C.Gf =�/
K and M�.Gf ;C; 1/ D C.ZnGf =�/

K:

The following remark is easily checked.

Remark 3.4. Suppose that �0WGf ! R� is a character with the property that

�0.K/ D 1 for some K 2 K and that �1WG1 ! R� is a character with the

property that �0j� D �1j� .

.1/ If ' 2 M.Gf ; �; !0/, then the rule .�0'/.x/ WD �0.x/'.x/ defines an element

�0' 2 M.Gf ; �.�1/; �0jZ!0/.

.2/ We have �0 2 M.Gf ; R.�1/; �0jZ/.
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The formation of these spaces satisfies obvious functoriality properties. If

 W � ! �0 is a morphism of representations of �, then we get

(12)  �WM.Gf ; �; !0/ �! M.Gf ; �
0; !0/

by the rule  �.'/ WD  ı '. In the opposite direction, suppose that we are

given another triple .�;Hf ; H/ satisfying the assumptions that was done on

.�; Gf ; G1/.

Definition 3.5. A period morphism �W .�;Hf ; H1; Z
H
f
/! .�; Gf ; G1; Z

G
f
/

is a couple � D .�f ; �1/ of group morphisms �f WHf ! Gf and �1WH1 ! G1

both mapping � to � and such that �f is continuous and maps ZH
f

to ZG
f

.

Writing ��
1.�/ for theH1-representation obtained by restriction from �1 and

setting ��
f
.!0/ D !0 ı �f jZH

f
, we get

(13) �� D .�f ; �1/
�WM�.Gf ; �; !0/ �! M�.Hf ; �

�
1.�/; �

�
f .!0//.

The following simple fact will be needed later: its proof relies in the finiteness

of the double cosets KnGf =� for every K 2 K and is left to the reader.

Lemma 3.6. The following facts hold.

.1/ Suppose that we are given a family ¹.Vi ; �i/ºi2I of rightG1-representations.

Then there is a Gf -equivariant identification

M.Gf ;
L

i2I �i ; !0/ D
L

i2I M.Gf ; �i ; !0/.

.2/ Suppose that .V; �/ is a right G1-representation and that we are given a

morphism of (unitary) ringsR ! R0. IfR0 isR-flat or V is R-free then there

is a Gf -equivariant identification

M.Gf ; R
0 ˝R �; !0/ D R0 ˝R M.Gf ; �; !0/.

3.1.1 – Trace maps

For x 2 Gf andK 2 K, define �K.x/ D � \x�1Kx. Being discrete (as � is) and

compact (as K is), the set �K.x/ is finite. For eachK 2 K and each set RK � Gf

of representatives of KnGf =�, define

(14) TK D TRK
WM.Gf ; R/

K �! R; TRK
.f / WD �Gf

.K/
P

x2RK

f .x/
j�K.x/j

:
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Lemma 3.7. (1) The quantity TRK
.f / depends only on K and not on RK ,

justifying the notation TK .

(2) If K1 � K2, so that M.Gf ; R/
K1 � M.Gf ; R/

K2 , then TRK1
.f / D

TRK2
.f / for all f 2 M.Gf ; R/

K1.

(3) Let `gf
denote left multiplication by g 2 Gf . Then the following diagram

is commutative:

M.Gf ; R/
K

`g
//

TRK
$$■

■
■■

■■
■■

■■
M.Gf ; R/

g�1Kg

T
R�1

g Kg
xxqq
qq
qq
qq
qq
qq

C

(4) We have

�G0=� D TG0=� WC.G0=�/
K D M.G0;C/ �! C

and

�ZnG0=� D TZnG0=� WC.ZnG0=�/
K D M.ZnG0;C/ �! C.

Proof. One easily checks (1), (3) and (4). It’s not hard to see that (2) is implied

by the identity

(15)
P

u2K1nK2=x�K2
.x/x�1

1

j�K1
.ux/j

D ŒK2WK1�

j�K2
.x/j

.

One can verify this in case R D C as follows. First, the inclusion K1y �

K1y� induces a measure preserving homeomorphismK1y=�K1
.y/

�
! K1y�=�

(by transport of the bijection). Putting these together and noticing that K1ux� D

K1u
0x� if and only ifK1ux�K2

.x/x�1 D K1u
0x�K2

.x/x�1 for every u; u0 2 K2,

we obtain a measure preserving homeomorphism

F

u2K1nK2=x�K2
.x/x�1 K1ux=�K1

.ux/

�
�!

F

u2K1nK2=x�K2
.x/x�1 K1ux�=� D K2x�=�.

Therefore,

P

u2K1nK2=x�K2
.x/x�1

�Gf
.K1/

j�K1
.ux/j

D �Gf =�.K2x�=�/.

But the natural map K2y � K2y� induces a measure preserving homeo-

morphism K2y=�K1
.y/

�
! K2y�=� (by transport of the bijection), implying

�Gf =�.K2x�=�/ D
�Gf

.K2/

j�K2
.x/j

. �
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It follows from parts (2) and (3) of Lemma 3.7 that the TKs fit together into

R-linear functionals

(16) TGf =� WM.Gf ; R/ �! R and TZnGf =� WM.ZnGf ; R/ �! R

where TGf =� D TK on M.Gf ; R/
K and TZnGf =� WD TGf =�jM.ZnGf ;R/. Since

we have assumed that �ZnGf =� is normalized so that it agrees with �Gf =� on

C.Gf =�/, we see that

(17) T .f / D
R

ZnGf =�
f .gf /d�ZnGf =�.gf /

for all f 2 M.Gf ;C; 1/.

3.1.2 – Pairings and n-linear forms

We also have a natural map

(18) ˝WM.Gf ; �; !0/˝R M.Gf ; �
0; !0

0/ �! M.Gf ; �˝R �
0; !0!

0
0/

defined by the rule .' ˝ '0/.x/ WD '.x/˝ '0.x/. In particular, writing �_ for the

R-dual representation .v_
/.v/ D v_.v
�1/, we may define

h�; �iWM.Gf ; �; !0/˝R M.Gf ; �
_; !�1

0 /
˝

�! M.Gf ; �˝R �
_/

�! M.ZnGf ; R/
TZnGf =�

�! R.

(19)

Definition 3.8. We let X.Gf ; G1; !0/ D X�.Gf ; G1; Zf ; !0/ be the set of

couples .�0; �1/ with the property that �0WGf ! R� is a character such that

�0.K/ D 1 for some K 2 K, �0jZf
D !0 and �1WG1 ! R� is a character such

that �0j� D �1j� .

Suppose that we are given a period morphism �W .�;Hf ; H1/ ! .�; Gf ; G1/,

say � D .�f ; �1/, that .V; �/ is a representation of G1 with coefficients in some

ring R and that !0WZ ! R� is a character. If .�0; �1/ 2 X�.Hf ; H1; �
�
f
.!0//

and we are given

ƒ 2 HomRŒH1�.�
�
1.�/; R.�1// D �_.�1/

H1

then we get

M�0;�1
� .ƒ/ 2 HomR.M.Gf ; �; !0/; R/

by the rule

M�0;�1
� .ƒ/.'/

WD �Hf
.K/

P

x2KnHf =�

ƒ.'.�f .x///��1
0

.x/

j�K .x/j
if ' 2 M.Gf ; �; !0/

K .
(20)
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Alternatively, we have

M�0;�1
� .ƒ/WM�.Gf ; �; !0/

��

�! M�.Hf ; �
�
1.�/; �

�
f .!0//

ƒ�
�! M.Hf ; R.�1/; �

�
f .!0/ D �0jZ/

h�;��1
0

i

����! R,

(21)

where h�; ��1
0 i is the pairing .19/, which makes sense thanks to Remark 3.4

.2/: it follows from this description that M
�0;�1
� .ƒ/ is well defined. We write

M�0;�1 WD M
�0;�1
� .

In this case, we may define

(22) J �;�0;�1 W �_.�1/
G1 ˝R M.Gf ; �; !0/ �! R

by the rule

J �;�0;�1.ƒ˝R '/ WD M�0;�1.ƒ/.'/.

Finally, suppose that we are given a family ¹�iºi2I for representations, characters

¹!0;iºi2I and ƒ 2 HomRŒG1�.�; R.�1//, where � WD ˝R;i2I�i . Then, assuming

that
Q

i !0;i D !0 we generalize .19/ as follows:

(23) ƒ
�0;�1

M W ˝R;i2IM.Gf ; �i ; !0;i/
˝

�! M.Gf ; �; !0/
M �0;�1.ƒ/
��������! R.

3.1.3 – The formal period integral

Suppose that we are given a period morphism �W .�;Hf ; H1/ ! .�; Gf ; G1/,

say � D .�f ; �1/, that .V; �/ is a representation of G1 with coefficients in some

ringR and that!0WZ ! R� is a character. Assume that we are given anH1-stable

decomposition decomposition

(24) V _ D .��
1.�//

_.�1/
H1 ˚ .��

1.�//
_.�1/

H1;c

where .�0; �1/ 2 X�.Hf ; H1; �
�
f
.!0//. It follows that we have a projection

p�;�1 WV _ �! .��
1.�//

_.�1/
H1 .

Recall that we also have

��WM�.Gf ; �; !0/ �! M�.Hf ; �
�
1.�/; �

�
f .!0//.

It will be convenient to set

p�;�1
� WD p�;�1 ˝R �

�

and

M� ŒGf ; �; !0� WD V _ ˝R M�.Gf ; �; !0/.
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For every .�0; �1/ 2 X�.Hf ; H1; �
�
f
.!0// and .24/, we may define the

formal period integral:

J �;�0;�1
� WM� ŒGf ; �; !0�

p
�;�1
h�;�iV _ ;�

��������! .��
1.�//

_.�1/
H1 ˝R M�.Hf ; �

�
1.�/; �

�
f .!0//

J ��
1.�/;�0;�1

����������! R.

(25)

4. Modular forms valued in algebraic representations and the algebraic

period integral

Suppose that F � E is a field extension such thatE=Q is Galois and letXE=F be a

set of embeddings � WE ,! C with the property that � 7! Œ�jF � defines a bijection

between XE=F and the set (of equivalence classes) of archimedean places of F .

We fix once and for all �1 2 XE=F , allowing us to regard C as an E-algebra, and

an element g� 2 GF=Q with the property that �1 ı g� D � for every � 2 XE=F ,

as granted by the fact that E=Q is Galois. Set

RXE=F WD
Q

�2XE=F
R;

GXE=F WD
Q

�2XE=F
G;

HXE=F WD
Q

�2XE=F
H:

We get a mapping

E �! RXE=F ; x 7�! .g� .x//�2XE=F
;

whose formation is functorial in R. We get an induced map

(26) G.E/ �! G.RXE=F / D GXE=F .R/

for every E-algebra. Note that this map is induced by
Q

�2XE=F
� WE ! CXE=F

when R D C, thanks to �1 ı g� D � .

Thanks to (A2) and (A3), the results of §3.1 apply to the triple

.�; Gf ; G1/ D .G.F /;G.Af /;G
XE=F .R//

for every E-algebra R, where the required group homomorphism

� D G.F / �! GXE=F .R/ D G1
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is given by (26). The map �W H ! G induces a morphism of triples

�R WD .�Af
; �

XE=F

R /W .H.F /;H.Af /;H
XE=F .R//

�! .G.F /;G.Af /;G
XE=F .R//.

Let ¹.V� ; ��/º�2XE=F
is a family of algebraic representations of G=E . Let

!0W ZG.Af / �! E�

be a character. Let

.V; �/ WD ��2XE=F
.V� ; ��/;

be the external tensor product, a representation of G
XE=F

=E
. For everyE-algebraR,

we have a representation .VR; �R/ of GXE=F .R/ and a character

!0;RW ZG.Af /
!0

�! E� �! R�:

We may therefore form the spaces of algebraic modular forms

M.G; �; !0/.R/ WD MG.F /.G.Af /; �R; !0;R/.

If  WR ! R0 is a homomorphism of E-algebras, then  induces a family

 ��
W ��;R ! ��;R0 of morphisms of G.R/-representations over R. Setting

 � WD ��2XE=F
 ��

;

we get a morphism  �W �R ! �R0 of GXE=F .R/-representations over R and an

induced G.Af /-equivariant, R-linear map

 �;�WM.G; �; !0/.R/ �! M.G; �; !0/.R
0/.

If .V _; �_/ is the dual representation of .V; �/, it will be convenient to define

(27) MŒG; �; !0�.R/ WD V _
R ˝R MG.F /.G.Af /; �R; !0;R/.

Then

 �_ ˝R  �;�WMŒG; �; !0�.R/ �! MŒG; �; !0�.R
0/.

Thus, we have defined two functors from E-algebras to G.Af /-modules,

R 7�! M.G; �; !0/ and R 7�! MŒG; �; !0�:
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Let X
�

H.Af /;H
XE=F ; ��

Af
.!0/

�

be the set of pairs

.�0W H.Af / �! E�; �W H
XE=F

=E
�! Gm=E /

such that

.�0; �E/ 2 XH.F /

�

H.Af /;H
XE=F .E/; ��

Af
.!0/

�

:

An element .�0; �/ 2 X
�

H.Af /;H
XE=F ; ��

Af
.!0/

�

naturally induces a family

¹.�0;R; �R/ 2 XH.F /.H.Af /;H
XE=F .R/; ��

Af
.!0;R//º,

where

�0;RW H.Af /
�0

�! E� �! R�; �RW HXE=F .R/ �! R�;

and

!0;RW ZG.Af /
!0

�! E� �! R�.

Since H
XE=F

=E
is a reductive group over a characteristic zero field, the algebraic

representation ��.�/_ admits a decomposition into isotypic components, one of

which is ��.�/_.�/H. It follows that there is a canonical decomposition

V _ D ��.�/_.�/H
XE=F

˚ ��.�/_.�/H
XE=F ;c

which gives rise to a family of decompositions

(28) V _
R D ��

R.�R/
_.�R/

H
XE=F .R/ ˚ ��

R.�R/
_.�R/

H
XE=F .R/;c .

We write J
�R;�0;R;�R
�R

for the period morphism .25/ obtained from .28/. We can

now easily prove the following result.

Proposition 4.1. Suppose that .V; �/ is an algebraic representation of G=E

and that

.�0; �/ 2 X.H.Af /;H
XE=F .E/; ��

Af
.!0//.

.1/ The family J
�;�0;�
� WD ¹J

�R;�0;R;�R
�R

º defines a morphism of functors

J �;�0;�
� WMŒG; �; !0� �! A1

=E .

.2/ If  WR ! R0 is a morphism of E-algebras, there are canonical identifica-

tions

M.G; �; !0/.R
0/ D R0 ˝R M.G; �; !0/.R/

and

MŒG; �; !0�.R
0/ D R0 ˝R MŒG; �; !0�.R/

such that

J
�R0 ;�0;R0 ;�R0

�R0 D R0 ˝R J
�R;�0;R;�R
�R

:
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Proof. Claim .1/ follows from the fact that .25/ is functorial with respect to

period morphisms and compatible decompositions .24/ as those arising from .28/

for different Rs. Claim .2/ easily follows from Lemma 3.6 .2/. �

5. Modular forms valued in complex representations and their rational

models

If G is a real Lie group (resp. an algebraic group over some field), we let Rep.G/

be the category of finite dimensional continuous complex representations (resp.

finite dimensional algebraic representations defined over the field); we also let

Irr.G; !/ be the set of equivalence classes of irreducible representations in Rep.G/

with central character ! and write Irr.G/ for the union of them. For a reductive

Lie group G which is compact modulo Z � ZG and an irreducible continuous

complex representation .V1; �1/, it can be proved that .V1; �1/ 2 Rep.G/, i.e.

it is finite dimensional, that there is unique up to non-zero scalar factor Hermitian

product h�;�iV1
which is G0-invariant (G0 being the derived subgroup) and that

there is a unique continuous (hence real Lie group) character ı�1
WG ! C� such

that

(29) hv1g; v2giV1
D ı�1

.g/hv1; v2iV1
for every v1; v2 2 V and g 2 G.

In particular, there is a natural inclusion Irru.G; !/ � Irr.G; !/ with equality

in case G is compact, ! needs to be unitary in this case, and every irreducible

representation in Rep.G/ is unitary up to twisting it by ı
�1=2
�1

, which makes sense

because ı�1
takes value in R�

C by .29/ with v1 D v2 ¤ 0. We write Irru.G/ for

the whole set of isomorphism classes of unitary Hilbert space representations (the

isomorphism being only required to be G-equivariant).

Let !0W ZG.Af / ! C� be a continuous (not necessarily unitary) character

and let .V1; �1/ be a continuous complex right representation of G.F1/ with

central character !�1
(possibly not irreducible). We suppose that we are given a

Hermitian scalar product

h�;�iV1
WV1 � V1 �! C

satisfying .29/. The scalar product on the dual V _
1 of V1 is defined via the

conjugate linear isomorphism ˆWV1 ! V _
1 defined by the rule

.ˆ.v/; x/ WD hx; viV1
;

where .�;�/ denotes the evaluation pairing, and then setting

hv_
1 ; v

_
2 iV _

1
WD hˆ�1.v_

2 /; ˆ
�1.v_

1 /iV1
:
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The dual representation .V _
1; �

_
1/ is defined via

.�_
1.g/v

_; v/ WD .v_; v�1.g//I

regarding V _
1 as a right G.F1/-module via

v_�_
1.g/ WD �_

1.g
�1/v_;

it is easy to see that ˆ is G.F1/-equivariant if and only if �1.g/
_ D �1.g

�1/,

i.e. if and only if .V1; �1/ is unitary.

If we are given a character �1W G.F1/ ! C�, we may consider the represen-

tation .V1; �1�1/ D .V1; �1.�1//, defined by the rule

.�1�1/.g1/ WD �1.g1/�1.g1/:

Writing V _
1;�1

be the underlying space of �_
1, we can consider the orthogonal

decomposition

(30) V _
1 D V _

1;�1
D .��

F1
.�1//

_.�1/
H.F1/ ˚ .��

F1
.�1//

_.�1/
H.F1/;?.

The following definition will be of crucial importance in order to connect

automorphic forms and algebraic automorphic forms. Recall our fixed unitary and

continuous character !W ZG.A/

ZG.F /
! C�.

Definition 5.1. We say that a continuous character

NW G.A/ �! C�

with components

Nf WD NjG.Af / and N1 WD N1 WD NjG.F1/;

binds .V1; �1/ to ! if

� .Nf ;N1/ 2 X.G.Af /;G.F1/;Nf jZG.Af //, i.e. Nf N�1
1 W G.A/ ! C� is

trivial on G.F /;

� there is a continuous character !0W ZG.Af / ! C� with the property that

(31) !0!
�1
�1

D !Nf N�1
1 on ZG.A/ on ZG.A/

and .V1;N
�1
1 �1/, which has central character N�1

1 !�1
D !�1

1 , is a unitary

representation of G.F1/.

If there exists N which binds .V1; �1/ to !1, we say that .V1; �1/ belongs

to !.
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Remarks 5.2. (1) If N binds .V1; �1/ to! then .31/ determines!0 D !f Nf .

Conversely, if we only have !�1
�1

D !1N�1
1 and we define

!0W ZG.Af / �! C�; !0 WD !f Nf ;

then .31/ is satisfied. For this reason, if N binds .V1; �1/ to ! we will always

write !0 WD !f Nf .

(2) If .V1; �1/ belongs to!, then .31/ implies that!0!
�1
�1

is trivial on ZG.F /

and this is compatible with Remark 3.2 .2/ asserting that the space M.G.F1/;

�1; !0/ is non-zero only if !�1
.z1/ D !0.zf / for every z 2 ZG.F /.

(3) If N binds .V1; �1/ to !1 and !0 WD !f Nf , then

N�1
f WM.G.Af /; �1; !0/

�
�! M.G.Af /;N

�1
1 �1; !f /:

is an isomorphism by Remark 3.4 .1/.

(4) Suppose that ZG D ZG. If N binds .V1; �1/ to !1 and .V1; �1/ is

irreducible, then the equality N�1
1 !�1

D !�1
1 already implies that .V1;N

�1
1 �1/

is unitary thanks to .29/ because !�1
1 is and

ZG.F1/ D ZG.F1/ �! G.F1/ �!
G.F1/

G0.F1/

is an isogeny because G.F1/ is reductive.

(5) If .V1; �
u
1/ 2 Irru.G.F1/; !

�1
1 /, we may always take N D 1 and then

.V1; �
u
1/ belongs to any Hecke character such that !�1

�u
1

D!1 and !0 D!f .

Suppose that N binds .V1; �1/ to !. Recall the scalar product h�;�iV1
on

V1: our assumption that .V1;N
�1
1 �1/ is unitary means that

jN1.g1/j
�2 hv�1.g1/; w�1.g1/iV1

D hv.N�1
1 �1/.g1/; w.N

�1
1 �1/.g1/iV1

D hv; wiV1
.

(32)

It follows from Definition 5.1 and .32/ that the following result is in force.

Lemma 5.3. Suppose that .V1; �1/ belongs to ! and that

'1; '2 2 S.G.Af /=G.F /; �1=G.F /; !0/:

Then, for every z 2 ZG.Af / and 
 2 G.F /, we have the equality

jNf .zx
f /j
�2h'1.zx
f /; '2.zx
f /iV1

D jNf .x/j
�2h'1.x/; '2.x/iV1

.
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It follows from .7/ and 5.3 that, when .V1; �1/ belongs to !, the rule

h'1; '2i WD
R

ŒG.Af /� jNf .xf /j
�2h'1.xf /; '2.xf /iV1

d�ŒG.Af /�.xf /

makes sense for the measurable functions '1; '2 2S.G.Af /=G.F /; �1=G.F /; !0/.

We may therefore define the spaces L2.G.Af /=G.F /; �1=G.F /; !0/ in the usual

way, by taking the finite normed vectors in the completion of the quotient by

the kernel of h�;�i of the subset of measurable function on S.G.Af /=G.F /;

�1=G.F /; !0/. Since h'1g; '2gi D h'1; '2i for every g 2 G.Af /, we find a right

Hilbert space representation of G.Af /. Then

M.G.Af /; �1; !0/ � L2.G.Af /=G.F /; �1=G.F /; !0/

is a dense right G.Af /-submodule.

Since G.F1/=Z
G.F1/ is compact and G.F1/ a reductive Lie group, every ir-

reducible representation .V1; �1/ of G.F1/ is finite dimensional and can be writ-

ten as the product .V1; �1/ ' ��2XE=F ;C.V1;� ; �1;�/ where .V1;� ; �1;�/ is

an irreducible representation of G.F� / (uniquely determined up to isomorphism).

Here F� � C denotes the completion of F at �jF , so that F1 D
Q

�2XE=F
F�

canonically (once XE=F has been fixed) and

(33) G.F1/ D
Q

�2XE=F
G.F� / � GXE=F .C/.

This facts motivate the following definition, where .V1; �1/ could be any

continuous complex representation of G.F1/.

Definition 5.4. A model of .V1; �1/ overE is a family ¹.V� ; ��/º�2XE=F
of

algebraic representations .V� ; ��/ of G=E such that, setting

.V; �/ WD ��2XE=F ;E .V� ; ��/;

we have .V1; �1/ ' .VC; �C/ as representations of G.F1/ � GXE=F .C/ via .33/.

It is not difficult to see that every irreducible .V1; �1/ admits a model over

some finite field extension E=F (and we may take E such that G=E is split). This

definition applies to characters: a model of a character �1W G.F1/ ! C� is a

family of algebraic characters ¹�� W G=E ! Gm=E º with the property that, setting

� WD
Q

�2XE=F
�� , we have �CjG.F1/ D �1.

Suppose that ¹.V� ; ��/º�2XE=F
is a model of .V1; �1/ over E and that

¹��º�2XE=F
is a model of �1W G.F1/ ! C�. If .V; �/ and � are defined as above,

then we can consider p�1;�1 (resp. p�C;�C) comes from .30/ (resp. .28/ with

R D C).



58 M. Greenberg – M. A. Seveso

Lemma 5.5. Up to the identification V _
1 ' V _

C induced by .V1; �1/ '

.VC; �C/, we have p�1;�1 ' p�C;�C .

Proof. Since G.F1/=Z
G.F1/, the Schur orthogonality relations imply that

p�C;�C is the projection onto the isotypic �1-component. Then, using the fact that

we are working in characteristic zero and passing to the Lie algebras, the claim is

easily deduced. �

Suppose now that .�0; �/ 2 X.H.Af /;H
XE=F ; ��

Af
.!0//, implying that we

may consider the formal period integrals J
�1;�0;�
�F1

(resp. J
�C;�0;C;�C
�C

) .25/ ob-

tained from .30/ (resp. .28/).

Proposition 5.6. The identification .V1; �1/ ' .VC; �C/ induce isomor-

phisms of G.Af /-modules

M.G.Af /; �1; !0/ ' M.G; �; !0/.C/

and

MŒG.Af /; �1; !0� ' MŒG; �; !0�.C/.

The latter identifies J
�1;�0;�
�F1

' J
�C;�0;C;�C
�C

.

Proof. Recall that the morphism G.E/ ! GXE=F .R/ of .26/ was defined

so that it is induced by
Q

�2XE=F
� WE ! CXE=F when R D C. It follows

that its restriction to G.F / � G.E/ equals the canonical morphism G.F / !

G.F1/ followed by .33/. Hence the identification .V1; �1/ ' .VC; �C/ induces

a .G.Af /;G.F //-equivariant identification

S.G.Af /; �1; !0/ ' S.G.Af /; �C; !0/.

The two isomorphisms follows. Going back to .25/, we see that it suffices

to show that p�1;�1 ' p�C;�C via V _
1 ' V _

C in order to prove J
�1;�0;�
�F1

'

J
�C;�0;C;�C
�C

. Hence the claim follows from Lemma 5.5. �

6. The adelic Peter–Weyl theorem

Suppose that N binds .V1; �1/ to !, so that we write !0 D !f Nf (see Re-

mark 5.2 .1/), and let dN�1
1 �1;�G;1

be the formal degree of the representation

N�1
1 �1 with respect to �G;1. Recall that we write .V _

1; �
_
1/ for the dual left rep-

resentation. The following result is an application of the Peter–Weyl theorem and

Definition 5.1 (it generalizes [24, Theorem 1.3]).
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Proposition 6.1 (adelic Peter–Weyl theorem). Suppose that N binds .V1; �1/

to !. For every ƒ 2 V _
1 there is an injective map

f N
ƒ;� D f

N;�1

ƒ;� WL2.G.Af /=G.F /; �1=G.F /; !0/ ,�! L2.G.A/=G.F /; !/,

induced by the rule f N
ƒ;�.x/ WD .N�1

f
N1/.x/.ƒ; '.xf /x

�1
1 /, which has the follow-

ing properties.

.1/ For every u 2 G.Af /, it satisfies the rule

f N
ƒ;'u D Nf .u/f

N
ƒ;'u.

.2/ For every '1; '2 2 L2.G.Af /=G.F /; �1=G.F /; !0/, it holds the formula

hf N
ƒ;'1

; f N
ƒ;'2

i D
hƒ;ƒiV _

1

dN�1
1 �1;�G;1

h'1; '2i.

.3/ It induces an embedding

f N
ƒ;�WM.G.Af /; �1; !0/ ,�! A.G.A/; !/

and, setting MŒG.Af /; �1; !0� WD V _
1 ˝C M.G.Af /; �1; !0/, for varying

ƒs they induce the G.Af /-equivariant identification:

f N
�;�� D f N;�1

�;�� WMŒG.Af /; �1; !0�.N
�1
f /

�
�! A.G.A/; !/ŒN�1

1 �1�.

.4/ The above rules f �u
1

�;�� WD f N;�u
1

�;�� with N D 1 induce a G.Af /-equivariant

identifications

˚�u
1
f �u

1
�;�� W

L

�u
12Irru.G.F1/;!�1

1 /MŒG.Af /; �
u
1; !0 D !f �

�
�! A.G.A/; !/

and we have Im.f N;�1
�;�� / D Im.f �u

1
�;�� / when �u

1 D N�1
1 �1.

Proof. It follows from the Peter–Weyl theorem that, setting

 
�u

1

ƒ;v .x/ WD .ƒ; v�u
1.x1// for ƒ 2 �u_

1 and v 2 �u
1,

yields a .G.F1/;G.F1//-equivariant identification of Hilbert spaces (up to a

scalar factor on each component)

˚�u
1
 �u

1
��;� W

L

�u
12Irru.G.F1/;!�1

1 /.V
_

1; �
u_
1 /˝C .V1; �

u
1/

�
�! S1 -fin.G.F1/; !

�1
1 /,

(34)
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where the target denotes the subspace of right G.F1/-finite vectors in S.G.F1/;

!�1
1 /. More explicitly, the fact that ˚�u

1
 �u

1
��;� is an identification of Hilbert spaces

(up to a scalar factor on each component) means that the spaces indexed by

different �u
1s are orthogonal, while d�u

1;�G;1
2 R�

>0 is defined so that

(35)
R

G.F1/=ZG.F1/  
�u

1

ƒ1;v1
.x1/ 

�u
1

ƒ2;v2
.x1/d�G;1.x1/ D

hƒ1; ƒ2iV _
1

hv1; v2iV1

d�u
1;�G;1

for v1; v2 2 �u
1 and ƒ1; ƒ1 2 �u_

1 . Since G.F1/=Z
G.F1/ is compact, every

irreducible and unitary representation is finite dimensional and it is a well known

fact that an element of S.G.F1/; !1/ is right (or left) G.F1/-finite if and only if

it is the matrix coefficient of a finite dimensional representation. Next one remarks

that (see Remark 5.2 .1/)

(36) f ƒ;N
' D  

N�1
1 �1

ƒ;� ı .N�1
f '/

and check that

(37) f ƒ;N
g'u D Nf .u/.Nf N�1

1 /.g/gf ƒ;N
' u

for every .g; u/ 2 G.A/� G.Af / using Definition 5.1. Since .Nf N�1
1 /.g/ D 1 for

g 2 G.F / one finds

S.G.Af /=G.F /; �1=G.F /; !0/ ,�! S1-fin.G.A/=G.F /; !/

The continuity of Nf and .37/ give the inclusion in .3/ after applying .�/K. Taking

the completion gives the map f ƒ;N
� between theL2-spaces and .2/, in view of .35/

(which also implies the injectivity of f ƒ;N
� ). In order to prove .4/, from which

.3/ follows, we may assume that N D 1 thanks to .36/, so that f
ƒ;N

' D  
�u

1

ƒ;�

with �u
1 WD N�1

1 �1. Applying .S.G.Af /;�/
.G.F /;1//K to .34/ and employing

Lemma 3.6 .1/ in order to express the left hand side, the claim is reduced to the

obvious

M.G.Af /; S
1 -fin.G.F1/; !

�1
1 /; !f / D A.G.A/; !/. �

7. Period integrals and their algebraicity

As usual, suppose that N binds .V1; �1/ to ! and recall our morphism of

algebraic groups �W H ! G and !�W H.A/ ! C� such that !� is trivial

on H.F / and !
�

jZH.A/
D ! ı �AjZH.A/. We set N� WD N ı �A and use the

shorthands !�� WD .!�/�1 and N�� WD .N�/�1. In this section we prove

“m�1
ZHnH;1

I� ' JF1
”: the first step consists of expressing the projection p�1;�1
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arising from .30/ in case �1 D !
��
1 N

�
1 in terms of integration. To this end we

focus on the local period integral

I�;1WL2.ZG.F1/nG.F1/; !
�1
1 / �! C

defined by the rule

I�;1.f / WD
R

ZH.F1/nH.F1/
f .�.x1//!

�
1.x1/d�ZHnH;1.x1/.

It is well defined because x1 7! f .�.x1//!
�
1.x1/ is invariant under ZH.F1/.

The above formula defines a linear functional which satisfies the H.F1/-equiv-

ariance property

(38) I�;1.f �.h// D !��
1 .h/I�;1.f / for every h 2 H.F1/.

Recall the embedding

 
N�1

1 �1

ƒ;� W .V1;N
�1
1 �1/ ,�! L2.G.F1/; !

�1
1 /

(see .34/) and define

r� WD I�;1 ı  
N�1

1 �1

ƒ;� WV _
1;�1

�! V _
1;�1

,

i.e.

r�.ƒ/.v/ WD I�;1. 
N�1

1 �1

ƒ;v /.

Lemma 7.1. The map r� induces

mZHnH;1p
�1;!

��
1 N

�
1 WV _

1;�1

�! HomH.F1/.!
�
1N��

1 �1;C/ D .��
F1
.�1//

_.!��
1 N�

1/
H.F1/,

i.e. we have

r�.ƒ/ D

´

mZHnH;1ƒ if ƒ 2 .��
F1
.�1//

_.!
��
1 N

�
1/

H.F1/,

0 if ƒ 2 .��
F1
.�1//

_.!
��
1 N

�
1/

H.F1/;?.

Proof. The embedding  
N�1

1 �1

ƒ;� is �.H.F1//-equivariant and then .38/ im-

plies that

I�;1 ı  
N�1

1 �1

ƒ;� 2 HomH.F1/.!
�
1N�1

1 �1;C/.

Suppose that ƒ� 2 HomH.F1/.!
�
1N�1

1 �1;C/, meaning that

(39) .N�1
1 �1/.�.x1//ƒ� D !

�
1.x1/ƒ�.
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Using .39/ and exploring the definition of  
N�1

1 �1

ƒ�;v , we find

 
N�1

1 �1

ƒ�;v .�.x1// D  
N�1

1 �1

.N�1
1 �1/.�.x1//ƒ�;v

.1/

D !1.�.x1// 
N�1

1 �1

ƒ�;v .1/

D !1.�.x1//.ƒ�; v/.

It easily follows that

r�.ƒ�/.v/ D I�;1. 
N�1

1 �1

ƒ�;v / D �ZHnH;1.PHZH.F1// � .ƒ�; v/,

proving that r� D �ZHnH;1.PHZH.F1// � 1 on HomH.F1/.!
�
1N�1

1 �1;C/.

Using the fact that �H;1 is both right and left invariant, one checks that r� is

H.F1/-equivariant. Consider the orthogonal decomposition of the H.F1/-repre-

sentation

V _
1;�1

D .��
F1
.�1//

_.!��
1 N�

1/
H.F1/ ˚ .��

F1
.�1//

_.!��
1 N�

1/
H.F1/;?.

The irreducible representations appearing in the orthogonal complement are not

isomorphic to the representation .��
F1
.�1//

_.!
��
1 N

�
1/

H.F1/, because this latter

is an H.F1/-isotypic component. The H.F1/-equivariance of r�, which maps to

.��
F1
.�1//

_.!
��
1 N

�
1/

H.F1/, implies that r� D 0 on HomH.F1/.!
�
1N�1

1 �1;C/
?.

�

Recall the G.Af /-equivariant identification

f N;�1
�;�� WMŒG.Af /; �1; !0�.N

�1
f /

�
�! A.G.A/; !/ŒN�1

1 �1�

from Proposition 6.1 .3/. Since N binds .V1; �1/ to !, one easily checks that

.!
�

f
N

�

f
; !��

1 N�
1/ 2 X.H.Af /;H.F1/; �

�
Af
.!0//.

Let us write J
�1;!

�

f
N

�

f
;!

��
1 N

�
1

�F1
for the period morphism .25/ obtained from .30/

with .�0; �1/ D .!
�

f
N

�

f
; !

��
1 N

�
1/. The following result expresses I� ı f �N;�1

�;��

in terms of J
�1;!

�

f
N

�

f
;!

��
1 N

�
1

�F1
, thus characterizing the restriction of I� to the

N�1
1 �1-isotypic component of A.G.A/; !/.

Theorem 7.2. We have .!
�

f
N

�

f
; !

��
1 N

�
1/ 2 X.H.Af /;H.F1/; �

�
Af
.!0// and

I� ı f �N;�1
�;�� D mZHnH;1 � J

�1;!
�

f
N

�

f
;!

��
1 N

�
1

�F1
.
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Proof. We may applying .7/ to H and we find, also using .36/,

I�.f
N;�1

ƒ;' / D
R

ŒH.Af /�
ZH
I1!

�1
f .�.xf //d�ŒH.Af /�.xf /,

where

I1 D
R

ZH.F1/nH.F1/  
N�1

1 �1

ƒ;.N�1
f

'/.�.xf //
.�.x�1

1 //!1.�.x
�1
1 //d�H;1.x1/

D
R

ZH.F1/nH.F1/  
N�1

1 �1

ƒ;.N�1
f

'/.�.xf //
.�.x1//!1.�.x1//d�H;1.x1/.

Here we used�H;1.x1/ D �H;1.x
�1
1 / by unimodularity of H.F1/=Z

H.F1/.

By definition this is I�;1. 
N�1

1 �1

ƒ;.N�1
f

'/.�.xf //
/, so that we find

I1 D r�.ƒ/..N
�1
f '/.�.xf ///

D N�1
f .�.xf //r�.ƒ/.'.�.xf ///.

Hence we find

I�.f
N;�1

ƒ;' /

D
R

ŒH.Af /�
ZH
r�.ƒ/.'.�.xf ///!

�1
f .�.xf //N

�1
f .�.xf //d�ŒH.Af /�

ZH
.xf /.

Applying Lemma 7.1 gives the claim, thanks to Lemma 3.7 .4/. �

If ¹.V� ; ��/º�2XE0=F
is a model over E of .V1; �1/, we set

.V; �/ WD ��2XE=F ;E .V� ; ��/:

We can now prove “m�1
ZHnH;1

I� ' JF1
' JC.”

Corollary 7.3. LetE=Q be a Galois extension such that !0W ZG.Af / ! E�,

that ¹.V� ; ��/º�2XE=F
is a model of .V1; �1/ overE and that ¹.!��N�/� º�2XE=F

is a model of !
��
1 N

�
1 over E. Then .V1; �1/ ' .VC; �C/ provided by Defini-

tion 5.4 induces an isomorphism of G.Af /-modules

M.G.Af /; �1; !0/ ' M.G; �; !0/.C/

and

MŒG.Af /; �1; !0� ' MŒG; �; !0�.C/.

Using this identification, the morphism m�1
ZnH;1

I� ı f
��;N

�;�1
extends to the mor-

phism of functors

J
�;!

�

f
N

�

f
;.!��N�/

XE=F

� WMŒG; �; !0� �! A1
=E

of Proposition 4.1.
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Proof. Set �1 D !
��
1 N

�
1 and � WD

Q

�2XE=F
.!��N�/� , so that �CjH.F1/ D

�1. Then Proposition 4.1 gives the morphism of functors and the claim follows

from Proposition 5.6 and Theorem 7.2. �

7.1 – The rationality of the period integrals

Recall that SG � ZG denotes the maximal split torus in the center of G.

Let � W G ! S0
G

be the maximal quotient of G which is a split torus. Then

'GW SG ! G ! S0
G

is an isogeny of tori and we define G1 WD ker.�/. Recall

our given � and define Z� WD ��1.ZG/ \ ZH � ZH. We specialize the setting

pictured just after .8/ to the case where

.H;ZH/ with SH � ZH � Z� and .G;ZG/ D .G;ZG/.

Furthermore, we suppose that F is totally real (see Remark 2.1).

Also, we fix an extension E=F such that G=E is a split reductive group and

E=Q is Galois: we also fix a set XE=F of embeddings � WE ,! C extending the

(classes of) archimedean places of F . Recall that we view C as an E-algebra

via �1WE ,! C (see .26/ and the discussion around there for the notations).

If .V1; �1/ 2 Rep.G.F1// (resp. .V; �/ 2 Rep.G
XE=F

=E
/) has central character

!�1
(resp. !�), we call !s

�1
WD !�1jSG.F1/ (resp. !s

� WD !�jSG
) the split central

character of the representation.

Definition 7.4. Suppose that .V1; �1/ 2 Rep.G.F1//. We say that it is

pseudo-algebraic if !s
�1

has a model over F , i.e. if there is a family of algebraic

characters ¹!� W SG ! Gmº�2XE=F
with the property that, setting

! WD ��2XE=F
!� W S

XE=F

G
�! Gm;

we have !CjSG.F1/ D !s
�1

, where .33/W SG.F1/ � S
XE=F

G
.C/. We say that it is

parallel (resp. even) if it is pseudo-algebraic and !� D !�1
for every � 2 XE=F ,

i.e. ! has all the components which are equal in X�.S
XE=F

G / D X�.SG/
XE=F

(resp. ! is a square in X�.S
XE=F

G
/ D X�.SG/

XE=F ).

Consider the (normalized) absolute value functions

j�jv WF �
v �! R�

C;

j�jAf
WA�

f �! Q�
C;

j�jA WA� �! R�
C:
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Setting

N WD j�j
�1
Af

j�j1 W Gm.A/ �! C�

gives a function such that Nf N�1
1 D j�j

�1
A is trivial on Gm.F / by the product

formula. Suppose that �W G ! Gm is an algebraic character and that � WR� ! G

is a character. Then we define ��W G.R/
�R
! R� �

! G. In particular, we have the

continuous character

N�W G.A/
�A

�! A� N
�! R�

C

and, recalling that Nf D j�j
�1
Af

and N1 D j�j1,

N�;f W G.Af /
�Af

�! A�
f

j�j�1
Af

�! Q�
C

and

N�;1W G.F1/
�1
�! F �

1

j�j1
�! R�

C.

Of course N�;f (resp. N�;1) is the finite adele (resp. 1) component of N�, as

suggested by the notation. If �WQ�
C ! R� is a character (that we usually write

exponentially r 7! r�), we can also define

N�
�;f W G.Af /

N�;f

�! Q�
C

�
�! R�

Note that �1.G.F1// D �1.G.F1/
ı/ � R�

C, implying that �F .G.F // � F �
C

and we may consider �� WD � ı NF=Q ı �F . If V D .V; �/ is a representation of

G.F1/ with coefficients in R, we write V.��/ D .V; �.��// for the representation

�.��/.g/.v/ WD ��.g/�.g/v.

Remark 7.5. The continuous character N� is such that N�;f N�1
�;1 is trivial

on G.F / and we have

N�
�;f 2 M.G.Af /; R.��/;N

�
�;f jZG.Af //

K

for every open and compact K 2 K.

Proof. This is an application of the product formula and the fact that we have

�F .G.F // � F �
C . �



66 M. Greenberg – M. A. Seveso

The main result that we want to prove in this §7.1 is the following.

Theorem 7.6. Suppose that H.F1/ and G.F1/ are connected and that F is

totally real.

.1/ The association

��2XE=F ;E .V� ; ��/ D .V; �/ 7�! .VC; �CjG.F1//

obtained from .33/W G.F1/ � GXE=F .C/ induces an injection
Y

�2XE=F

Irr.G=E / D Irr.G
XE=F

=E
/ ,! Irr.G.F1//

and this is a bijection when G.F1/ is compact, which happens if and only if

SG D ¹1º.

.2/ If Œ.V1; �1/� 2 Irr.G.F1// we have that Œ.V1; �1/� belongs to the im-

age of the map in .1/ if and only if it is pseudo-algebraic. In this case,

ı�1
W G.F1/ ! C� has a model over F , i.e. there is a family

¹�� D ��1;� W G �! Gmº�2XE=F

with the property that, setting

� WD ��2XE=F
�� W GXE=F �! Gm;

we have

�CjG.F1/ D ı�1
:

.3/ If Œ.V1; �1/� 2 Irr.G.F1// is parallel, taking N D N1=2
��1;�1

W G.A/ ! R�
C

we have N1=2
��1;�1 ;1 D ı

1=2
�1

and N binds .V1; �1/ to ! (see Definition 5.1)

for every unitary Hecke character!W
ZG.A/

ZG.F /
! C� such that !1 D !�1

�1
ı

1=2
�1

.

Suppose that Œ.V1; �1/� 2 Irr.G.F1// is parallel, that .V1; �1 ı �1/ 2

Rep.H.F1// is even and that the extension!�W H.A/ ! C� of!ı�AjZH.A/ is such

that!
�
1 2 Irr.H.F1// is pseudo-algebraic ( for example because!ı�AjZH.A/ D 1

and we take !� D 1). Then mZHnH;1.PHZH.F1//
�1I� ı f

��;N
1=2
��1;�1

�;�1
extends to

the morphism of functors

J
�;!

�

f
N

1=2;�
��1;�1

;.!���
�;1=2
�1 /

XE=F

� WMŒG; �; !0�=E.!0/ �! A1
=E.!0/

of Proposition 4.1 with !0 D !f N
1=2

��1;�1 ;f
and E.!0/ D E.!f / obtained from

E adding the values of either !0 or !f as in .3/. If .V1; �1/ and !
�
1 have models

over E 0=Q Galois with F � E 0 � E, then we can descend to E 0.!0/.
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Before proving the result we make the following remark.

Remark 7.7. Let F be totally real in the following observations.

.1/ If �W H ! G is an algebraic subgroup then ��1.SG/ D SH and ��1.G.F // D

H.F /. In particular, when .G; SG/ satisfies the assumptions (A1)–(A3), it

follows that .H; SH/ satisfies the assumptions (A1)–(A3) and SH D ZH� Z�.

In other words, Theorem 7.6 applies in this case with ZH D SH simply

assuming that .G; SG/ satisfies (A1)–(A3) and that H.F1/ and G.F1/ are

connected.

.2/ When .G; SG/ satisfies (A1)–(A3), and G.F1/ is compact, i.e. SG D ¹1º (for

example because ZG is finite, under (A1) for .G; SG/), every Œ.V1; �1/� 2

Irr.G.F1// is even and parallel. Furthermore, G.F1/ � GXE=F .C/ is

a maximal compact subgroup which is therefore connected because its

complexification GXE=F .C/ is connected (see the proof of the following

Lemma 7.8 .2/). Hence assuming that �W H ! G is an algebraic subgroup,

Theorem 7.6 applies removing all references to being even or parallel and the

connectedness assumptions.

.3/ When �W H ! G is the diagonal immersion in the product of totally definite

quaternion algebra over a totally real field F , Theorem 7.6 applies.

Fix T � B � G=E , where T (resp. B) is a split maximal torus over E

(resp. a Borel subgroup defined over E). We write N � B for the maximal

unipotent subgroup. Let K � GXE=F .C/ be a maximal compact (Lie) subgroup.

The Borel–Weil theorem implies that the representation theory of G
XE=F

=E
and K

are obtained as follows (see for example [25, Chapter VII, §7] and [22, Part II,

§5] for an algebraic point of view). For every dominant weight � of G
XE=F

=E
, we

may naturally extend it to a morphism �W BXE=F ! Gm by setting �.n/ D 1 for

every n 2 NXE=F . Then we can form the BXE=F -equivariant sheaf O
G

XE=F

=E

.�/ on

G
XE=F

=E
, which is simply O

G
XE=F

=E

endowed with the BXE=F -action defined by the

rule

.f b/.x/ WD b�1 �� f .bx/ D �.b/�1f .bx/:

Consider the quotient � W G
XE=F

=E
! BXE=F nG

XE=F

=E
and let O=E .�/ be the sheaf

on BXE=F nG
XE=F

=E
which corresponds to O

G
XE=F

=E

.�/, i.e. the sheaf defined by the

rule

O=E .�/.U / WD �.��1.U /;O
G

XE=F

=E

.�//B
XE=F

:
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Setting

P�;R WD �.B
XE=F

=R
nG

XE=F

=R
;O=R.�//

for every E-algebra R, yields a left irreducible algebraic representation P� of

G
XE=F

=E
by right translations .gf /.x/ WD f .xg/: it has highest weight � and central

character !� D �jZ
G

XE=F
=E

. Since we work with right representations, we let L� be

the dual representation with right action .ƒg/.f / WD ƒ.gf /: it has highest weight

� and central character !� D �jZ
G

XE=F
=E

. Note that L�;C is the C-dual of

P�;C D ¹f 2 O
G

XE=F

=C

.G
XE=F

=C
/W for all b 2 BXE=F .C/; f .bx/ D �.b/f .x/º.

Furthermore, T WD K \ BXE=F .C/ is a maximal connected commutative Lie sub-

group and the inclusionK � GXE=F .C/ induces T nK
�
! BXE=F .C/nGXE=F .C/.

The choice of a Haar measure�K onK fixes aK-invariant Hermitian scalar prod-

uct on P�;C by the rule

hf1; f2i� WD
R

K f1.x/f2.x/d�K.x/.

Letting ˆWP�;C ! V�;C be the conjugate linear morphism .ˆ.v/; x/ WD hx; vi�,

we transport h�;�i� to a pairing Hermitian scalar product on V�;C by the rule

hv_
1 ; v

_
2 i� WD hˆ�1.v_

2 /; ˆ
�1.v_

1 /i� (as we did before Definition 5.1). Then

hvk; wki� D hv; wi� for every k 2 K. The Borel–Weil theorem asserts that the

association � 7! L� (resp. � 7! .L�;CjK ; h�;�i�/) realizes a bijection of the set

of dominant weight with (an explicit) set of representatives for Irr.G
XE=F

=E
/ (resp.

Irr.K/). In particular, .V; �/ 7! .VC; �CjK/ is a bijection

(40) Irr.G
XE=F

=E
/

�
�! Irr.K/.

We now need the following result.

Lemma 7.8. The following facts hold.

.1/ The morphism of algebraic groups SG � G1 ! G defined on points by the

rule .s; g1/ 7! sg1 is an epimorphism of fppf sheaves whose kernel is a finite

group. Furthermore, it induces an isomorphism

SG.F1/
ı � G1.F1/ �! G.F1/:

.2/ The inclusion .33/W G1.F1/ � G
XE=F

1 .C/ makes G1.F1/ a maximal com-

pact subgroup of G
XE=F

1 .C/ and G
XE=F

1 is connected and reductive.
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Proof. The first statement is a formal consequence of the fact that 'G is an

isogeny and G.F1/ D G.F1/
ı. We remark that, if K is an algebraic group over R

such that K.R/ is compact, then K.R/ � K.C/ is the complexification of the real

Lie group K.R/ and then it is known that K.R/ is connected if and only if K.C/ is

connected, meaning that K is connected (by [27, Aside 2.45 (a)]). It follows from

.1/ that G.F1/
SG.F1/

! G1.F1/ is a continuous surjection (indeed an isomorphism):

hence G1.F1/ is connected and, thanks to (A1) for .G; SG/, it is also compact.

But we have G1.F1/ D G
XE=F

1 .R/ (because F is totally real); the above remark

implies that G1.F1/ � G
XE=F

1 .C/ is the complexification of G1.F1/ and that

G
XE=F

1 is connected. It is obviously reductive and we are done. �

Corollary 7.9. Suppose that the representation .V; �/ 2 Rep.G
XE=F

=E
/ (resp.

.V1; �1/ 2 Rep.G.F1//) is irreducible.

.1/ If .V; �/ 2 Rep.G
XE=F

=E
/ (resp. .V1; �1/ 2 Rep.G.F1//) is an irre-

ducible representation, the representation is still irreducible when restricted

to G
XE=F

1=E
(resp. G1.F1/).

.2/ If .V1; �1/ 2 Rep.G.F1//, then there is � 2 Rep.G
XE=F

=C
/ such that

�CjG.F1/ D �1, in short �1“2 Rep.G
XE=F

=C
/,” if and only if �1jG1.F1/“2

Rep.G
XE=F

=C
/” and !s

�1
WD �1jSG.F1/“2 Rep.S

XE=F

G=C
/.”

.3/ If .V; �/; .V 0; �0/ 2 Rep.G
XE=F

=C
/ and �CjG.F1/ D �0

CjG.F1/
then � D �0.

Proof. Claim .1/ follows from Lemma 7.8 .1/ and the fact that S
XE=F

G (resp.

SG.F1/) acts by means of the central character on an irreducible representation.

In order to prove .2/, suppose that we are given a morphism f W H ! G of algebraic

groups over R which is an epimorphism of fppf sheaves whose kernel is a finite

group which is still surjective when taking the real points. Let �1W G.R/ !

GLn.C/ be a morphism of real Lie groups which pull-back to �1 ı f W H.R/ !

GLn.C/ which is algebraic: we claim that f is algebraic. We recall that, for

an algebraic group K over R, we have that K.R/ � K.C/ is the algebraic

complexification, meaning that we have

(41) HomC -a lg-gr.K.C/;GLn.C// D HomR -a lg-gr.K.R/;GLn.C//.

The identification is a consequence of the universal property of ResC=R.GLn;R/

after identifying a morphism of schemes with the morphism induced on points

(by smoothness of K in characteristic zero). Taking K D H, it follows that there
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is a unique algebraic �f W H.C/ ! GLn.C/ such that �f jH.R/ D �1 ı fR. We

claim that �f jk er.f /.C/ D 1. Once this result has been proved, we will deduce that

there is a unique algebraic morphism �W G.C/ ! GLn.C/ such that � ı f D �f .

Since fR is surjective, �CjG.R/ ı fR D �f jH.R/ D �1 ı fR will imply that

�1 D �CjG.R/ is algebraic. But �f j k er.f /.C/ 2 HomC -a lg-gr.H.C/;GLn.C//

maps to �f j k er.f /.R/ D �1 ı fRjk er.f /.R/ D 1 and .41/ implies �f j k er.f /.C/ D

1 as wanted. It follows from Lemma 7.8 .1/ that we can apply this result to

S
XE=F

G
� G

XE=F

1 ! GXE=F ; since F is totally real, the real points of these groups

H are .33/W H.F1/ D HXE=F .R/ � HXE=F .C/. Claim .3/ is clear from .41/. �

We can now prove .1/ and the first statement in .2/ of Theorem 7.6. First of

all, if .V; �/ 2 Rep.G
XE=F

=E
/ then we know from Corollary 7.9 .1/ that �

jG
XE=F

1=E

is still irreducible. It follows from Lemma 7.8 .2/ that we may apply .40/ with

K D G1.F1/ � G
XE=F

1 .C/ and we deduce that �CjG1.F1/ is irreducible. Then

�CjG1.F1/ is irreducible a fortiori. Hence the map � 7! �CjG.F1/ induces a map

between the irreducible classes. The fact that it is injective follows from Corollary

7.9 .3/. The characterization of its image follows from Corollary 7.9 .2/, since the

condition �1jG1.F1/“2 Rep.G
XE=F

1=C
/” is free; indeed, we may apply .40/ with

K D G1.F1/ � G
XE=F

1 .C/, thanks to Lemma 7.8 .2/. Finally, the equivalence

between G.F1/ being compact and SG D ¹1º follows from Lemma 7.8 .1/.

As remarked G1.F1/ is compact. Hence (we may assume) G1.F1/ � K:

writing every element g 2 G.F1/ in the form g D sgg1 with .sg ; g1/ 2

SG.F1/
ı � G1.F1/, as granted by Lemma 7.8 .1/, we see that hf1g; f2gi� D

ˇ

ˇ!�.sg /
ˇ

ˇ

2
hf1; f2i�. Since F is totally real it is easy to see that !�.sg/

2 2 R�
C,

so that
ˇ

ˇ!�.sg/
ˇ

ˇ

2
D !�.sg /

2. But for an arbitrary element z 2 SG.F1/ we

have z2 2 SG.F1/
ı, so that one finds !�.sz/

2 D !2
�
.z/. It follows that, setting

�1 WD �CjG.F1/, we have ı�1jG1.F1/
D 1“2 Rep.G

XE=F

1=C
/” and ı�1jSG.F1/ D

!2

�jS
XE=F

G

“2 Rep.S
XE=F

G=C
/.” Corollary 7.9 .2/ yields ı�1

“2 Rep.G
XE=F

=C
/.” This is

the second second statement in .2/, once we remark that ı�1
“2 Rep.GXE=F /,”

because its pull-back .1; !2

�jS
XE=F

G

/ is defined over F and S
XE=F

G � G
XE=F

1 !

GXE=F is an fppf quotient over F . When .V1; �1/ is parallel, it is easy to deduce

that � is parallel. This fact implies that ��1;1 D �jG.F1/. Since ��1;1.G.F1// D

��1;1.G.F1/
ı/ � R�

C, we have N��1 ;1 D ��1;1. It follows that N��1 ;1 D

�CjG.F1/ D ı�1
. Since ı

�1=2
�1

�1 is unitary, the statement .3/ follows from

Remark 7.5.
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Finally, the last statement of Theorem 7.6 follows from Corollary 7.3, as far

as we know that !
��
1 N1=2;�

��1;�1 ;1 has a model over E, since then all assump-

tions required for its application are satisfied, thanks to .3/. If � is a represen-

tation of G.F1/ or Z
XE=F

G
, let us abusively write �jSG.F1/ or �

jS
XE=F

H

to mean

the restriction of � ı �: it makes sense because SH � Z� . Since �1 ı �1 is

even, we have .ı
1=2

�1jSH.F1/
/2 D !2

�jS
XE=F

H

with !
�jS

XE=F

H

D .!1=2/2 for some

!1=2 2 X�.S
XE=F

H
/. We deduce ı

1=2

�1jSH.F1/
D !

�jS
XE=F

H

“ 2 Rep.S
XE=F

H=C
/” be-

cause ı
1=2
�1
.SH.F1// � R�

C and !�.SH.F1// � R�
C in light of !

�jS
XE=F

H

D

.!1=2/2. Another application of Corollary 7.9 .2/ as above yields ı
1=2
�1

ı �1“2

Rep.HXE=F /.” This means that there is some ��;1=2W HXE=F ! Gm such that

� ı � D .��;1=2/2. But then we see that .�
�;1=2

CjH.F1/
/2 D N�

��1;�1 ;1; since

both �
�;1=2

CjH.F1/
and N�

��1;�1 ;1 takes values in R�
C, we deduce that �

�;1=2

CjH.F1/
D

N�;1=2
��1;�1 ;1 D N1=2;�

��1;�1 ;1. This means that N1=2;�
��1;�1 ;1 has a model over F and

we are done.

7.2 – Proof of Theorem C of the introduction

Here we prove Theorem C of the introduction assuming that F D Q to sim-

plify a bit the notations. Recall that we have fixed E.�;Ad/ � C and that

we write x 7! Nx for the induced complex conjugation on x. We also set

E�.�/ WD E.�;Ad/E.�;Ad/ and, for an E�.�/-vector space, we write xV for

the conjugate vector space. We sketch the proof, leaving to the reader the proofs

of the following .42/, .43/, and Remark 7.10.

In the paper we have defined a global sub E�.�/ŒG.Af / � G.Q/�-module

�E�.�/ of � D �f ˝ �1, namely �E�.�/ WD MŒG; �; !0�.E.!f //Œ�� (see Propo-

sition 4.1), such that C ˝E�.�/ �E�.�/ ' � and C ˝E�.�/ � ' �1. An alge-

braic argument shows that there are E�.�/ŒG.Qv/�-submodules �E�.�/;v � �v

such that �v ' C˝E�.�/�E�.�/;v for every finite v with the property that, as

E�.�/ŒG.Af / � G.Q/�-modules,

(42) �E�.�/ '
�

N0
E�.�/;v<1 �E�.�/;v

�

˝E�.�/ �.

Furthermore, it follows from Theorem 7.2 applied to the diagonal G � G � G

(and ZG D ZG) that the Petersson inner product h�;�i� on � is the base change

of h�;�i�E�.�/
W�E�.�/ ˝E�.�/ �E�.�/ ! E�.�/. Since �E�.�/ is irreducible

(because � is), we can write

(43) h�;�i�E�.�/
D

N0
E�.�/;vh�;�i�E�.�/;v
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where h�;�i�E�.�/;v
W�E�.�/;v ˝E�.�/ �E�.�/;v ! E�.�/ is G.Qv/-invariant

(resp. G.Q/-invariant) for finite v (resp. v D 1). Recall that, since H.R/ is

compact, ZH D SH D ¹1º.

Remark 7.10. Let �H.A/,�H.Af / and�H;1be any measures on H.A/, H.Af /

and H.R/ such that �H.A/ D �H.Af / � �H;1. Then .7/ is satisfied by the couple

.H; ¹1º/ and, when �H.Af /.K/ 2 Q for some (and hence every) K 2 K.H.Af //,

then �H.R/.H.R// � �H.A/=H.Q/.H.A/=H.Q//.

Let �H.A/ be the Tamagawa measure, choose local measures �H;v at the finite

primes so that �H.Af / D
Q

v<1 �H;v and �H.Af /.K/ 2 Q for some (and hence

every) K 2 K.H.Af // by imposing a similar local conditions �H.Qv/.Kv/ 2 Q

for Kv 2 K.H.Qv// and fix �H;1 so that �H.A/ D �H.Af / � �H;1. Then it

follows from Remark 7.10 that the the normalizations imposed on the couple

.H; ¹1º/ after .7/ are satisfied. Since H WD N Ì GW , we may further suppose

that �GW .A/ D
Q

v �GW ;v with �GW .A/ the Tamagawa measure. It follows from

�GW .A/ D
Q

v �GW ;v with �GW .A/ the Tamagawa measure and .43/ that .5/ is in

force (see [26, Remark 2.6]).

We embed �E�.�/ in the space of automorphic forms via f N
ƒ;� with ƒ 2

�E�.�/ ' �E�.�/ which is non-zero and H.Q/-invariant (the ' because we are in

a self-dual situation, since G.R/ is compact). Note that the non-zero ƒ exists,

unique up to a non-zero constant, thanks to .3/ at v D 1, because we have

the equality there thanks to G D G0
� . If follows from .42/ that a E�.�/-rational

global test vector can be chosen so that f D .˝0
v<1fv/ ˝ ƒ is a pure tensor

of E�.�/-rational local test vectors fv . Thus, the matrix coefficients of fv with

respect to the E�.�/-rational H.Qv/-invariant bilinear pairing h�;�i�E�.�/;v
are

E�.�/-valued. We have

˛v.fv/ D
Lv.1; �V ;Ad/Lv.1; �W ;Ad/

Lv.1=2; �V � �W /�GV ;v

Iv.fv/,

where Iv.fv/ is the (stable) matrix coefficient [26, .2:2/] and Iv.fv/ 2 C� because

fv is a local test vector (note that our ˛v is denoted ˛
\
v in loc.cit.). Let S� be

the set of bad primes (i.e. not good according to [26, After Theorem 2.1]). Since

�
Kv
v ' C˝E�.�/�

Kv

E�.�/;v
, according to [26, Conjecture 2.3] (that we assume)

and [26, Theorem 2.2] with Kv D K0;v � K2;v in loc. cit., we may assume that

˛v.fv/ D 1 for every v … S� . Let us suppose for the moment that, at finite v 2 S� ,

we have Iv.fv/ 2 E.�/ and, hence Iv.fv/; ˛v.fv/ 2 E�.�/�. At v D 1, we have

that f1 D ƒ is H.R/-invariant (by density of H.Q/ � H.R/) and we notice that
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(cf. [26, Proposition 3.15] to see that ˛1 can be defined as above in our case)

˛1.f1/ D
L1.1; �V ;Ad/L1.1; �W ;Ad/

L1.1=2; �V � �W /�GV ;1

hf1; f1i2
�E�.�/;v

�H;1.H.R//

�
L1.1; �V ;Ad/L1.1; �W ;Ad/

L1.1=2; �V � �W /�GV ;1

�H;1.H.R//.

The result now follows from Theorem A of the introduction, in view of .5/ and

�H.R/.H.R// � �H.A/=H.Q/.H.A/=H.Q// 2 Q� (Tamagawa number conjecture).

It remains to explain our assumption Iv.fv/ 2 E.�/. We remark that the global

model of � D �V ��W is indeed the tensor product of models of �V and �W . We

can repeat the above consideration componentwisely and decompose both f , the

fvs, h�;�i�E�.�/
and the h�;�i�E�.�/;vs as a tensor product of their analogues for

�V and �W . Then (see [26, .2:2/]), we have to integrate the function cfv
defined

by the formula

cfv
.hv/ WD h�E�.�/;v.hv/fv; fvi�E�.�/;v

D h�V;E�.�/;v.hv/fV;v; fV;vi�E�.�/;v

h�W;E�.�/;v.hv/fW;v; fW;vi�E�.�/;v

on H.Qv/ D N.Qv/ Ì GW .Qv/, where N.Qv/ acts via the projection to GW .Qv/

on �W;v. On N.Qv/ the integral is stable and, if we assume that �V;vjGW .Qv/ or

�W;v are compactly supported, then [26, .2:2/] is reduced to a Q-linear combi-

nation of integrals of matrix coefficients over GW .Qv/ (see [26, pag. 16]). Then,

because �H.Qv/.Kv/ 2 Q forKv 2 K.H.Qv//, the integral is a sum of integrals of

compactly supported locally constant functions and it is therefore a Q-linear com-

bination of values cfv
.hv/ 2 E�.�/. In general, without making any assumption

on the support of the matrix coefficients, we can conclude as follows. Because

G.R/ is compact, we are in case r D 0 (see Remark 1.2) and, hence, the proof

of [28, §1.7 Lemme] (which also works in the unitary case, as remarked in [15,

§4.1.5]) shows how to reduce the integral Iv.fv/ to a Q-linear combination of val-

ues in E�.�/, using the fact that cfv
.hv/ 2 E�.�/.

8. Examples

Let B be a definite quaternion division Q-algebra and let B (resp. B�) be the

associated ring scheme (resp. algebraic group). We set Bf WD B.Af / (resp.

B�
f

WD B�.Af /) and Bv D B.Qv/ (resp. B�
v WD B�.Qv/) if v is either a finite

place or v D 1. We write b 7! b� for the main involution and nrdW B� ! Gm for
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the reduced norm. Suppose that
N
k WD .k1; : : : ; kr/ 2 Zr , naturally regarded as a

character of Gr
m. Then we can consider the algebraic character

nrdN
kW �rB� �r nrd

�! Gr
m

N
k

�! Gm.

Explicitly, nrdN
k.b1; : : : ; br/ D nrd.b1/

k1 : : : nrd.br/
kr ; when r D 1, we write

nrdk WD nrd.k/. We note that �r nrd realizes the maximal quotient which is a

split torus, so that we get a description ofX�.S0
G
/, the characters of �rB� defined

over Q. More generally, if
N
� D .�1; : : : ; �r/ is a family of characters �i WR

� ! R�

regarded as a character of R�r via
N
xN

� WD x
�1

1 : : : x
�r
r , we define

nrdN
� W �rB�.R/

�r nrd
�! R�r N

�
�! R�.

If V D .V; �/ is a representation of either �rB� or �rB�
1 with coefficients in

R and
N
� is as above, we V.

N
�/ D .V; �.

N
�// for the representation �.

N
�/.b/.v/ WD

nrdN
�.b/�.b/v. Taking � D nrdN

k in the discussion before Remark 7.5 with
N
k 2 Qr

yields the functions NrdN
k

f
WD N ı nrdN

k

f
, NrdN

k

f
WD j�j

�1
Af

ı nrdN
k

f
and NrdN

k
1 WD

j�j1 ı nrdN
k

f
. Remark 7.5 gives

NrdN
k

f
WD j nrdN

k

f
j�1
Af

2 M.�rB�; R.
N
k/;NrdN

k

f
/K � M.�rB�; R.

N
k/;NrdN

k

f
/

for every open and compact K 2 K. Take � D �

�W B� �! B� � B� � B�,

the diagonal inclusion.

Let E=Q be a Galois splitting field for B and fix B=E ' M2=E inducing

B�
=E

' GL2=E . If k 2 N we let Pk=E be the left GL2=E -representation on

two variables polynomials of degree k, the action being defined by the rule

.gP /.X; Y / D P..X; Y /g/. We write Vk for the dual right representation. If

N
k WD .k1; : : : ; kr/ 2 Nr , we may identify Pk1=E ˝ � � � ˝ Pkr =E with the space

of 2r-variable polynomials P
N
k=E which are homogeneous of degree ki in the i-th

couple of variablesWi WD .Xi ; Yi/. Then Vk1=E ˝� � �˝Vkr =E is identified with the

dual V
N
k=E of P

N
k=E and any P 2 P

N
k=E .�r/

GL2=E , i.e. such that gP D det.g/rP ,

induces

ƒP 2 HomGL2=E
.V

N
k=E ; 1=E.r//

by the rule ƒP .l/ WD l.P /. Note also that, if P ¤ 0 then there is l such that

l.P / D 1 and we see thatƒP ¤ 0. Setting 0 ¤ ık.X1; Y1; X2; Y2/ WD
ˇ

ˇ

ˇ

X1 Y1

X2 Y2

ˇ

ˇ

ˇ

k

, we

have ı1.W1g;W2g/ D det.g/ı1.W1; W2/, from which it follows that ık 2 Pk;k=E

and gık D det.g/kık. We deduce that h�;�ik WD ƒık ¤ 0 satisfies the

above requirement: then the irreducibility of Vk=E implies that it is perfect and

symmetric.
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If
N
k WD .k1; k2; k3/ 2 N3, we define the quantities

N
k� WD k1Ck2Ck3

2
,

N
k�

1 WD �k1Ck2Ck3

2
,

N
k�

2 WD k1�k2Ck3

2
and

N
k�

3 WD k1Ck2�k3

2
. With a slight abuse

of notation, we write P
N
k=E and V

N
k=E to denote the external tensor product, which

is a representation of GL3
2=E . When

N
k� 2 N and

N
k is balanced, we can also define

ƒ
N
k=E 2 HomGL2=E

.V
N
k=E ; 1=E.

N
k�//

as follows. The balanced condition precisely means that
N
k�

i � 0 for i D 1; 2; 3, so

that we can consider

0 ¤ �
N
k=E WD ı N

k�
1 .W2; W3/ı N

k�
2 .W1; W3/ı N

k�
3 .W1; W2/ 2 P

N
k=E .

We have g�
N
k=E D det.g/N

k�
�

N
k=E . Hence �

N
k=E 2 P

N
k=E .�

N
k�/GL2=E and we may

set ƒ
N
k=E WD ƒ�

N
k=E

¤ 0. The following result is an application of the Clebsch-

Gordan decomposition that we leave to the reader.

Lemma 8.1. Suppose that 2
N
k� D k1 C k2 C k3 2 2N and

N
k is balanced.

.1/ There is a representation V
N
k of B� such that

E ˝ V
N
k ' V

N
k=E

via B�
=E

' GL2=E and h�;�i
N
k 2 HomB�.V

N
k ˝ V

N
k; 1.

N
k// such that

E ˝ h�;�i
N
k ' h�;�i

N
k=E :

.2/ We have, setting B�
1 WD ker.nrd/,

dim.HomB�
1
.V

N
k; 1// D dim.HomSL2=E

.V
N
k=E ; 1=E// D 1.

8.1 – An explicit Harris–Kudla–Ichino’s formula

All the representations of B�3.R/ are pseudo-algebraic, arising from twists of

the representations V
N
k=E , whose diagonal restrictions are even precisely when

2
N
k� is even (according to Definition 7.4). Taking .V1; �1/ D V

N
k.R/ in The-

orem 7.6 .3/, we find N1=2
��1;�1

D NrdN
k=2.

N
t /, N

1=2

��1;�1 ;f
D NrdN

k=2

f
.
N
t / and

N1=2
��1;�1 ;1 D NrdN

k=2
1 .

N
t /, where

N
k=2 D .k1=2; k2=2; k3=2/ and

N
t D .t1; t2; t3/.

Similarly we find that Vki ;C belongs to !i for every !i D !f;i ˝ sgn.�/ki

and, in this case, we have !0;i D !f;i Nrd
ki =2

f
. We note that we have NrdN

k�

f
D

��
Af
.!f;1 Nrd

k1=2

f
; !f;2 Nrd

k2=2

f
; !f;3 Nrd

k3=2

f
/ when !1!2!3 D 1. It follows that

we can consider the quantity t
N
k WD M

NrdN
k�

f
;nrdN

k�

1

�Af

.ƒ
N
k=E / defined by .21/. The fol-

lowing result is now a consequence of Ichino’s formula (see [20]), rephrased by

means of Theorem 7.2, and Theorem 7.6.
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Theorem 8.2. Suppose that
N
k is balanced and that !i D !i;f ˝ sgn.�/ki are

unitary Hecke characters such that !1!2!3 D 1, implying
N
k� 2 N. Consider the

quantity

t
N
k.'/ D �B.Af /.K'/

P

x2K'nB.Af /=B.F /

ƒ
N
k.'.x;x;x//

j�K' .x/j NrdN
k�

f
.x/

,

where K' 2 K.G.Af // is such that �WK' � K1 �K2 �K3 and

' 2 M.B�3;V
N
k;C;NrdN

k=2

f
/K' D

N3
iD1M.B

�;Vki ;C; !i;f Nrd
ki =2

f
/Ki .

.1/ We have

t2

N
k D

1

23m2
ZBnB;1

�2
Q.2/L.1=2; ��/

L.1;�;Ad/

Y

v
˛v.�/

as functionals on f
� NrdN

k=2;Vu

N
k;C

ƒ
N
k ;� WM.B�3;Vu

N
k;C
; !f NrdN

k=2

f
/ � A.B�3.A/; !/

with ! D .!1; !2; !3/. Here the quantities appearing in right hand side have

a similar nature as those in .5/ (see [20]).

.2/ If … D …f ˝ Vu

N
k;C

is an automorphic representation of B�3, we have

f
� NrdN

k=2;Vu

N
k;C

�;�� WMŒB�3;V
N
k;C; !f NrdN

k=2

f
�ŒNrd

�
N
k=2

f
…f � ' A.G.A/; !/Œ…�.

Setting J.ƒ ˝C '/ WD �t
N
k.'/ when ƒ D �ƒ

N
k and J.ƒ ˝C '/ WD 0 for ƒ

orthogonal to ƒ
N
k in V_

N
k;C

, we have

I� ı f
� NrdN

k=2;Vu

N
k;C

�;�� D mZBnB;1J

onMŒB�3;Vu

N
k;C
; !f NrdN

k=2

f
� and this rule extends to a morphism of functors

from modular forms with coefficients in Q.!f /-algebras to A1.

.3/ Suppose that …0 is an automorphic representation of GL3
2 and that the

discriminant predicted by [29] is that of the quaternion algebra B . Then

L.…0; 1=2/ ¤ 0

() M.ƒ
N
k/ ¤ 0 on M.B�3;Vu

N
k;C; !f NrdN

k=2

f
/ŒNrd

�
N
k=2

f
…f �;

with … D …f ˝ Vu

N
k;C

corresponding to …0 by the Jacquet–Langlands

correspondence.
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8.2 – An explicit Waldspurger’s formula

Let j WK ,! B be an embedding of a quadratic imaginary field K in a definite

quaternion Q-algebra B (so that B�.R/=SB�.R/ is compact). This embedding

induces j�W ResK=Q.K
�/ � B�, where B� (resp. K�) is the algebraic group

attached to B (resp. K). We consider

� WD j� � 1W H WD ResK=Q.K
�/ � B� � ResK=Q.K

�/ DW G

(so that SH D Gm). We fix B=K ' M2=K inducing B�
=K

' GL2=K and can

take E=Q any Galois extension such that K � E. We may also view Vk=E

as a representation of G=E letting H=E acts trivially.Let �g be the automorphic

representation of A.B�.A/; "/ŒVu
k;C
� obtained as the Jacquet–Langlands lift of the

representation � 0
g of GL2 attached to a modular form g of weight k C 2 and let

�W ResK=Q.K
�/.A/ ! C� be a Hecke character of K. Let the assumptions be as

in [31, III, §3]: �g is unitary, �jGm.A/ D " D 1 (i.e. g has trivial nebentype)

and � is a finite order character. Then �g � ��1 2 A.G.A/; 1/Œ�u
1� where

�1 D Vu
k;C

� ��1
1 D Vu

k;C
.

The maximal split toric quotient of G (resp. H) is

nrG WD .nrd; nrK=Q/W G D B� � ResK=Q.K
�/ �! Gm � Gm (resp. nrK=Q )

Hence the algebraic characters of G (resp. H) can be describes as follows: if

.k; l/ 2 Z2 D Hom.G2
m;Gm/, we set nr

k;l
G
.g/ WD nrG.g/

.k;l/ (resp. nrl
K=Q

.h/ WD

nrK=Q.h/
l ). We define Nr

k;l
G WD N ı nr

k;l
G (resp. Nrl

K=Q WD N ı nrl
K=Q

), so that

Nr
k;l
G

ı� D NrkCl
K=Q

. Then Theorem 7.6 applied to �1 D Vk.C/ implies that Theo-

rem 7.2 in force with N D Nr
k=2;0

G , so that .!
�

f
N

�

f
; !

��
1 N

�
1/ D .Nr

k=2

K=Q;f
; nr

k=2

K=Q
/.

If Qj=E 2 P2=E be defined as in [12, §2.3.2] (which applies with no changes

when K is imaginary), then the evaluation at Q
k=2
j 2 Pk=E gives (see [12, .3:5/])

ƒj;k=E 2 HomH=E
.Vk ; 1.k=2//.

It follows from [12, §2.3.2] that there are models Vk and ƒj;k over Q for the rep-

resentation Vk=E and ƒj;k=E . In this case, Proposition 6.1 gives the identification

f
� Nrdk=2;Vu

k;C
�;�� WMŒB�3;Vk;C;Nrd

k=2

f
�ŒNrd

�k=2

f
�g;f � ' A.B�.A/; 1/Œ�g �.

Hence, if K';� 2 K.H.Af // is such that �.K';�/ � K' �K� and

' � ��1 2 M.G.Af /;Vk;C;Nr
k=2;0

G;f jGm.Af /
/K';�

D M.B�;Vk;C;N
k
f /

K' ˝M.B�; 1; 1/K�,
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we have

J��1.'/ WD J
Vk;C;Nr

k=2

K=Q;f
;nr

k=2

K=Q
� .ƒj;k ˝ .' � ��1//

D �H.Af /.K';�/
P

x2K';�nH.Af /=H.Q/
��1.x/ƒj;k.'.j.x///

j�K';� .x/jNr
k=2

K=Q;f
.x/

.

Let ���1 be the representation attached to the theta lift ���1 of ��1. Then Theo-

rem 7.2, together with .5/ (see [31, Proposition 7]), gives

J�.'/J��1.'/ D J�.'/J�.'/

D
1

4mSHnH;1

�Q.2/L.1=2; �
0
g � ���1/

L.1; � 0
g ;Ad/L.1; ���1;Ad/

Y

v
˛v.'v/.

(44)
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