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On the rationality of period integrals
and special value formulas in the compact case
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ABsTrRACT — We study rationality properties of period integrals that appear in the Gan—
Gross—Prasad conjectures in the compact case using Gross’ theory of algebraic modular
forms. In situations where the refined Gan—Gross—Prasad are known, our rationality re-
sult for period can be interpreted as a special value formula for automorphic L-functions
which proves automorphic versions of Deligne’s conjecture on rationality of periods.
Moreover, this special value formula is well suited to p-adic interpolation, as illustrated
in [10].
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1. Introduction

Suppose that n:H C G is an inclusion of algebraic subgroups (over Q, for
simplicity, in this introduction) such that H(R) and G(R) are connected and such
that G(R)/Sg(R) is compact, where Sg C Zg (resp. Sy C Zp) is the maximal
split torus in the center Zg of G (resp. Zyg of H). Let A be the adele ring (over
Q) and suppose that w:Sg(A) — C* and w": H(A) — C* are two continuous
characters that are trivial on Sg(Q) and, respectively, H(Q), that @ is unitary and
that they are related by a)IWSH( 4) = @[su(a)- In this paper, we study the rationality
properties of period integrals of the form

(1) I (f):= f[H(A)]SH f(??(X))w_”(X)dM[H(A)]SH (x),

where f € L?(G(A)/G(Q), w), [H(A)]sy := Su(R)\H(A)/H(Q) and the mea-
sure is normalized in a suitable way (as explained after (8)). We set

MSy\H,00 := MSg\H,00 (SHR)\H(R)).

Roughly speaking, we prove that, if we restrict /; to a suitable subspace of
“algebraic automorphic forms,” the assignment f* + I,,( f') turns out to be defined
over a Galois splitting field £ of G with respect to suitable rational structures. This
is the content of Theorem 7.6, expressing mgli\H, oo In @s a morphism

where wy is an appropriate twist of ws and M[G, p, o]/E(w,) is a suitable space
of Gross’ style algebraic modular forms, as that we are going to explain.

Writing A(G(A), w) C L*(G(A)/G(Q), w) for the dense submodule of finite
vectors, we may write

AG(A), w) = By, AGA), 0)[re],

where 7% runs over all the unitary irreducible representations of G(R) with
central character 3. Let us suppose, for simplicity, that G(R) is compact. In this
case, the Borel-Weil theorem implies the existence of (canonical) rational models
p of % over E. Then, for every E(wy)-algebra R, we can consider Gross’ style
algebraic modular forms MG, p, wo]/E(w,)(R) that are defined over R and we
have

M[G, p, w0]/E(@w;)(R) =~ R®E(w,) M[G, p, ®0l/E(w,)

(see (27), Definition 3.3 and Proposition 4.1 (3) for the above identification). The
C-points of the source of (2) are identified, by means of an adelic Peter—Weyl
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theorem (see Proposition 6.1), with
M[G. p. 0] E () () = AG(A), w)[rL].

When G(R) may be non-compact (as in our application to the interpolation
problem, see below), i.e. Sg(R) # {1}, it is important to take into account
possible twists 7o, of % . Assuming that 7, is even (and parallel when @ is
replaced by a more general totally real number field - see Definition 7.4), we prove
that mgli\H’ooI,,, when restricted to M [G, p, wol/E(w,)(C) C L*(G(A)/G(Q), »),
equals the C-points of a morphism of functors J,: M[G, p, wo/E(w,) — A} E())"
This special value formula mgli\H’ooI » = Jy is our rationality statement.

RemARrk 1.1. According to [14, Proposition 2.2], E is a C M -field with totally
real field £’ In particular, when 4, is a real representation, (2) descend to £’ (wy)
(see Theorem 7.6).

The interest in this kind of integrals is motivated by the fact that this formalism
presents itself in many central value formulas, such as the special value formulas
for the Rankin L-functions (see [31]), the special value formulas for the triple
product L-functions (see [17, §11] and [20]) and, more generally, in the Gan—
Gross—Prasad conjectures of [7, §24]. Motivated by these conjectures, we expect
these period integrals 7, to be frequently related to special values formulas: hence
our rationality result is consistent with Deligne period conjectures and could
be viewed as a generalization of some of the rationality results of [17, §11] to
a broader context (given their formula). For example (under our compactness
assumptions), it applies to the more general triple product L-functions considered
in [20] and to the (mainly conjectural) formulas appearing in the refined Gan—
Gross—Prasad conjectures of [21], [16] and [26], as discussed below. In order to
place our result in this broader context, let us describe the inclusion of classical
algebraic groups n: H C G that appears in the Gan—Gross—Prasad conjectures
temporarily removing our compactness assumption in G.

Let K/Q be a Galois field extension with Galois group Gg,q = {1, ¢} (where
we may have ¢ = 1), let V be a finite dimensional vector space over K and
suppose that (—, —): V ®q V' — K is a non-degenerate, c-sesquilinear form on V,
which is e-symmetric for ¢ € {£1} C K*. These data define an algebraic group
GV, {(—,—)) over @ and we set Gy := G(V,(—,—))°. Take W C V which is
non-degenerate for (—, —), i.e. such that V. = W @ W+; then G(W, (—, —)w) C
G(V, (—, —)) is embedded as the subgroup of transformations acting as the identity
on WL, Suppose that W+ is a split space and (—1)4im¥ ™) = _¢ Explicitly, when
e = 1 (resp. ¢ = —1) this means that dim(W =) = 2r + 1 (resp. dim(W1) = 2r)
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and W is the orthogonal direct sum W+ = X @ XV @ L (resp. WL = X @ XV),
with X isotropic, XV isotropic and dual to X and L a non-isotropic line. Setting
G := Gy x Gy, one may define H C G as follows. Let Py C Gy be the
parabolic subgroup which stabilizes a complete flag of isotropic subspaces in X;
since Gy fixes both X and XV, we have that it is contained in a Levi subgroup
L of Py and acts by conjugation on the unipotent radical of N of Py = N x L.
Setting H := N x Gy, the inclusion H C G is defined to be the product of
the inclusion H C Py C Gy and the projection H - Gw. Let 1 = 7y X
be an irreducible cuspidal representation of G, with wy (resp. ) an irreducible
cuspidal representation of Gy (resp. Gy ), and suppose that 7y and 7y are almost
locally generic (see [26, After Remark 2.4]). It is defined in [7, §12 and §23] a
unitary automorphic representation v of H and it is proved that

3) di m@(HomH(QU)(nV,u X Tw,y ® Uy, C)) <1

in [23] and [7] (the proof reduces to the r = 0 case handled in [1], [30], and
[32]). Indeed, up to changing G by a pure inner form G/, the equality should
be achieved: this rule should be governed by symplectic local root numbers.
We suppose from now these root numbers place ourselves on the right group
G = G/,. Then the Gan-Gross—Prasad conjecture exhibits a close relationship
between the period integral (1) with w” replaced by v and the central values of the
automorphic L-functions associated to symplectic representations of the L-group
of G: these two quantities should vanish or not at the same time (see [33] for
a proof in the unitary case). Indeed, when ¢ = 1, v:H(A) — C* is a generic
automorphic character and a refinement of the Gan—Gross—Prasad conjecture has
been proposed in [26], generalizing the r = 0 orthogonal and unitary cases
discussed in [21] and, respectively, [16]. After a suitable normalization (see [26,
Remark 2.6]), it takes the form of the formula (5) below where I, ( /') is replaced
by fH(A)/H(Q) F)v 1 (x)dpmay/m (x). We remark that, when r = 0, the
refined conjectures of [26] is known in the orthogonal case when dim(V) = 3
or 4 (by [31] and [17] or [20], as explained in [21]) and 5 when ny is a theta lift
(see [8]). When r = 0 it is known in the unitary case when dim(}') = 2 or 3 (see
[16]) and in general, up to a non-zero factor ¢(7y,c0 ® Tw,00) € C* which only
depends on the archimedean components of 7y ® 7y under suitable assumptions
(see [34]). See also [26] for two examples in the r = 1 and orthogonal case.

ReEmark 1.2. Suppose that G := Gy x Gy as above. Then G(R)/Sg(R) is
compact if and only if G(R) is compact and this means that ¢ = 1 and (—, —)
should be definite: then Gy (R) and Gy (R) are either ~ SO(n) or >~ U(n)
according to whenever c is trivial or not and r = 0 (there is no isotropic vector by
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compactness of Gy (RR)). In fact, in this case Sy C Sg = {1} is trivial and there
is no condition placed on the character w” appearing in (1), that could be taken
o =v.

Suppose from now on that
4) G = Gy x Gy, G = G, and G(RR) is compact.

It follows from Remark 1.2 and the discussion before it that we are in the setting of
the refined Gan—Gross—Prasad conjecture (because ¢ = 1) and that, taking " = v
in (1), the conjecture predicts that

2 1 Ag,L(/2, 7y K aw)
) (NI = 26 L(1, 7y, Ad)L(1, 7w, Ad) [],e0(h)

for f = ®yfy € ny B 7. Here «, are appropriately regularized integral of
matrix coeflicients which should be non-zero on 7y, ®@ Tw,y ® v, 1 because
G = G;T (see [26, Conjecture 2.5 (2)]), Ag, is a product of abelian L-values
(attached to dual Gross motives) and B is an integer. This explains the relationship
between our investigation and the Gan—Gross—Prasad conjecture. In particular, we
obtain the following result as a direct application of (2), where E () (resp. E'(r))
denotes the field generated over E(wy) (resp. E'(wy)) by the eigenvalues of 7.

THeEOREM A. If (4) hold, the period integrals mﬁ}oo I, with " = v considered
in [7, §24] are defined over E(wy). Hence, depending on the validity of (5), also
the right hand side is defined over E. Explicitly, this means that a test vector f
can be chosen so that mﬁ}oolr, (f) € E(n).

Let us write w; for the weight of APV or its restriction to SUy (R) in the
Hermitian case and, in the orthogonal case, let @ and f be the weights of the half-
spin representations. Then 7y, oo (resp. my,o0|sU, (r)) is Classified by its dominant

weight, that can be written in the form A, = Z?E(V)/z niw; + ngot + ngpP

dim(V)—1

(orthogonal case) or Ay |SUy (R) = D=1 n;; (unitary case).

THeOREM B. Suppose that (4) hold. If we are in the orthogonal case, suppose
that either dim(V) = 1,3,4 mod(4) or that dim(V') = 2 mod(4) and ny = ng.
If we are in the unitary case, suppose that n; = ngim)—1-i for every i and that
TV,00 IS trivial when restricted to the center. Then the period integrals mﬁlool,,
with o = v considered in 7, §24] are defined over E'(wy), which is totally, real
when a)} = 1. Hence a test vector can be chosen so that mﬁ}ool,, (f) € E'(m)
and, when a)} = 1 and the eigenvalues of m are real, |I,(f)|*> = I,(f)>
(For example, one can take E' = Q in the setting of triple product L-functions,

see [17, §11] and Theorem 8.2).
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Proor oF THEOREM B. Indeed, the above assumptions implies that 7y o is
either real or quaternionic (see [6, Propositions 26.4, 26.6 and 26.7]), so that
the same property is enjoyed by 771; coH(R)- It follows from (3) with v = oo that
Tw,co ® V5 appears with multiplicity one in nl\,’,oolH(]R); hence the morphism ¢
such that ¢? = £1 which gives the real or quaternionic structure on TV, induces
the same kind of structure on 7w 0 ® vy !. Since Tog = Voo, we know that v ! is
real; it follows that 7w, is real and we deduce that 7y o K 7w, is also real as
a representation of G(RR). Now the claim follows from Remark 1.1 O

Another application of Theorem 7.6 is the following result (to be proved in
§7.2), which assumes the validity of (5), [26, Conjecture 2.3] and, hence, it is
a theorem in the cases discussed before Remark 1.2 above. In order to state the
result, let E£(, Ad) be the field generated over E(mr) by the coefficients of the
polynomials L, (1, 7y, Ad) and the values Ag,, , at finite primes v and then set
E*(7) := E(w, Ad)E(r, Ad). If we are given a,b € C, we write a ~ b to mean
that b # 0 and 7 € E*(x). Hence, we have fixed E(r,Ad) C C and write
x + X for the induced complex conjugation on x. Recall that, in the general
unitary case, eq. (5) is only known up to ¢(y,00 ® 7w,00) € C* in order to justify
the assumptions we are going to make.

TueoreM C. Suppose that (4) hold and that the refined Gan—Gross—Prasad
conjecture holds, possibly with (5) satisfied up to some non-zero constant
(V.00 ® TW,00) € C* which only depends on the archimedean components of
ny @ ww. Then

L(1/2, 7y R )
Loo(1/2, 7y R rwy)

©) AGy,co L(1,my,Ad)L(1, mw, Ad)

~ C(”V,oo ® 7TW,oo)

The above result provides evidences to conjectures of Deligne and Shimura.
We refer the reader to [15] for the relations with Deligne’s conjectures and to [13]
for a proof of a similar result in the unitary case (see also the remark at the end of
this introduction).

The period integral (1) is first studied in Theorem 7.2, while Theorem 7.6
provides conditions for its applicability. As explained above, the result is (2) which
gives, when (5) is known, explicit special value formulas. We exemplify this fact
in §8, where we specialize our result to the case of triple product L-functions
and Rankin L-functions, thus getting, respectively, an explicit Harris—Kudla—
Ichino and explicit Waldspurger formula. The former yields a generalization and
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simplification (of the proof) of the special value formula [4, Theorem 5.7] which
removes the squarefree level assumptions there (see Theorem 8.2). The latter
removes the assumption that the conductors of the modular form and the character
should be coprime which appears in the Hatcher-Hui formulas proved in [18]
and [19] (see (44)). Our generalization is due to the fact that, rather than focusing
ourselves on the L-functions, we focus ourselves on making explicit (1) regarded as
a functional, without trying to include the theta correspondence and the test vector
in the special value formula itself. In other words, justified by (5), the problem
of studying the special values of complex L-functions is split in two parts: relate
special values to period integrals (which is (5)) and then study the period integrals
themselves getting the “almost algebraic” expression of Theorem 7.2 (which is a
considerably more modest task). The pay-off of this approach is that, although
less explicit in the computation of local constants (because we do not specify a
test vector), it works in greater generality (removing, for example, all the level
assumptions) and it is still suitable for p-adic interpolation. It suffices indeed to
apply this philosophy in the p-adic realm: p-adic L-functions arise from p-adic
variation of J,, = mgli\H’ooI » regarded as a functional. Indeed, motivated by the
above general rationality results, we expect that these periods could be frequently
p-adically interpolated and we hope this formalism could be useful in order
to address this issue. Although a further general investigation in this direction
requires a better understanding of the Hecke operators at p of the Ash-Stevens
distribution modules appearing in the definition of a p-adic family (see [2]), an
application of our results in the case of triple product p-adic L-functions yields
triple product p-adic L-functions which interpolate in the balanced region: this is
the content of [10]. Also, as an application of our explicit Waldspurger formula,
it is possible to generalize the construction of the p-adic L-functions considered
in [3] (see [11] for details).

Remark 1.3. We end the introduction with few remarks.

(1) In this paper, we prove the rationality results discussed above in the case
where @ is replaced, more generally, by a totally real field F. The (re-
fined) Gan—Gross—Prasad conjectures and the formulas (5) have been formu-
lated/proved in this more general setting. Let us remark once again that (6)
depends on the validity of (5) up to ¢(7y,00 ® Tw,00) € C*, which is known in
the orthogonal cases discussed before Remark 1.2 with ¢ (7,06 ® 7w,00) = 1,
but the general unitary case requires the assumptions [34, §1.2, RH(I) and
RH(ID)] and the local factor ¢(7y,c0 ® Tw,00) iS not known.
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(2) The rationality issues of (1) should not involve the condition G = G/, in the
context of Gan—Gross—Prasad conjectures G = Gy x Gy ; indeed one should
expect that 7,(f) = 0 when f € 7 but G # G/, (for example, when r = 0
and Homy(r.) (V00 @ Tw,00 ® vo_ol , C) = 0, this can be easily checked) and,
hence, I, should be rational also on this portion of the space of automorphic
forms. This is indeed the case when G(RR) is compact (because, of course,
the first rationality statement of Theorem A does not depend on G = G/).

(3) After a first version of our paper appeared, we have been warned that our
Theorem C has been obtained in some cases also in [13]. More precisely, if
we specialize it to the case F = () and to the unitary case and make the
assumptions of [34, §1.2, RH(I) and RH(II)] ensuring that (5) is in force (up
t0 ¢(Ty,00 @ TW,00)), Our Theorem C is [13, Theorem 1.5]. Our compactness
assumption G = G/, corresponds in loc.cit. to the fact that the representa-
tions under consideration should arise as the base change from automorphic
representation of a definite unitary group. Our method is different and much
more elementary than Grobner-Harris’s strategy, this latter being based on
Rankin-Selberg L-functions for GL,,x x GL,_1,x over an imaginary qua-
dratic field K/Q, Zhang’s proof of refined Gan—Gross—Prasad conjecture for
unitary groups (see [34]), rational structures arising both from Whittaker
models and from the cohomology of the relevant Shimura varieties and base
change results from definite unitary groups over @ to general linear groups
over K. Rather, we construct and study the needed global and local rational
structures to prove Theorem C without abandoning our group G over a totally
real field F and we deduce Theorem C from Theorem A. Of course, in order
to have (5) in force in the unitary case (up to c(7y,00 ® Tw,0)), as remarked
we need to appeal to [34] and, hence, definitely the same kind of assumptions
of [13, Theorem 1.5] are needed.

2. Automorphic forms and the period integrals

In this section, we precisely define the period integrals central to our study. Let G
be a reductive algebraic group over a field F with adele ring A = Ay x F, and
let Zg be its center. Let

Ag:G(F) — G(A) and Ag,r:G(F) — G(Ay)
be the diagonal embedding and, for a closed, algebraic subgroup Z of Zg, set

[G(A)]z := Z(A\G(A)/G(F) and  [G(Af)]z := Z(A)\G(Af)/G(F).
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Let
PGz = G/Z.

We make the following assumptions on the pair (G, Z):
(A1) PGz(F) is compact;

(A2) Ag,r embeds G(F) as a discrete subgroup of G(Ay);
(A3) G(Af)/G(F)is compact.

RemARrk 2.1. Let Sg be the maximal split torus in the center of G. Applying
[14, Proposition 1.4] after restricting scalars from F to @ shows that (A2) implies
(A2) and (A3). When Z = S and F = Q, it is proved in [14, Proposition 1.4] that
(Al) is indeed equivalent to (A2) (and to (A3)). We also remark that (Al) (for any
Z) implies that G = Zg or F is totally real.

Thanks to our assumptions (A2) and (A3), the results of the following §3.1
applies. In particular, we may normalize the non-zero left G(A s )-invariant Radon
measures [iG(a,) on G(Ay), pnga,)/cr) on G(Ay)/G(F) and pGea ), on
[G(Ay)]z sothat uga ,)(K) € Qfor some (and hence every) K € K, uGa ,)/G(F)
satisfies (11) and restricts to f[G(a )], On Z(Ay)-invariant functions. Furthermore,
it easily follows from (Al) and (A2) that we may normalize the left G(A)-invariant
(resp. G(Fuo)-invariant) non-zero Radon measure jijG(a)), (f€sp. i4z\G,00) ON
[G(A)]z (resp. Z(Fs)\G(F)) so that the following formula is satisfied:

Jicwy, f G, (x)

(7
= f[G(Af)]z(fZ(Foo)\G(Foo) f(xfxoo)dMZ\G,oo(xoo))dM[G(Af)]z (xr).

For the remainder of this paper, we suppose that we are given two pairs (H, ZH)
and (G, Z) = (G, Z®) as above and a morphism of algebraic groups

(8) nH— G

such that n(Z") c Z6. We assume (Al), (A2) and (A3) for the pairs (H, ZH)
and (G, Z6). In addition, we impose the above-mentioned normalizations to the
measures obtained from the couple (H, ZH). We use the abbreviations [K(A)] :=
[K(A)]zx, [K(Ap)] == [K(Af)]zx and pzx\g oo = UK,0 for K € {H, G}. We
define mi,li\H’oo = pzm\H,0o PHzH(Foo)).

Fix once and for all a continuous and unitary character w: %E% — C*. Let
S(G(A), w) be the space of functions f: G(A) — C such that

f(zx) = w(z) f(x) forevery z € Z6(A),
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endowed with the (G(A), G(A))-action defined by the rule
(you)(x) := p(uxy) foreveryy € G(A)andu € G(A).

We write L2(G(A)/G(F), w) for the right Hilbert space G(A)-representation of
L?-automorphic forms with right G(A)-invariant scalar product

(fi: o) = [1geay 1) 200 e ay ().

We recall that, if S°"(G(A), w) denotes the subspace of right G(Fy)-finite
vectors in S(G(A), w) and S®I(G(A)/G(F),w) := S®M(G(A), w)CEF)D,
then

AG(A), ©) := Ugex SZMGA), 0) CEIE) = (510G (A)/G(F), w)*

is aright G(A s)-submodule of L?(G(A)/G(F), ), which is known to be dense in
it. Indeed, due to the compactness of PGz (Fw), it is even a right G(A)-submodule
of it. In particular, if 7% € Irr*(G(Fx), wg!), it makes sense to talk about the
¥ -isotypic component A(G(A), w)[r%] of A(G(A), w).

We suppose that there is a character ™: H(A) — C* such that " is trivial on

H(F) and w|nZH(A) = w 0 1y zH(4). We write 0™ 1= (0") 7.

DEerintTION 2.2 (Global period integral). Define the global period integral
I,: L*(G(A)/G(F),w) — C
by the rule

) 1) = Sy £OCNO ™ dptpcay) g ()-

It is easily seen to be well defined and to satisfy the following H(F)-
equivariance property:

(10) I,(fn(h)) = o"(h)I,(f) forevery h € H(A).

Our goal is to study the rationality properties of (9). As discussed in the intro-
duction, in establishing rationality it is natural to work with one G(Fx)-isotypic
component of (the subspace of automorphic forms in) L2(G(A)/G(F), ) at a
time; this component can be conveniently described by means of Gross algebraic
modular forms (see [14]). In §3 we develop a formalism of vector valued modular
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forms in the sense of Gross and define formal period integrals J. Using this lan-
guage, we can define analytic and algebraic formal integrals Jr_, and J¢. Roughly,
the rationality property of (9) is proved showing that
— ) (2
My ooln = P = Je

More precisely, we first prove (2) (Proposition 5.6) and then (1) (Theorem 7.2)
assuming that the isotypic component we are working with has a rational model
and is well behaved under twists; then we provide quite general conditions for
these assumptions being satisfied in §7.1. These formal period integrals will also
prove useful in our subsequent study of p-adic analogues of (9).

3. The formalism of profinite groups
3.1 — Vector valued modular forms and the formal period integral
In this section, we consider a data of the form

(T.Gy.Zs) = (. Gy, Z)

subject to the following assumptions. We suppose that G is a locally profinite
unimodular group, let I' C G be a discrete subgroup such that G/ T" is compact
andlet Zy C Zg, be a closed subgroup. We write X = X(Gy) to denote the set
of its open and compact subgroups of G. We may normalize the Haar measure
KuG, on Gy in such a way that ug, (K) € Q for some (hence, every) K € X. Let
UG, /T be a nonzero, left Gy-invariant Radon measure on G/ T, normalized so
that

(11) e, 1(@)dnc, (@) = Jg,/r 2 F(er)duc,(2);

Its existence is guaranteed by triviality of the module of 1, on I (the discreteness
of I is used here) and the unimodularity of G. It is unique up to nonzero scalar
multiple. By compactness of G¢/T' there is a nonzero, left G-invariant Radon
measure iz \G,/r on Zs\Gy /T, also unique up to nonzero scalar multiple, such
that uz,\G,/r and ug,/r agree on C(Zs\Gy/T'). (We view C(Zs\Gy/T') as a
subspace of C(G¢/T) in the obvious way.)

Let Goo be a group and let ' — G4, be a group homomorphism, so that
I' C Gf xGo =: G. If g € G, we write gr € Gf and goo € Goo for its
components. Let (V, p) be a right representation of G, with coeflicients in some
commutative ring R. When p is understood, we simply write vgoo for vp(gs). Let
wo: Zy —> R*be a character.
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DeriNiTION 3.1. Define S(Gy, p) to be the space of maps ¢: Gy — V' endowed
with the (G, Gr)-action given by
(gou)(x) := (p(ung)p(ggol), where g € G and u € Gy.
Let
S(Gr,p,w0) = {9 € S(Gr,p): @z = wo(z)p forall z € Z¢}.
Then S(Gy, p, wo) is a (G, Gr)-submodule of S(Gy, p). We also write

S(Gs/T.pjr.wo) := S(Gy. p.wo) TV,

Remark 3.2. The following facts is easily verified.

(1) If S(Gy, p, we) %) £ 0 and V is R-torsion free, then wo(Zy N K) =1 for
some K € X. It follows that if R* is given any topology with the “no small
subgroups” property (i.e., there is an open neighbourhood of 1 in R* whose
only compact subgroup is {1}), then wy is continuous.

(2) If S(Gr, p, wo) TV =£ 0, V is R-torsion free and (V, p) has central character
wp, then wo(y) = w,(y) foreveryy € Z N Zg,, NI' C Zr. In particular, if
ZNI'=Zrand Zg,, NI' = Zr then wo(y) = w,(y) forall y € Zr.

DEerintTION 3.3 (Vector-valued modular forms). Define the space of p-valued
modular forms on Gy by

M(Gy,p) = Mr(Gy, p) := S(Gy, p)"™
and the subspace of p-valued modular forms on Gy with character wg by
M(Gy.p.wo) = Mr(Gy. p,wo) := S(Gy. p, wo) ™.
Observe that
Mr(Gs,C) = C(Gs/T)* and Mr(Gy,C, 1) = C(Z\Gs/T) .
The following remark is easily checked.

REMARK 3.4. Suppose that yo: G — R* is a character with the property that
xo(K) = 1 for some K € X and that yo: Goo — R is a character with the
property that xor = Xoo|T-

(1) Ifp € M(Gy, p, wo), then the rule (yo¢)(x) := xo(x)¢(x) defines an element
xo9 € M(Gy, p(Xoo), Xo|z®o)-
(2) We have yo € M(Gy. R(xoo) X0|2)-
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The formation of these spaces satisfies obvious functoriality properties. If
V: p — p’ is a morphism of representations of I', then we get

(12) Ve M(Gy, p,w0) — M(Gy, p', wo)

by the rule ¥«(¢) := ¥ o ¢. In the opposite direction, suppose that we are
given another triple (A, Hy, H) satisfying the assumptions that was done on
(I, Gr,Goo).

DerINITION 3.5. A period morphism n: (A, Hy, Heo, Z]{f) — ([, Gr, Goo, ZJ?)
is a couple n = (7y, Noo) Of group morphisms ny: Hr — Gy and neo: Hoo — Goo
both mapping A to I" and such that 7 is continuous and maps Z ;1 to ZJ?.

Writing 0} (p) for the Ho-representation obtained by restriction from 7o, and
setting n;i (wo) = wp © Npizi s We get

(13) 1" = (1y.100)": Mr(Gy. p,wo) —> Ma(Hy, 05 (p), 0y (o).

The following simple fact will be needed later: its proof relies in the finiteness
of the double cosets K\G¢ /I for every K € X and is left to the reader.

LemMma 3.6. The following facts hold.

(1) Suppose that we are given a family {(V;, p;)}ier of right Geo-representations.
Then there is a Gr-equivariant identification

M(Gy, Dicr pis®0) = Djes M(Gy, pi. wo).

(2) Suppose that (V, p) is a right Goo-representation and that we are given a
morphism of (unitary) rings R — R’. If R' is R-flat or V is R-free then there
is a Gy-equivariant identification

M(Gys,R' Qg p.wo) = R' ®@r M(Gy, p, wo).

3.1.1 — Trace maps

Forx € Gy and K € X, define 'k (x) =T Nx~!Kx. Being discrete (as I is) and
compact (as K is), the set I'x (x) is finite. For each K € X and each set Rx C Gy
of representatives of K\Gy /T, define

(14) Tgx = Tre: M(Gy, R)X — R, Tre(f) = pg, (K) Y Jx)

x€Rk [T (X)[*
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Lemma 3.7. (1) The quantity Tr, (f) depends only on K and not on Rk,
Jjustifying the notation Tk.

) If K1 C Ka, 5o that M(Gy, ¥ C M(Gy, )2, then Try (f) =
Try, (f) forall f € M(Gy, R)X1.

(3) Let Lg, denote left multiplication by g € Gy. Then the following diagram
is commutative:

l _
M(Gs, R)X S > M(Gs,R)& 'Ks
TRK Ag
C

(4) We have
LGo/T = TGy T: C(Go/T)* = M(Gy,C) — C

and
Lz\Go/T = Tz\Go/1: C(Z\Go/T)* = M(Z\Go,C) —> C.

Proor. One easily checks (1), (3) and (4). It’s not hard to see that (2) is implied
by the identity

1 _ [K»:Ki]
(15) 2wk \Ka/xThy x ! T ] = s )]
One can verify this in case R = C as follows. First, the inclusion K;y C

K1 yT induces a measure preserving homeomorphism K1y /I'k, (») 5K y[/T
(by transport of the bijection). Putting these together and noticing that KjuxI" =
Kiu/xT if and only if KjuxTk, (x)x™! = Kju'xTk, (x)x~! forevery u,u’ € K»,
we obtain a measure preserving homeomorphism

UMEKI\Kz/xFKZ(x)x—l Klux/FKl (ux)
- I_lueKl\Kz/xl"Kz(x)x—1 KyuxT'/T = KxT'/T.

Therefore,

nG (K1)
ZMEKI\Kz/xFKZ(x)x—l |F1<J;Tx)| = UG,/ (K2xI'/T).

But the natural map K,y C K,yI' induces a measure preserving homeo-
morphism K»y/T'k,(y) — K,yI'/T (by transport of the bijection), implying

ué - (K2)
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It follows from parts (2) and (3) of Lemma 3.7 that the Tks fit together into
R-linear functionals

(16) TG‘/A/FC M(Gf, R) —> R and TZ\GJ-/F: M(Z\Gf, R) — R

where Tg,)r = Tx on M(Gy, R)X and Tz\g,/r = Tg,/r|mM(z\G,.R)- Since
we have assumed that uz\g,,/r is normalized so that it agrees with g, r on
C(Gy/T), we see that

(17) T(f) = [pe, v F &) dizG, T (8r)
forall f € M(Gr,C,1).

3.1.2 — Pairings and n-linear forms

We also have a natural map
(18) Q: M(Gy, p.wo) ®r M(Gyr, p'.wy) — M(Gy,p Qr p', wowy)

defined by the rule (¢ ® ¢’)(x) := ¢(x) ® ¢’(x). In particular, writing p“ for the
R-dual representation (vVy)(v) = vV (vy~!), we may define

_ ®
(-.): M(Gy. p.wo) ®& M(Gr.p". ;") ~2> M(Gy.p®r pY)

Tz\Gs/T
— M(Z\G¢,R) —>

(19)

DeriNiTION 3.8. We let X(Gr, Goo, wo) = Xr(Gyr, Goo, Zf, o) be the set of
couples (xo. xoo) With the property that yo: Gy — R is a character such that
xo(K) =1 for some K € X, Xo|z, = wo and yoo: Goo — R* is a character such
that yoir = Xoolr-

Suppose that we are given a period morphism n: (A, Hy, Hy) — (I, Gy, Go),
say 1 = (1r, Neo), that (V, p) is a representation of G, with coefficients in some
ring R and that wo: Z — R is a character. If ()0, Yoo) € Xa(Hf, Hoo. nj*p(a)o))
and we are given

A € Hompgg 1(n%(0), R(xe0)) = pY (Yoo) o

then we get
M0*>2(A) € Homg(M(Gy, p, wo), R)

by the rule

0, MY (A) ()
Ay CMxg ) .
i= i, (K) Y over\H, /0 == if g € M(Gy, p,w0)¥.
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Alternatively, we have

n* * *
MYO*>2(A): Mr(Gy, p, wo) —> Ma(Hf, ng(p), ny(@0))

('axal)

A *
— M(Hf7 R(XOO)’ nf(a)O) = X0|Z) - R’

2D

where (-, yo!) is the pairing (19), which makes sense thanks to Remark 3.4
(2): it follows from this description that M;**>(A) is well defined. We write
M X0:Xoo - — M;(O’Xoo‘

In this case, we may define
(22) JoX0X: oY (100) 9% @ M(Gy. p.wo) —> R

by the rule
JPXOX (A QR @) 1= MXOX(A)(g).

Finally, suppose that we are given a family {p; };cs for representations, characters
{wo,i}ier and A € Homg(g..1(p, R(Xo0)), Where p := ®Rg iespi- Then, assuming
that [ [; wo,; = wo we generalize (19) as follows:

® MX0-Xo0 (A)
(23) AX*: QRrier M(Gy, pi, wo,i) — M(Gy, p, wg) ——> R.

3.1.3 — The formal period integral

Suppose that we are given a period morphism 7: (A, Hy, Hy) — (I', Gy, Go),
say 1 = (1r, Neo), that (V, p) is a representation of G, with coeflicients in some
ring R and that wg: Z — R™ is a character. Assume that we are given an H-stable
decomposition decomposition

(24) VY = (15(0)" ((0) 12 @ (1% ()" (o)1
where (o, Yoo) € Xa(Hy, Hoo, r;} (wo)). It follows that we have a projection
prFE VY — (5 (0))” (Xoo) 7.
Recall that we also have
" Mr(Gy, p, wo) —> Ma(Hy, 15(p), 17 (@o))-
It will be convenient to set
py¥e = pP*e @rn’

and
Mr[Gy.p.wo] := V" ®@r Mr(Gy, p, wo).
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For every (xo, xoo) € Xa(Hf, Hoo, n}(wo)) and (24), we may define the
formal period integral:

J X0 Mr[Gy, p, wo
L. Xoo

P— Sy

(25) ———— (15%(0) Y (Xo0) T @R Ma(Hy, 1%, (), 1} (@0))

TNE(0).x0 - X00
-S> R

4. Modular forms valued in algebraic representations and the algebraic
period integral

Suppose that F C E is a field extension such that £/Q is Galois and let Xg,/r be a
set of embeddings o: E < C with the property that o > [0]F] defines a bijection
between Xg,r and the set (of equivalence classes) of archimedean places of F'.
We fix once and for all 0, € X, F, allowing us to regard C as an E-algebra, and
an element g, € Gr/q with the property that 0o, © g5 = o for every o € Xg/F,
as granted by the fact that £/Q is Galois. Set

XE/F «—

R F = l_IO'EXE/F R’
XE/F o —

G F = l_IO'EXE/F G’
XE/F

HAE/F = HUGXE/FH

We get a mapping

E — RY™/F x+— (80(x)oexsr
whose formation is functorial in R. We get an induced map
(26) G(E) — G(R¥E/F) = GXE/F (R)

for every E-algebra. Note that this map is induced by [[,. X p O E — CXe/r
when R = C, thanks to 0 © g = O.
Thanks to (A2) and (A3), the results of §3.1 apply to the triple

([, Gr, Goo) = (G(F), G(Ay), GXE/F (R))
for every E-algebra R, where the required group homomorphism

I = G(F) — GXE/F(R) = G
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is given by (26). The map n: H — G induces a morphism of triples
Mk = (1, g™ "): (H(F), H(A;), H¥/7 (R)
— (G(F). G(Ay), G¥E/F (R)).
Let {(Vs, po)}oexy S isa family of algebraic representations of G, g. Let
wo: Z6(As) — E*

be a character. Let
(V’ ,O) = IZLTGXE/F (VO" IOO‘)’

. b'e
be the external tensor product, a representation of G / f F

we have a representation (Vg, pr) of GXE/F (R) and a character

. For every E-algebra R,

wo.r:Z8(As) 25 EX — RX.
We may therefore form the spaces of algebraic modular forms
M(G, p. wo)(R) := Mg(r)(G(Ay), pr. wo,R)-

If ¥:R — R’ is a homomorphism of E-algebras, then ¥ induces a family
Vo' Po,R — Po,r’ Of morphisms of G(R)-representations over R. Setting

Vp 1= XIUEXE/F Voo »

we get a morphism v,: pr — pgs of GXE/F (R)-representations over R and an
induced G(A r)-equivariant, R-linear map

Vot M(G, p, 0)(R) —> M(G, p, wo)(R).
If (VV, pY) is the dual representation of (V, p), it will be convenient to define
(27) MIG, p, @o](R) := V§ ®r Mg (r)(G(Ay), pr, wo,R)-

Then
Vv @R Vpx: M[G, p. wo](R) — M[G, p, wo](R").

Thus, we have defined two functors from E-algebras to G(A)-modules,

R+— M(G,p,w9) and R +— MIG, p, wo].
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Let X (H(Ay), HX£/7 i, (wo)) be the set of pairs

X
(xo:H(Ay) — E*, X:H/:/F — Gum/E)
such that
(X0 xE) € Xuer)(H(Az), HX=/F (E), 1} ().
An element (o, y) € X (H(Af), HXE/F an (wo)) naturally induces a family
{(xo,r: xR) € Xu(ry(H(As), HXE/F (R), n}_(@0,R))},

where
yor H(Af) X% EX — R*, yp:HXE/F(R) — RX,

and
[0}
wo,r: Z8(Ay) —> E* — R,

. XE/F . . L .

Since H / f /¥ is a reductive group over a characteristic zero field, the algebraic

representation 1*(p)" admits a decomposition into isotypic components, one of
which is 7*(p)V (y)H. It follows that there is a canonical decomposition

X X
VY= Yo" et () (0"
which gives rise to a family of decompositions

X b's
(28) Vi =nk(er) ()™ T ® @ 0k (or)” (xr)t TR

We write J, X:*0-RXR for the period morphism (25) obtained from (28). We can
now easily prove the following result.

ProposiTioN 4.1. Suppose that (V, p) is an algebraic representation of G,k
and that
(X0, X) € X(H(A), H¥E/¥ (E), n} (0)).

(1) The family JyX0% .= {JHRXO-RXRY dofines a morphism of functors

JPxor: MG, p, wo] —> A}E.

(2) If y: R — R’ is a morphism of E-algebras, there are canonical identifica-

tions

M(G, p,wo)(R') = R ®r M(G, p, wo)(R)
and

MIG, p,@o](R") = R'®r M[G, p, wo](R)
such that

PR">X0,R">XR" _ p PR>X0,R>XR
Tnge =R ®r Jyp :
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Proor. Claim (1) follows from the fact that (25) is functorial with respect to
period morphisms and compatible decompositions (24) as those arising from (28)
for different Rs. Claim (2) easily follows from Lemma 3.6 (2). O

5. Modular forms valued in complex representations and their rational
models

If G is a real Lie group (resp. an algebraic group over some field), we let Rep(G)
be the category of finite dimensional continuous complex representations (resp.
finite dimensional algebraic representations defined over the field); we also let
Irr (G, w) be the set of equivalence classes of irreducible representations in Rep(G)
with central character w and write Irr(G) for the union of them. For a reductive
Lie group G which is compact modulo Z C Zg and an irreducible continuous
complex representation (Veo, 7o), it can be proved that (V, 7o) € Rep(G), i.e.
it is finite dimensional, that there is unique up to non-zero scalar factor Hermitian
product (—, —)y,, which is G’-invariant (G’ being the derived subgroup) and that
there is a unique continuous (hence real Lie group) character §,__: G — C* such
that

(29)  (v18,V28)Ve = Snoo (©)(V1,v2)y,, foreveryvi,vp €V andg eG.

In particular, there is a natural inclusion Ir* (G, w) C Irr(G, w) with equality
in case G is compact, w needs to be unitary in this case, and every irreducible
representation in Rep(G) is unitary up to twisting it by 8;010/ 2, which makes sense
because 8, takes value in R} by (29) with v; = v, # 0. We write Irr*(G) for
the whole set of isomorphism classes of unitary Hilbert space representations (the
isomorphism being only required to be G-equivariant).

Let wg: ZG(Af) — C* be a continuous (not necessarily unitary) character
and let (V, 7o) be a continuous complex right representation of G(Fy) with
central character w,., (possibly not irreducible). We suppose that we are given a
Hermitian scalar product

<_1_)Voo: Voo X Voo —> C

satisfying (29). The scalar product on the dual V] of Vs is defined via the
conjugate linear isomorphism ®: Vo, — V/ defined by the rule

(P(v), x) := (X, V) Vo
where (—, —) denotes the evaluation pairing, and then setting

vy, vy = (27 (1), 7' (7)) Vi -



On the rationality of period integrals 55
The dual representation (V,), =) is defined via

(T (&7, v) 1= (v, v7Teo(8)):

regarding V] as a right G(Fs)-module via
V() 1= me (g7 v,

it is easy to see that ® is G(Fu)-equivariant if and only if 740(g)Y = moo(g™ ),
i.e. if and only if (Vo, 7o) is unitary.

If we are given a character yoo: G(Fs) — C*, we may consider the represen-
tation (Voo, Yoooo) = (Voos Too(¥0)), defined by the rule

(XooT00)(800) = Xo0(go0)Too(goo)-

Writing V] .. be the underlying space of 75, we can consider the orthogonal
decomposition

(30) Vo\é = Vo\é,noo = (n’;oo(noo))V(Xoo)H(Foo) @ (n;oo(”oo))v(Xoo)H(FOO)’l-

The following definition will be of crucial importance in order to connect

automorphic forms and algebraic automorphic forms. Recall our fixed unitary and
26A) _ o

continuous character w: ZG(F)

DEerintTION 5.1. We say that a continuous character
N:G(A) — C*
with components
Ny = N|G(Af) and Ny := Ngo := Nig(Fn)>

binds (Voo, o) to w if

o (Nf,Noo) € X(G(Af),G(Foo),NflzG(Aj)), i.e. NfNo_olG(A) — C*is
trivial on G(F);

e there is a continuous character wg: ZC (A ) — C* with the property that

(31) wow,! = oNsNZ! onZg(A) on ZE(A)

oo

and (Voo, N3l 7moo), which has central character N 1w, = wZ!, is a unitary
representation of G(Fi).

If there exists N which binds (Veo, Teo) t0 W, We say that (Veo, 7o) belongs
o w.
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REMARKS 5.2. (1) If N binds (Veo, o) to @ then (31) determines wo = wyNy.
Conversely, if we only have w;! = w.Ng] and we define

w():ZG(Af) — CX, o = a)fo,

then (31) is satisfied. For this reason, if N binds (Veo, 7o0) to @ we will always
write wo 1= wsNry.

(2) If (Voo, o) belongs to w, then (31) implies that a)oa);olo is trivial on ZC (F)
and this is compatible with Remark 3.2 (2) asserting that the space M(G(Foo),
oo, Wg) i8 NON-zero only if wy (zoo) = wo(zy) for every z € ZG(F).

(3) If N binds (Vo, o) 10 W and wg := wy Ny, then

N7 M(G(Ay), Moo, w0) —> M(G(Ay). Ny oo, w0p).

is an isomorphism by Remark 3.4 (1).

(4) Suppose that ZG = Zg. If N binds (Voos Too) 10 Weo and (Vio, meo) 1S
irreducible, then the equality N ! v, = o3 already implies that (Veo, Nyl 7700)
is unitary thanks to (29) because oz} is and

G(Fo)

G _ N N
Z (Foo) = ZG(Foo) G(Foo) G/(Foo)

is an isogeny because G(F) is reductive.

(5) If (Voo, 7)) € Iit*(G(Fso), w3}), we may always take N = 1 and then
(Voo, %) belongs to any Hecke character such that a);l} =W and wo = wy.

Suppose that N binds (V, 7o) to @. Recall the scalar product (—, —)y,_, on
Voo: our assumption that (V. NC,_O1 TTso) 1S Unitary means that

|Noo(goo)|_2 (V0 (g00) s WTT00(800)) Voo
(32) = (U(No_olnoo)(goo)’ w(No_;”oo)(goo))Voo

= (U, w)Voo‘

It follows from Definition 5.1 and (32) that the following result is in force.

LemMma 5.3. Suppose that (Vo, Too) belongs to w and that

@1, 92 € S(G(Ay)/G(F), Too/G(F)> ®0)-

Then, for every z € ZG(Af) and y € G(F), we have the equality

INs Xy~ @1(2x¥£). 922XV )oo = IN£ ()| 7201 (X), 02(X)) Voo -
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It follows from (7) and 5.3 that, when (V, 7o) belongs to w, the rule

{o1.92) = [160a 1 INs G101 (xp), 92(30)) Voo d1tiG(a 01 (X7)

makes sense for the measurable functions ¢y, 92 € S(G(Af)/G(F), Too/G(F)> @0)-
We may therefore define the spaces L?(G(Af)/G(F), Too/G(F)> @o) in the usual
way, by taking the finite normed vectors in the completion of the quotient by
the kernel of (—, —) of the subset of measurable function on S(G(Af)/G(F),
Too/G(F)s @0). Since (p1g, p28) = (¢1, ¢2) for every g € G(Ay), we find a right
Hilbert space representation of G(A ). Then

M(G(Ay), o, w0) C L2(G(Af)/G(F), Too/G(F) @0)

is a dense right G(A s)-submodule.

Since G(Fuo)/ZC (Fso) is compact and G(Fx) a reductive Lie group, every ir-
reducible representation (Vi, 7o) of G(Fo) is finite dimensional and can be writ-
ten as the product (Voo, mo0) =~ Moex ) r.¢(Voo,os Too,0) Where (Voo o, oo,0) 18
an irreducible representation of G(F,) (uniquely determined up to isomorphism).
Here F, C C denotes the completion of F at oy, so that Foo = [],c X/ ¢ F,
canonically (once Xg,r has been fixed) and

(33) G(Foo) = [Tyexy, » G(Fo) € GXE/7 (C),

This facts motivate the following definition, where (V, 7o) could be any
continuous complex representation of G(F).

DEerINITION 5.4. A model of (Voo, 7moo) Over E is a family {(Vs, po)}oex,  OF
algebraic representations (V5 , po) of G,g such that, setting

(V’ 10) = gG'EXE/F,E(I/OW Po),

we have (Voo Too) =~ (Ve pe) as representations of G(Fs) C GXE/F (C) via (33).

It is not difficult to see that every irreducible (V, 7o) admits a model over
some finite field extension £/ F (and we may take E such that G, is split). This
definition applies to characters: a model of a character yoo: G(Fs) — C* is a
family of algebraic characters {y,: G/ — G,/ g} with the property that, setting

X = HO'EXE/F Xo» WE have XC|G(Fso) = Xoo-

Suppose that {(Vg,pg)}(,eXE/F is a model of (V, o) Over E and that
{xotoexy,r isamodel of yoo: G(Foo) — C*.If (V, p) and x are defined as above,
then we can consider p™o:X> (resp. pPCXC) comes from (30) (resp. (28) with
R=0C).
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Lemma 5.5. Up to the identification V) ~ V¢ induced by (Voo, o) =
(Ve pc), we have p™eeXoe ~ pPC:XC,

ProOF. Since G(Fu)/ZC(Fs), the Schur orthogonality relations imply that
pPC-X¢ is the projection onto the isotypic y.o-component. Then, using the fact that
we are working in characteristic zero and passing to the Lie algebras, the claim is
easily deduced. O

Suppose now that (xo, ) € X(H(Ay), HXE/F, ngf (wo)), implying that we

may consider the formal period integrals J;22%* (resp. Jpo %) (25) ob-
tained from (30) (resp. (28)).

ProrosiTioN 5.6. The identification (Voo, 7o) =~ (Vg, pc) induce isomor-
phisms of G(Ay)-modules

M(G(Ay), 700, wo) = M(G, p, w0)(C)
and
M[G(Ay), 700, wo] = MG, p, wo](C).

: . ToosX05X PCsX0.CsXC
The latter identifies Jy - ~ Jpe .

Proor. Recall that the morphism G(E) — GXE/F(R) of (26) was defined
so that it is induced by []yex, 00 E — C¥£/F when R = C. It follows
that its restriction to G(F) C G(E) equals the canonical morphism G(F) —
G(Fx) followed by (33). Hence the identification (Veo, 7o) =~ (Ve, pc) induces
a (G(Ay), G(F))-equivariant identification

S(G(Ay). oo, wo) = S(G(Ay), pc. wo).

The two isomorphisms follows. Going back to (25), we see that it suffices
to show that pTee:Xee ~ pPC:XC yia V) ~ V{ in order to prove Jyoo*0* ~

T *0-CXC Hence the claim follows from Lemma 5.5. O

6. The adelic Peter—Weyl theorem

Suppose that N binds (Vo, 7o) t0 w, so that we write wg = wsNy (see Re-
mark 5.2 (1)), and let dn_1,, . be the formal degree of the representation
N 700 With respect to 116 00 Recall that we write (V., 7) for the dual left rep-
resentation. The following result is an application of the Peter—Weyl theorem and
Definition 5.1 (it generalizes [24, Theorem 1.3]).



On the rationality of period integrals 59

ProposiTion 6.1 (adelic Peter—Weyl theorem). Suppose that N binds Voo, o)
to w. For every A € V! there is an injective map

SN = FRT2 LG (A ) /G(F), oo G(F), @0) > L*(G(A)/G(F), w),

induced by the rule fAN’.(x) = (N;INOO)(x)(A, @(xr)xz), which has the follow-
ing properties.

(1) Foreveryu € G(Ay), it satisfies the rule
Ihou = Ny @) fx .

(2) Forevery 1,92 € L2(G(Af)/G(F), Too/G(F)» Wo), it holds the formula
(A, A)yy,

<f11\\1,¢1 ’ fll\\l,cth) =

- <(p17 (p2)
ngol oo s MG, 00

(3) It induces an embedding

IR M(G(Ay), oo, w0) = A(G(A), w)

and, setting M[G(Af), Too, wo] 1= V5, ®c M(G(Af), oo, wo), for varying
As they induce the G(Ay)-equivariant identification:

IN = N0 MIG(Ay). oo, 0] (N7 1) —> A(G(A), )N 7oo].

(4) The above rules f”go = f,},\{’”go with N = 1 induce a G(Ay)-equivariant
identifications
Dt £ Bt ctert (G (Foy 0y MIG(Ay). T 00 = 7] —> A(G(A), 0)
and we have Im(f,’l,\?’”w) = Im(f,”ng) when 7l = N3 oo
Proor. It follows from the Peter—Weyl theorem that, setting
Y (x) o= (A vl (xeo)  for A € 7% and v € 7k,

yields a (G(Fx), G(Foo))-equivariant identification of Hilbert spaces (up to a
scalar factor on each component)

u

Dy, 1/’.?”1 @ngoelrr"(G(Foo),wgol)(Vo\Q 750) ®c Voo, Ta,)

(34) >
— §®IN(G(Fa), 03),
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where the target denotes the subspace of right G(Fo)-finite vectors in S(G(Fso),
w5 ). More explicitly, the fact that & u_ 1//”350 is an identification of Hilbert spaces
(up to a scalar factor on each component) means that the spaces indexed by
different 7 s are orthogonal, while du_ € RZ, is defined so that

(35)

S GFa) 26 (Fog) V0, (X00) VA, (Xo0) A6 00 (Xoo) =

MG, 00

(A1, Az)yy (i, )y,
d._u

TToo MG, 00

for vi,v, € ¥ and Ay, Ay € 7. Since G(Fx)/ZC%(Fs) is compact, every
irreducible and unitary representation is finite dimensional and it is a well known
fact that an element of S(G(Fso), W) is right (or left) G(Fy)-finite if and only if
it is the matrix coefficient of a finite dimensional representation. Next one remarks
that (see Remark 5.2 (1))

Nl 7eo _
(36) SN = 0T o (N 1)
and check that

37) AN =N (NN () g fANu

for every (g,u) € G(A) x G(A) using Definition 5.1. Since (N/Ng!)(g) = 1 for
g € G(F) one finds

S(G(A)/G(F), ToojG(F)> @0) = S (G(A)/G(F), w)

The continuity of N7 and (37) give the inclusion in (3) after applying (—)*. Taking
the completion gives the map f*'N between the L2-spaces and (2), in view of (35)
(which also implies the injectivity of £*N). In order to prove (4), from which
(3) follows, we may assume that N = 1 thanks to (36), so that f(pA’N = wxgo
with 7% := N3!meo. Applying (S(G(Ay), —)(EUEF)-D)X o (34) and employing
Lemma 3.6 (1) in order to express the left hand side, the claim is reduced to the
obvious

M(G(Ay). S TG (Foo). 03)). 0f) = A(G(A). 0). 0

7. Period integrals and their algebraicity

As usual, suppose that N binds (Veo, Teo) to @ and recall our morphism of
algebraic groups "H — G and o™ H(A) — C* such that »" is trivial

on H(F) and w|nZH(A) = o o Nyzn(s)- We set N7 := N o 7y and use the
shorthands w™" := (0")"! and N™7 := (N")"!. In this section we prove
“m7) I, ~ JF,. 7 the first step consists of expressing the projection p7oo-Xoe

ZH\H, 00
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arising from (30) in case yoo = Weo New in terms of integration. To this end we
focus on the local period integral

Iy.ot LAZE (Foo)\G(Fxo), 03) —> C
defined by the rule

Ir),oo(f) = fZH(Foo)\H(Foo) f(”(xoo))wgo(xoo)d/’LZH\H,oo(xoo)'

It is well defined because xoo > f(17(Xoo0))@Weo(Xoo) is invariant under ZH(F.).
The above formula defines a linear functional which satisfies the H(F)-equiv-
ariance property

(38) Iyoo(f1(1) = 03] () Iyco(f)  for every h € H(Foo).

Recall the embedding
YN0 (Voo N r0) > LA(G(Foo), 032
(see (34)) and define

. Nl 7eo . /v v
rp = Ipeo 0 WA,- Voo, 700 Voo oo

i.e.
Fa(M)(©) 1= Iy o (YR ™).
Lemma 7.1. The map ry, induces
Mg 00 PO N VY
— Homp(poo) (0N o0, €) = (7, (00)) ¥ (@3INI) P,
i.e. we have
Mmymyg oo IfA € (g (Too)) Y (wog NI YH(Foo),

= {o if A € (0 (00))” (e NGo) 1Fo) .

Proor. The embedding 1//2501 " is n(H(Fx))-equivariant and then (38) im-
plies that

N oo -
Ipoo 0 YA " € Homy(r,,) (@I N 700, C).

Suppose that A, € Homp(r,,) (0N oo, C), meaning that

(39) (NS 700) (11(X00)) Ay = @30 (Xoo) Ay
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Using (39) and exploring the definition of wfi’lf‘”, we find

YA (1(x00)) = Y™ (1)

noo)(n(xoo))An v
- _woo(n(x;»mfv (1)
= Do (1(ro)) (A . V).

It easily follows that

rn(Ay)(v) = I, oo(wA,7 noo) = HZH\H,oo(PHZH(Foo)) (Ay,v),

proving that r, = pzm\g o (PHzu (Foo)) - 1 on Hompy(r,,) (08NZ] 7oo. C).

Using the fact that ug « is both right and left invariant, one checks that r; is
H(F)-equivariant. Consider the orthogonal decomposition of the H( F,)-repre-
sentation

Vit = (Moo (T00)) Y (@I NI @ (7 (7100)) ¥ (0 NZ) HFo)

00, oo

The irreducible representations appearing in the orthogonal complement are not
isomorphic to the representation (n}oo (Too)) Y (W NZoYH(Foo) ' because this latter
is an H(F)-isotypic component. The H(Fs,)-equivariance of r,, which maps to
(.. (To0)) " (oo N&o)HFo2), implies that r, = 0 on Homp (£, ) (00N 7e0, €)'t

O

Recall the G(A f)-equivariant identification
SN MIG(Ay). 7o, w0] (N7 — A(G(A), ) [N 7oc]
from Proposition 6.1 (3). Since N binds (V, 7s0) to @, one easily checks that

(@IN], w3INL) € X(H(A7). H(Foo). 13 , (@0)-

oo, Nn OO” o0
Let us write J;) . w/ “ for the period morphism (25) obtained from (30)
with (x0, Xoo) = (a)"N” woo' N&). The following result expresses I o f.N-mee

oo, w/Nf (UoonNn .. A
in terms of Jy . , thus characterizing the restriction of I, to the

N noo-lsotyplc component of A(G(A), w).

THEOREM 7.2. We have (a)}NJ”,, woo' N&o) € X(H(Af), H(Foo), n, (o)) and

N NN
ﬂoo,waf:woo Neo
Iyo f27 = mzmp o - Tnre
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Proor. We may applying (7) to H and we find, also using (36),

N, 700 _
I (fA > ) = f[H(Af)]ZH Ioowfl(n(xf))dﬂ[H(Af)](xf),

where

= fZH(Foo)\H(Foo) WA (N lfﬂ)(n(x ))(”(xoo))woo(n(xoo))dﬂH,oo(xoo)~

Here we used up, c,O(xoo) /LH (X3} by unimodularity of H( Feo )/ ZH (Foo).

By definition this is 7, oo(lﬁ <p)(n( ), so that we find

loo = Vn(A)((NflsD)(ﬂ(Xf)))
= N7 () (M) (@ (n(xp)).
Hence we find
Iy(frg™)
- f[H(Af)]ZH (M@ ((xp))@z (n(xp)INF Cer))dimea it m (5r)-
Applying Lemma 7.1 gives the claim, thanks to Lemma 3.7 (4). |

If {(V5, pg)}geXEO/F is a model over E of (Vio, 7o), We set

(V, P) = gG'EXE/F,E(I/GW pO')

We can now prove mzlli\H Iy~ Jp, ~ Jo”

CoRrOLLARY 7.3. Let E/Q be a Galois extension such that wg: Z6 (Af) = E*,
that{(Vs, po)}oex, p is amodel of (Veo, oo) over E and that {(w™"N") }oex s, -
is a model of weo Now over E. Then (Veo, Too) =~ (V. pc) provided by Defini-
tion 5.4 induces an isomorphism of G(Ay)-modules

M(G(Af), oo, wg) = M(G, p, w)(C)
and
M[G(Af), oo, wo] = M[G, p, wo](C).

Using this identification, the morphism mZ\IH, oI ° f,,l:o extends to the mor-

phism of functors

p.w N} (@ "N XE/F

Iy :M[G, p.wo] — Ajp

of Proposition 4.1.
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PROOF. Set oo = woo' Noo and 1 := [[,ex,, . (0 7"N")4, s0 that oH(Fo) =
Xoo- Then Proposition 4.1 gives the morphism of functors and the claim follows
from Proposition 5.6 and Theorem 7.2. O

7.1 — The rationality of the period integrals

Recall that S¢ C Zg denotes the maximal split torus in the center of G.
Let 7:G — S;; be the maximal quotient of G which is a split torus. Then
¢G:S¢ — G — S, is an isogeny of tori and we define G; := ker(r). Recall
our given 7 and define Z, := n~'(Zg) N Zy C Zg. We specialize the setting
pictured just after (8) to the case where

H,ZY)  with Sy c Z" ¢ Z, and (G, Z®) = (G, Zg).

Furthermore, we suppose that F is totally real (see Remark 2.1).

Also, we fix an extension E/F such that G, is a split reductive group and
E/Q is Galois: we also fix a set Xg,r of embeddings o: E — C extending the
(classes of) archimedean places of F. Recall that we view C as an E-algebra
via 000 E — C (see (26) and the discussion around there for the notations).
If (Voo» Too) € Rep(G(Fno)) (resp. (V. p) € Rep(fo/ ) has central character
Wro (1ESP. Wp), We call ) 1= Wr ,|S¢(Foo) (TESP. a)f) := wy|s¢) the split central
character of the representation.

DEerintTION 7.4. Suppose that (Vio, 7o) € Rep(G(Foo)). We say that it is
pseudo-algebraic if w;__ has a model over F, i.e. if there is a family of algebraic
characters {ws: S¢ = Gm}oexy /F with the property that, setting

. QXE/F
W= &UeXE/Fa)g.SG — Gy,

we have wgisg(Fo) = @5 . Where (33):Sg(Foo) C SéE/F(C). We say that it is
parallel (resp. even) if it is pseudo-algebraic and wy = wq,, for every o € Xg/F,
i.e. w has all the components which are equal in X *(SéE/ Py = X*(Sg)XE/F
(resp.  is a square in X*(SéE/F) = X*(Sg)XE/F).

Consider the (normalized) absolute value functions

|—|,: Fy' — RZ,
—la, 1 A7 — Q.

|—|q A — RE.
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Setting
N:=|=[4, [=loo : Gm(A) — C

gives a function such that N N;ol = |—|1§1 is trivial on G, (F) by the product
formula. Suppose that y: G — G, is an algebraic character and that t: R* — G

is a character. Then we define 7,: G(R) RS G.In particular, we have the
continuous character

N, GA) 25 ax 5 R
and, recalling that Ny = = Ay and Noo = |-

|— I_
Xf G(Af)—)Af —> Q+
and

I~loo
Ny 00: G(Foo) 253 FX =3 RX.

Of course N, (resp. Ny o) is the finite adele (resp. oo) component of N, as
suggested by the notation. If k: Q% — R is a character (that we usually write
exponentially r + r*), we can also define

K. Nes x x
N, r1G(Ay) — Q}F — R
Note that y00(G(Fo)) = Xoo(G(F0)®) C R, implying that yr(G(F)) C F

and we may consider ky := k o Npjq o xr.If V. = (V, p) is a representation of
G(Fy) with coefficients in R, we write V(k,) = (V, p(k,)) for the representation

Pk )(g) (V) 1= Kky(g)p(g)v.

RemARrk 7.5. The continuous character N, is such that N, r N oo 18 trivial
on G(F) and we have

NY. » € M(G(Ay), R(kcy), N, f|ZG(Af))

for every open and compact K € XK.

Proor. This is an application of the product formula and the fact that we have
xr(G(F)) C F¥. O
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The main result that we want to prove in this §7.1 is the following.
THEOREM 7.6. Suppose that H(Fs) and G(F) are connected and that F is

totally real.

(1) The association

Noexp, p.E Vo, po) = (V, p) = (Ve pCIG(Foo))

obtained from (33): G(F) C GXE/F (C) induces an injection
. XE/F
ngxm Ir(Gyg) = (G5 ") < Trr(G(Foo))

and this is a bijection when G(Fso) is compact, which happens if and only if
Sg = {1}

2) If [(Voo, Too)] € Irr(G(Fxo)) we have that [(Vso, oo)| belongs to the im-
age of the map in (1) if and only if it is pseudo-algebraic. In this case,
8r00: G(Foo) = C* has a model over F, i.e. there is a family

{ve = Vieo,0- G— Gm}aEXE/F
with the property that, setting
Vi= z|<reXE/FVU:(;XE/F — Gp,
we have
vclc(Foo) = 871'00'
3) If [(Voo, Teo)] € Irt(G(Fxo)) is parallel, taking N = N‘I,ZO!UOO:G(A) - RY
o = 8,1,{.5 and N binds (Vo, Too) 1o @ (see Definition 5.1)

e 1 o1/2
Zg((F; — C* such that wse = a’nolo‘gﬂéo

we have N1/2
Too

000

for every unitary Hecke character w:

Suppose that [(Veo, To)] € Irt(G(Fso)) is parallel, that (Voo, Too © Neo) €
Rep(H(Fwo)) is even and that the extension o™: H(A) — C* of won g zmy) is such

that vl € Irr(H(Fy)) is pseudo-algebraic ( for example because won Az =1
N2
and we take @" = 1). Then mzun\y o, (PHzn (Foo)) ™1y 0 fz .77 extends to

the morphism of functors

1/2.n

n1/2)Xg/p
Vitoo.000

Too

Jp,w}z N
n

(0™

MG, p, 0]/ E(wy) — A}E(wo)

1/2

of Proposition 4.1 with w9 = wy N r and E(wo) = E(wy) obtained from

Vreo .0

E adding the values of either wo or ws as in (3). If Voo, oo) and wls have models
over E'/Q Galois with F C E' C E, then we can descend to E'(wy).
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Before proving the result we make the following remark.

RemMARrk 7.7. Let F be totally real in the following observations.

(1) If n: H — G is an algebraic subgroup then n~'(Sg) = Sy and 71 (G(F)) =
H(F). In particular, when (G, Sg) satisfies the assumptions (Al)—(A3), it
follows that (H, Sg) satisfies the assumptions (A1)-(A3) and Sy = ZHc Z,.
In other words, Theorem 7.6 applies in this case with ZH = Sy simply
assuming that (G, Sg) satisfies (Al)-(A3) and that H(F) and G(Fs) are
connected.

(2) When (G, Sg) satisfies (A1)—~(A3), and G(Fs) is compact,i.e. Sg = {1} (for
example because Zg is finite, under (Al) for (G, Sg)), every [(Voo, Too)] €
Irr(G(Fs)) is even and parallel. Furthermore, G(Fs) C GXE/F(C) is
a maximal compact subgroup which is therefore connected because its
complexification GX£/7 (C) is connected (see the proof of the following
Lemma 7.8 (2)). Hence assuming that n: H — G is an algebraic subgroup,
Theorem 7.6 applies removing all references to being even or parallel and the
connectedness assumptions.

3) When n: H — G is the diagonal immersion in the product of totally definite
g p y
quaternion algebra over a totally real field F', Theorem 7.6 applies.

Fix T ¢ B C G/g, where T (resp. B) is a split maximal torus over E
(resp. a Borel subgroup defined over E). We write N C B for the maximal
unipotent subgroup. Let K C GX£/F (C) be a maximal compact (Lie) subgroup.
The Borel-Weil theorem implies that the representation theory of GfEE /¥ and K
are obtained as follows (see for example [25, Chapter VII, §7] and [22, Part II,
§5] for an algebraic point of view). For every dominant weight A of Gj(]f " we
may naturally extend it to a morphism A: BX2/F — G,, by setting A(n) = 1 for

every n € NX£/F Then we can form the BX2/F -equivariant sheaf O,xp/r(A) on
JE

fo /¥ which is simply O xp,r endowed with the BXE/F _action defined by the
/E

rule
(fb)(x) :=b7" 5 f(bx) = A(b)™" f(bx).
Consider the quotient 7: fo/ R BXE/F\G;KE/ "and let O, g (1) be the sheaf
on BXE/F \Gj(]f /¥ which corresponds to O,xz/r (A),i.e. the sheaf defined by the
JE

rule M
0/5M)(U) = T(r V). O ()T
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Setting
. XE/F\ «XE/F
Pir =T B/ \G)E'" 0z (1))

for every E-algebra R, yields a left irreducible algebraic representation P, of

fo /¥ by right translations (g f)(x) := f(xg): it has highest weight A and central

character wy = Az Xg g Since we work with right representations, we let L) be
G

/E
the dual representation with right action (Ag)(f) := A(gf): it has highest weight
A and central character wy = Az, Xi/ g Note that L, ¢ is the C-dual of
G/

Prc=1{f ¢ Ogxer (G)&"):for all b € BXE/F (C), £(bx) = A(b) f(x)}.

Furthermore, T := K NBXE/F (C) is a maximal connected commutative Lie sub-
group and the inclusion K € GX£/7 (C) induces T\K — BX£/F (C)\GX£/7 (C).
The choice of a Haar measure g on K fixes a K-invariant Hermitian scalar prod-
uct on P, ¢ by the rule

(f1. f2)a = [x [i(x) 2(X)dpk (x).

Letting ®: Py ¢ — V¢ be the conjugate linear morphism (®(v), x) := (x, v)y,
we transport (—, —), to a pairing Hermitian scalar product on V} ¢ by the rule
(Y, v = (P7N(wY), @71 (vY)) (as we did before Definition 5.1). Then
(vk, wk); = (v, w), for every k € K. The Borel-Weil theorem asserts that the
association A +— Lj (resp. A — (L, ¢k, (—, —)1)) realizes a bijection of the set

of dominant weight with (an explicit) set of representatives for Irr(Gj(]f ’F) (resp.
Irr(K)). In particular, (V, p) = (Vc¢, pcix) is a bijection

(40) (G £/7) > Tre(K).
We now need the following result.

LemMma 7.8. The following facts hold.

(1) The morphism of algebraic groups Sg x G1 — G defined on points by the
rule (s, g1) &> sg1 is an epimorphism of fppf sheaves whose kernel is a finite
group. Furthermore, it induces an isomorphism

SG(Fx)® X G1(Fso) — G(Fxo).

(2) The inclusion (33): G1(Fs) C GfE/ F(C) makes G1(Fso) a maximal com-
pact subgroup of GfE 'F(C) and GfE ¥ is connected and reductive.
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Proor. The first statement is a formal consequence of the fact that ¢g is an
isogeny and G(F) = G(F)°. We remark that, if K is an algebraic group over R
such that K(R) is compact, then K(R) C K(C) is the complexification of the real
Lie group K(R) and then it is known that K(RR) is connected if and only if K(C) is
connected, meaning that K is connected (by [27, Aside 2.45 (a)]). It follows from
(1) that S(i(g,";)) — G1(Fx) is a continuous surjection (indeed an isomorphism):
hence G1(Fy) is connected and, thanks to (Al) for (G, Sg), it is also compact.
But we have G (Fso) = GfE /" (R) (because F is totally real); the above remark
implies that G (Fy) C GfE/ “(C) is the complexification of G1(Fs) and that

Xe/r S .
G, ”/" is connected. It is obviously reductive and we are done. O

CoroLLARY 7.9. Suppose that the representation (V, p) € Rep(G;(}f 'Y (resp.

(Voos Too) € Rep(G(Fwo))) is irreducible.

() If (V,p) € Rep(fo/F) (resp. (Voo, Too) € Rep(G(Fso))) is an irre-
ducible representation, the representation is still irreducible when restricted
X
to Gl/i:/F (resp. G1(Fx)).

2) If Voo, o) € Rep(G(F)), then there is p € Rep(GXE/F) such that
/C

. « X T . «
PCIG(Fao) = Toos I Short oo “€ Rep(G/CE/F), if and only if Too|G, (Fso) ‘€
X » « X »
Rep(G) /") " and o, := Toolsg(Fa) “€ Rep(Sg")-

X
(3) I (V.p). (V) € Rep(G)¢ /") and poscire) = Plaery then p = 1

Proor. Claim (1) follows from Lemma 7.8 (1) and the fact that SéE F (resp.
SG(Fo)) acts by means of the central character on an irreducible representation.
In order to prove (2), suppose that we are given a morphism f: H — G of algebraic
groups over R which is an epimorphism of fppf sheaves whose kernel is a finite
group which is still surjective when taking the real points. Let 7o: G(R) —
GL,,(C) be a morphism of real Lie groups which pull-back to 7 o f: H(R) —
GL, (C) which is algebraic: we claim that f is algebraic. We recall that, for
an algebraic group K over R, we have that K(R) C K(C) is the algebraic
complexification, meaning that we have

41) Hom¢ —alg—gr(K(C)’ GL, (C)) = Hom]R—alg—gr(K(R)’ GL, (C))

The identification is a consequence of the universal property of Resc/r(GLy R)
after identifying a morphism of schemes with the morphism induced on points
(by smoothness of K in characteristic zero). Taking K = H, it follows that there
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is a unique algebraic ps: H(C) — GL,(C) such that psjpmr) = 7o © fr. We
claim that psxer(£)(c) = 1. Once this result has been proved, we will deduce that
there is a unique algebraic morphism p: G(C) — GL,(C) such that po f = py.
Since fr is surjective, pcigm) © fR = PFHM®) = 7Too © fr Will imply that
Teo = PoiGr) 18 algebraic. But prikerryc) € Homge alger(H(C), GL,(C))
maps t0 pf|ker(f)R) = Too © fRiker(r)®) = 1 and (41) implies pyiker(r)) =
1 as wanted. It follows from Lemma 7.8 (1) that we can apply this result to
SXE/F GfE /¥ GXE/F; since F is totally real, the real points of these groups

G
H are (33): H(F) = HX2/7 (R) ¢ HX£/F (C). Claim (3) is clear from (41). O

We can now prove (1) and the first statement in (2) of Theorem 7.6. First of
all, if (V, p) € Rep(Gf]f/ ) then we know from Corollary 7.9 (1) that PGYEF
1/E

/
is still irreducible. It follows from Lemma 7.8 (2) that we may apply (40) with
K = G1(Fx) C GfE/F(C) and we deduce that pg|G, (F..) is irreducible. Then
PCIG, (Foo) 18 irreducible a fortiori. Hence the map p — p¢|G(F.,) induces a map
between the irreducible classes. The fact that it is injective follows from Corollary
7.9 (3). The characterization of its image follows from Corollary 7.9 (2), since the

condition Teo|G, (Fuy) € Rep(Gf/%/ Ty’ is free; indeed, we may apply (40) with

K = G1(Fx) C GfE/ "(©), thanks to Lemma 7.8 (2). Finally, the equivalence
between G(Fs) being compact and Sg = {1} follows from Lemma 7.8 (1).

As remarked G1(Fs) is compact. Hence (we may assume) G1(Fs) C K:
writing every element g € G(Fy) in the form g = s,g1 with (sg,81) €
Sc(Fso)® X G1(Fso), as granted by Lemma 7.8 (1), we see that ( f1g, f2g)s =
|a),1(sg)|2 (f1. f2)2. Since F is totally real it is easy to see that wy (sg)> € R,
so that |a),1(sg)|2 = w;(s¢)?. But for an arbitrary element z € Sg(Fs) We
have z2 € Sg(Fwo)®, so that one finds w,(s;)*> = w3(z). It follows that, setting

3 X / iT)
ToolG(Foo) 1€ ReP(Gl/% F) and SnOOISG(Foo) =

2 173 XE/F EL) . 173 XE/F tL) s
a)MSéE/F € Rep(SG/(D ).” Corollary 7.9 (2) yields §,._“€ Rep(G/C ).” This is

oo = PC|G(Fso)» WE have §

the second second statement in (2), once we remark that §,__“c Rep(GX&/F),”

because its pull-back (1,a)§| ) is defined over F and S(X}E/F % GfE/F =

XE/F
S¢

GXE/F is an fppf quotient over F. When (Vo 7oo) is parallel, it is easy to deduce
that v is parallel. This factimplies that Vo 0o = V|G (Fao)- SINCE Vgoy,00(G(Fo)) =
Vooo,00(G(Fo)®) C R, we have Ny, oo = Voo ,00- It follows that Ny, oo =
VC|G(Foo) = Omoo- Since 8;:0/ znoo is unitary, the statement (3) follows from
Remark 7.5.
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Finally, the last statement of Theorem 7.6 follows from Corollary 7.3, as far
as we know that wog! N‘I,J/T i;"doo - has a model over E, since then all assump-
tions required for its application are satisfied, thanks to (3). If £ is a represen-
tation of G(Fs) or ZéE/F, let us abusively write §s(Foo) OF § Xz (0 mean

H
the restriction of £ o n: it makes sense because Sy C Z,. Since 7 © o i
1/2 2 _ 2 . _ 1/2y2
even, we have (§,"° ISH(1,,00)) = stgE/F with CL)MSXE/F = (w'/*)* for some
X (13 2
wl/? e xX* Sy E/FY . We deduce 57[ S(Foo) = MSXE/F € Rep(SH%F) be-
cause 83/%(Su(Fao)) C RX and w;(Su(Fx)) C RX in light of a)MSXE/F =

(w'/?)2. Another application of Corollary 7.9 (2) as above yields 8,,00 0 Neo'‘E
Rep(HX2/r)” This means that there is some v"-'/2: HX£/F — G, such that

von = (v/2)2. But then we see that (vg]g(zF )2 = NJ o since

both v(glll{/( Foo) and N" o oons o takes values in R, we deduce that vmh/(zF )y =

NmL/2 o NL/2 . Th1s means that N/ has a model over F and
To0.000 2 oo .000 o0 .000 2

we are done.

7.2 — Proof of Theorem C of the introduction

Here we prove Theorem C of the introduction assuming that F = @ to sim-
plify a bit the notations. Recall that we have fixed E(w,Ad) C C and that
we write x +— X for the induced complex conjugation on x. We also set
E*(w) = E(m,Ad)E(w,Ad) and, for an E*(r)-vector space, we write V for
the conjugate vector space. We sketch the proof, leaving to the reader the proofs
of the following (42), (43), and Remark 7.10.

In the paper we have defined a global sub E*(7)[G(Af) x G(Q)]-module
TE*@r) of T = mf ® Moo, namely g« () 1= M[G, p, wo](E(wy))[r] (see Propo-
sition 4.1), such that C @ g+(x) TE*(r) = 7 and C @Eg+(x) p = Too. An alge-
braic argument shows that there are E*(7)[G(Q,)]-submodules wgx(x),, C my
such that m, ~ C®E+*(r)TE*(x),v for every finite v with the property that, as
E*(m)[G(Afr) x G(Q)]-modules,

(42) TE* ) ~ (QE* (r).voo TE*(x)w) ®E*(x) P-

Furthermore, it follows from Theorem 7.2 applied to the diagonal G C G x G
(and ZC® = Zg) that the Petersson inner product (—, —), on 7 is the base change
of (—, ),,E*(ﬂ) TE*(xr) QFE*(x) TE*(m) — E* (). Since mwg«(y) is irreducible
(because 7 is), we can write

(43) <—, nE*(n) ®E*(n’)v ’ )ﬂE*(n),v
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where (—, =)z w00 TE*()0 ®E*(m) TE*(m)w — E* (1) is G(Qy)-invariant
(resp. G(Q)-invariant) for finite v (resp. v = o0). Recall that, since H(R) is
compact, ZH = Sy = {1}.

REMARK 7.10. Let i), UH(a ) and wp,cobe any measures on H(A), H(Ay)
and H(R) such that uga) = 1H(A ;) X UH,0o- Then (7) is satisfied by the couple
(H, {1}) and, when upa ,)(K) € Q for some (and hence every) K € K(H(Ay)),
then gy (H(R)) ~ fercn) /(o (H(A) /H(Q).

Let ;tp(a) be the Tamagawa measure, choose local measures upy,, at the finite
primes so that up ) = [[y<co #Bv and pp H(K) € Q for some (and hence
every) K € X(H(Ay)) by imposing a similar local conditions un(q,)(Kv) € Q
for Ky, € K(H(Qy)) and fix pmeo so that ups) = UHA,) X AHco- Then it
follows from Remark 7.10 that the the normalizations imposed on the couple
(H, {1}) after (7) are satisfied. Since H := N x Gy, we may further suppose
that g, a) = [, #Gw v With ug,, (a) the Tamagawa measure. It follows from
UGy @A) = [, hGw v With LGy, (a) the Tamagawa measure and (43) that (5) is in
force (see [26, Remark 2.6]).

We embed 7mg«(y) in the space of automorphic forms via f }\\1 with A €
TE*(r) = TE*(x) Which is non-zero and H(Q)-invariant (the ~ because we are in
a self-dual situation, since G(RR) is compact). Note that the non-zero A exists,
unique up to a non-zero constant, thanks to (3) at v = oo, because we have
the equality there thanks to G = G/,. If follows from (42) that a E*(;)-rational
global test vector can be chosen so that f = (®) _,, fy) ® A is a pure tensor
of E*(sr)-rational local test vectors f,. Thus, the matrix coefficients of f, with
respect to the E*(;r)-rational H(Q, )-invariant bilinear pairing (—, —) are
E*(;r)-valued. We have

TE* ()0

Ly(1, 7wy, Ad)Ly(1, mw, Ad)

o) =T o R W) AGy v

Iy(fv)s

where I, ( f) is the (stable) matrix coefficient [26, (2.2)] and I,( f,) € C* because
fv is a local test vector (note that our «, is denoted (xﬂ in loc.cit.). Let S, be
the set of bad primes (i.e. not good according to [26, After Theorem 2.1]). Since
m{(“ ~ C® E*(”)ngi(n),v, according to [26, Conjecture 2.3] (that we assume)
and [26, Theorem 2.2] with K, = Ko, x K5, in loc. cit., we may assume that
ay(fy) = lforevery v ¢ S;. Letus suppose for the moment that, at finite v € S,
we have I,(fy) € E(x) and, hence I, (fy), ay(fy) € E*(r)*. At v = 0o, we have
that foc = A is H(R)-invariant (by density of H(Q) C H(R)) and we notice that
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(cf. [26, Proposition 3.15] to see that e can be defined as above in our case)
Loo(1, my, Ad) Loo(1, rw, Ad)
Uoo(foo) =
Loo(1/2, 7ty R aw ) AGy 00
Loo(1, my, Ad) Loo(1, w, Ad)
Loo(1/2, 1y W tw)AGy 00

(foon foo)2 s, Moo (H(R))

P00 (H(RR)).

The result now follows from Theorem A of the introduction, in view of (5) and
paw)(HIR)) ~ wra)/m@HA)/H(Q)) € Q* (Tamagawa number conjecture).

It remains to explain our assumption 7, ( f,) € E (7). We remark that the global
model of # = wy Ky is indeed the tensor product of models of 7y and 7. We
can repeat the above consideration componentwisely and decompose both f, the
fos, {—, —)nE*(n) and the (—, _>”E*(n)7v s as a tensor product of their analogues for
my and . Then (see [26, (2.2)]), we have to integrate the function ¢y, defined
by the formula

¢ty (hy) == (TE*@m),0(hv) fo, fv)nE*(n)’v
= (v, E* ()0 (7o) fyvs fV0dmpe iy

(nW,E*(]T),U (hv)fW,va fW,v)nE*(ﬂ)_U

on H(Qy) = N(Qy) ¥ Gw (Qy), where N(Q,) acts via the projection to G (Qy)
on mw,y. On N(Q,) the integral is stable and, if we assume that 7y |G, (Q,) OF
mw, are compactly supported, then [26, (2.2)] is reduced to a Q-linear combi-
nation of integrals of matrix coefficients over Gy (Q,) (see [26, pag. 16]). Then,
because n(q,)(Kyv) € Q for Ky, € KX(H(Qy)), the integral is a sum of integrals of
compactly supported locally constant functions and it is therefore a Q-linear com-
bination of values cy, (hy) € E* (). In general, without making any assumption
on the support of the matrix coefficients, we can conclude as follows. Because
G(R) is compact, we are in case r = 0 (see Remark 1.2) and, hence, the proof
of [28, §1.7 Lemme] (which also works in the unitary case, as remarked in [15,
§4.1.5]) shows how to reduce the integral I, ( f,,) to a Q-linear combination of val-
ues in E* (i), using the fact that ¢z, (hy) € E* (7).

8. Examples

Let B be a definite quaternion division Q-algebra and let B (resp. B*) be the
associated ring scheme (resp. algebraic group). We set By := B(Ay) (resp.
B;f = B*(Ay)) and B, = B(Q,) (resp. B\ := B*(Qy)) if v is either a finite
place or v = co. We write b — b* for the main involution and nrd: B* — G, for



74 M. Greenberg — M. A. Seveso

the reduced norm. Suppose that k := (k1,...,k,) € Z", naturally regarded as a
character of GJ,. Then we can consider the algebraic character

x" nrd

nrd®: x'BX —5 G

k
o — G

Explicitly, nrdl—‘(bl, ....b)) = nrd(b))*1 .. .nrd(b,)*; when r = 1, we write
nrd® := nrd®. We note that x” nrd realizes the maximal quotient which is a
split torus, so that we get a description of X *(Sy;), the characters of x"B* defined
over Q. More generally, if k = (x1, ..., ;) is a family of characters «;: R* — R*
regarded as a character of R*" via x¥ := x'f U x5 we define

nrd: x" B (R) 50 pxr £, R,
If V.= (V,p) is a representation of either x"B* or x” BX with coefficients in
R and k is as above, we V(k) = (V, p(k)) for the representation p(x)(b)(v) :=
nrd® (b)p(b)v. Taking y = nrd¥ in the discussion before Remark 7.5 with k € Q"
yields the functions Nrd;'f = Nonrd;'f, Nrdj'i = |—|1§lf o nrd;'f and Nrdlgic> =

|—|oo © nrd;'f. Remark 7.5 gives

k k- k k
Nrd} := |nrd, |A; € M(x’BX,R(I_c),NrdJ;)K C M(x"B*, R(k),Nrdy)
for every open and compact K € K. Take n = A
A:B* — B* x B* x B*,

the diagonal inclusion.

Let E/Q be a Galois splitting field for B and fix B;g ~ M, inducing
B;(E ~ GLy/g. If kK € N we let Py/g be the left GL,,g-representation on
two variables polynomials of degree k, the action being defined by the rule
(gP)(X,Y) = P((X,Y)g). We write V; for the dual right representation. If
k := (ky,...,k;) € IN", we may identify Py, /g ® --- ® Py, g with the space
of 2r-variable polynomials Py, which are homogeneous of degree k; in the i-th
couple of variables W; := (X;, Y;). Then Vi, ) g ®---®Vy, /E is identified with the
dual Vi /g of Py g and any P € Py /g (—r)GL2/E je. such that gP = det(g)” P,
induces

Ap € Homgy, , . (Vi/E,1/E(r))
by the rule Ap(l) := I(P). Note also that, if P # 0 then there is / such that

k
I(P) = landweseethat Ap # 0.Setting 0 # 8% (X, Y1, X2, Y3) i= ‘2 g
have §' (W1 g, Wag) = det(g)8 (Wi, Wa), from which it follows that §; € Py i/ g
and g6F = det(g)ks*¥. We deduce that (—, —); := Az # O satisfies the
above requirement: then the irreducibility of Vi, g implies that it is perfect and

symmetric.

, We
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If k := (ki,ka,k3) € IN3, we define the quantities k* := %,
ki = w, k> = W and k} = W With a slight abuse
of notation, we write Py, g and Vi, to denote the external tensor product, which
is a representation of GL; JE- When k* € IN and k is balanced, we can also define

Ag/e € Homgy,, . (Vi/e. 1/£(K™))

as follows. The balanced condition precisely means that k > 0 fori = 1,2,3, so
that we can consider

0 # Mg/ i= 85T (Wa, W3)8%2 (Wi, W3)853 (W, Wa) € Py

We have gAg/g = det(g)¥" Ar/E- Hence Ay g € Py/E (—k*)Cl2/E and we may
set Ag/g := Aay,r 7 0. The following result is an application of the Clebsch-
Gordan decomposition that we leave to the reader.

Lemma 8.1. Suppose that 2k™* = ki + ko + k3 € 2IN and k is balanced.

(1) There is a representation Vi of B* such that
E® V>~ ViE
via B/E ~ GLy g and (—, —)r € Hompx (Vi ® Vi, 1(k)) such that

E® (= =)k = {— —)k/E-

(2) We have, setting BY := ker(nrd),

dim(Homle (V]_c, 1)) = dim(HomSLz/E (Vl_c/Ev l/E)) =1.

8.1 — An explicit Harris—Kudla—Ichino’s formula

All the representations of B*3(R) are pseudo-algebraic, arising from twists of
the representations Vi, g, whose diagonal restrictions are even precisely when
2k* is even (according to Definition 7.4). Taking (Voo, o) = Vi (R) in The-
orem 7.6 (3), we find Ni/2 = Ned*2(r), N)> = Nrd"/ 2(¢) and

N‘I,J/io(r = Nrd]f/z(_t) where k/2 = (k1/2,k2/2, k3/2) and t = (11,12, 13).
Similarly we find that Vg, ¢ belongs to w; for every w; = wy; ® sgn( —)ki
and, in this case, we have wo; = wy; Nrd ki/2 We note that we have Nrd' =

Af(a)f,lNrdf L Wf2 Nrdf2 L WF3 Nrdf3/ ) when wiwyw3 = 1. 1t follows that

k* k*

Nrd, ,nrdgg

we can consider the quantity 7, := M A;\ ; . (Ag/E) defined by (21). The fol-
lowing result is now a consequence of Ichino’s formula (see [20]), rephrased by

means of Theorem 7.2, and Theorem 7.6.
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THEOREM 8.2. Suppose that k is balanced and that w; = w; 5 ® sgn(—)ki are
unitary Hecke characters such that wiwaws = 1, implying k* € IN. Consider the
quantity

Ak (o(x,x,x))
(@) = uB(a)(Ko) Xoxek,\B(a,)/B(F) e N '
Ko v

where K, € X(G(Ay)) is such that A: K, C Ky x K> x K3 and

(1

2

3)

g € M(B*3 Vi o Nrdi/%)Ke = @1\ M(B*, Vi, ¢, i, Nidji/?)Ki,

We have

I ROLO/2.7)
L(1,— Ad) [, e

2 _
L, =

3,2
2°my \B oo

-Nrdk/2 yu

. k.C,
as functionals on f Apr

k/2
_ M(B3, VY .0y Nids?) ¢ 4B (M), )
with v = (w1, 2, ®3). Here the quantities appearing in right hand side have
a similar nature as those in (5) (see [20]).

fO=I,Q® VZJU is an automorphic representation of B*3, we have

k/2
-Nrd¥/ ,VZ_C —k/2

MB*3, Vi c. op Nidy |[Ntd *72 T ] ~ AG(A), w) (1],

Setting J(A ®c @) := Atg(@) when A = AN and J(A Q¢ ¢) := 0 for A
orthogonal to Ay in Vk o we have

-Nrd¥/2 v
A Xo)
In o f.- = Mzp\B,c0

on M[B*3, VZ o OFf Nrd;{/ 2] and this rule extends to a morphism of functors
from modular forms with coefficients in Q(wy)-algebras to A'.

Suppose that TI' is an automorphic representation of GL; and that the
discriminant predicted by [29] is that of the quaternion algebra B. Then

L(IT',1/2) #0
&= M(A) #0 on MB®, Vi @,war )[Nd ],

with T = Ty ® V{ . corresponding to TI' by the Jacquet-Langlands
correspondence. i
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8.2 — An explicit Waldspurger’s formula

Let j: K — B be an embedding of a quadratic imaginary field K in a definite
quaternion Q-algebra B (so that B*(R)/Sgx(R) is compact). This embedding
induces j*:Resg/q(K*) C B*, where B* (resp. K*) is the algebraic group
attached to B (resp. K). We consider

n:=j" x 1:H:= Resg/q(K*) C B* x Resg/q(K*) =: G

(so that Sy = G,;). We fix B/g ~ M,k inducing B;(K ~ GL;,/k and can
take E/Q any Galois extension such that K C E. We may also view Vi g
as a representation of G, g letting H,g acts trivially.Let 7, be the automorphic
representation of A(B*(A), &) [VZ’C] obtained as the Jacquet-Langlands lift of the
representation 7, of GL; attached to a modular form g of weight k + 2 and let
x:Resg/q(K*)(A) — C* be a Hecke character of K. Let the assumptions be as
in [31, III, §3]: mg is unitary, x|G,a) = € = 1 (i.e. g has trivial nebentype)
and y is a finite order character. Then 7, x y~! € A(G(A), 1)[z%] where
Too = Vie X Xoo = Vi
The maximal split toric quotient of G (resp. H) is

nrg := (nrd, nrg;q): G = B* x Resg/q(K™*) — Gy X Gy, (resp. nrgq )
Hence the algebraic characters of G (resp. H) can be describes as follows: if
(k,1) € Z*> = Hom(G2,, G,), we set nrlé’l(g) := nrg(g)®P (resp. nrlK/Q(h) =
an/Q(h)l) We define Nr]é’l = Nonr’é’l (resp. erK/Q = Nonrk/Q) so that
NrG on = NrK /l Then Theorem 7.6 applied to 7, = Vi (C) implies that Theo-

k/2,0 IRV _ k/2 nrt/2
rem 7.2 in force with N = Nr; ™", so that (a)fo, W N&) = (NrK/Q 2 K/Q)

If Q;/r € Py/g be deﬁned as in [12, §2.3.2] (which applies with no changes
when K is imaginary), then the evaluation at Q;‘/ 2 e Py e gives (see [12, (3.5)])

Aj,k/E € HOIIIH/E (Vk, 1(k/2))

It follows from [12, §2.3.2] that there are models Vi and A x over Q for the rep-
resentation Vi, g and A ;. In this case, Proposition 6.1 gives the identification

k/2 yu
f’NI'd ch M[BX3 Vk(D,NI‘dk/ ][Nrd k/2 T[g f] ~ A(BX(A) 1)[7Tg]

Hence, if Ky, € X(H(Ay)) is such that n(Ky,,) C K, x Ky and

QX x le M(G(Af) Vi NrG fle(Af))K(p’X
= MB*, Vic.NHXe @ MB*, 1, 1)X7,
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we have

Vk_q;,Nrk/2 ,nrk/2 _
J-1(p) ==y KIQTTKIQN e @ (9 x 1)

_ (K A X~ (XA k0((x)) ‘
HHG ) (Kopx) 2oxeky , \H(A)/H©Q) Tro, OINETZ )

Let 7,1 be the representation attached to the theta lift 6,1 of %~ L. Then Theo-
rem 7.2, together with (5) (see [31, Proposition 7]), gives

JX(QD)JX—l((p) = JX(‘P)W
(49 — 1 §Q(L(1/2, 7wy X 7wy—1)
N 4dmgy\H,00 L(1, T, Ad)L(1, 7y-1, Ad) Hv oty (@p).
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