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Pseudo-dualizing complexes and pseudo-derived categories

Leonid Positselski (�)

Abstract – The definition of a pseudo-dualizing complex is obtained from that of a
dualizing complex by dropping the injective dimension condition, while retaining the
finite generatedness and homothety isomorphism conditions. In the specific setting of
a pair of associative rings, we show that the datum of a pseudo-dualizing complex
induces a triangulated equivalence between a pseudo-coderived category and a pseudo-
contraderived category. The latter terms mean triangulated categories standing “in
between” the conventional derived category and the coderived or the contraderived
category. The constructions of these triangulated categories use appropriate versions
of the Auslander and Bass classes of modules. The constructions of derived functors
providing the triangulated equivalence are based on a generalization of a technique
developed in our previous paper [45].
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0. Introduction

0.1. – According to the philosophy elaborated in the introduction to [45], the
choice of a dualizing complex induces a triangulated equivalence between the
coderived category of (co)modules and the contraderived category of (con-
tra)modules, while in order to construct an equivalence between the conventional
derived categories of (co)modules and (contra)modules one needs a dedualizing
complex. In particular, an associative ring A is a dedualizing complex of bimod-
ules over itself, while a coassociative coalgebra C over a field k is a dualizing
complex of bicomodules over itself. The former assertion refers to the identity
equivalence

(1) D.A–mod/ D D.A–mod/;

while the latter one points to the natural triangulated equivalence between the
coderived category of comodules and the contraderived category of contramod-
ules

(2) Dco.C–comod/ ' Dctr.C–contra/;

which is known as the derived comodule-contramodule correspondence [42, Sec-
tions 0.2.6–7 and 5.4], [43, Sections 4.4 and 5.2].
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Given a left coherent ring A and a right coherent ring B , the choice of a du-
alizing complex of A-B-bimodules D� induces a triangulated equivalence be-
tween the coderived and the contraderived category [28, Theorem 4.8], [46, The-
orem 4.5]

(3) Dco.A–mod/ ' Dctr.B–mod/:

Given a left cocoherent coalgebra C and a right cocoherent coalgebra D over a
field k, the choice of a dedualizing complex of C-D-bicomodules B

� induces a
triangulated equivalence between the conventional derived categories of comod-
ules and contramodules [49, Theorem 3.6]

(4) D.C–comod/ ' D.D–contra/:

0.2. – The equivalences (1)–(4) of Section 0.1 are the “pure types.” The more
complicated and interesting triangulated equivalences of the “broadly understood
co-contra correspondence” kind are obtained by mixing these pure types, or maybe
rather building these elementary blocks on top of one another.

In particular, let R be a commutative ring and I � R be an ideal. An R-module
M is said to be I -torsion if

RŒs�1�˝R M D 0 for all s 2 I :

Clearly, it suffices to check this condition for a set of generators ¹sj º of the ideal I .
An R-module P is said to be an I -contramodule if

HomR.RŒs�1�; P / D 0 D Ext1R.RŒs�1�; P / for all s 2 I :

Once again, it suffices to check these conditions for a set of generators ¹sj º

of the ideal I [64, Theorem 5 and Lemma 7(1)], [47, Theorem 5.1]. Both the
full subcategory of I -torsion R-modules R–modI -tors � R–mod and the full
subcategory of I -contramodule R-modules R–modI -ctra � R–mod are abelian
categories.

Assume for simplicity that R is a Noetherian ring. Then, using what the
paper [45] calls a dedualizing complex B� for the ring R with the ideal I � R,
one can construct a triangulated equivalence between the conventional derived
categories of the abelian categories of I -torsion and I -contramodule R-modules

(5) D.R–modI -tors/ ' D.R–modI -ctra/:

This result can be generalized to the so-called weakly proregular finitely generated
ideals I in the sense of [57, 40] in not necessarily Noetherian commutative rings R

[45, Corollary 3.5 or Theorem 5.10].
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Using what is generally known as a t-dualizing (torsion-dualizing) complex [1,
Definition 2.5.1], [41, Section 3] (called a “dualizing complex for a ring R with
an ideal I � R” in [44]), one can construct a triangulated equvalence between
the coderived category of I -torsion R-modules and the contraderived category of
I -contramodule R-modules [44, Theorem C.1.4] (see also [44, Theorem C.5.10])

(6) Dco.R–modI -tors/ ' Dctr.R–modI -ctra/:

This result can be generalized from affine Noetherian formal schemes to ind-
affine ind-Noetherian or ind-coherent ind-schemes with a dualizing complex [44,
Theorem D.2.7] (see also [45, Remark 4.10]).

Informally, one can view the I -adic completion of a ring R as “a ring in the
direction of R=I and a coalgebra in the transversal direction of R relative to R=I .”
In this sense, one can say that (the formulation of ) the triangulated equivalence (5)
is obtained by building (4) on top of (1), while (the idea of ) the triangulated
equivalence (6) is the result of bulding (2) on top of (3).

0.3. – A number of other triangulated equivalences appearing in the present
author’s work can be described as mixtures of some of the equivalences (1)–(4). In
particular, the equivalence between the coderived category of comodules and the
contraderived category of contramodules over a pair of corings over associative
rings in [44, Corollaries B.4.6 and B.4.10] is another way of building (2) on top
of (3).

The equivalence between the conventional derived categories of semimodules
and semicontramodules in [49, Theorem 4.3] is obtained by building (1) on top
of (4). The equivalence between the semicoderived and the semicontraderived
categories of modules in [46, Theorem 5.6] is the result of building (1) on top
of (3).

The most deep and difficult in this series of triangulated equivalences is the
derived semimodule-semicontramodule correspondence of [42, Section 0.3.7]
(see the proof in a greater generality in [42, Section 6.3]). The application of
this triangulated equivalence to the categories O and Octr over Tate Lie algebras
in [42, Corollary D.3.1] is of particular importance. This is the main result of the
book [42]. It can be understood as obtainable by building (1) on top of (2).

Note that all the expressions like “can be obtained by” or “is the result of” above
refer, at best, to the formulations of the mentioned theorems, rather than to their
proofs. For example, the derived semimodule-semicontramodule correspondence,
even in the generality of [42, Section 0.3.7], is a difficult theorem. There is no way
to deduce it from the easy (2) and the trivial (1). The formulations of (2) and (1)
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serve as an inspiration and the guiding heuristics for arriving to the formulation
of the derived semimodule-semicontramodule correspondence. Subsequently, one
has to develop appropriate techniques leading to a proof.

0.4. – More generally, beyond building things on top of one another, one may
wish to develop notions providing a kind of “smooth interpolation” between
various concepts. In particular, the notion of a discrete module over a topological
ring can be viewed as interpolating between those of a module over a ring and a
comodule over a coalgebra over a field, while the notion of a contramodule over
a topological ring (see [42, Remark A.3] or [50]) interpolates between those of a
module over a ring and a contramodule over a coalgebra over a field.

The notion of a pseudo-dualizing complex (known as a “semi-dualizing com-
plex” in the literature) interpolates between those of a dualizing and a dedualizing
complex. Similarly, the notions of a pseudo-coderived and a pseudo-contraderived
category interpolate between those of the conventional derived category and the
co- or contraderived category. The aim of this paper is to construct the related
interpolation between the triangulated equivalences (1) and (3).

Let us mention that a family of “intermediate” model structures between con-
ventional derived ones (“of the first kind”) and the coderived ones (“of the second
kind”) was constructed, in the case of DG-coalgebras and DG-comodules, in the
paper [17]. There is some vague similarity between our construction and the one
in [17]. The differences are that we start from a pseudo-dualizing complex and ob-
tain a triangulated equivalence for our intermediate triangulated categories in the
context of the comodule-contramodule correspondence, while the authors of [17]
start from a twisting cochain and obtain a Quillen adjunction in the context of
Koszul duality.

0.5. – Let A and B be associative rings. A pseudo-dualizing complex L� for the
rings A and B is a finite complex of A-B-bimodules satisfying the following two
conditions:

(ii) as a complex of left A-modules, L� is quasi-isomorphic to a bounded above
complex of finitely generated projective A-modules, and similarly, as a com-
plex of right B-modules, L� is quasi-isomorphic to a bounded above complex
of finitely generated projective B-modules;

(iii) the homothety maps

A �! HomDb.mod–B/.L
�; L�Œ��/ and Bop �! HomDb.A–mod/.L

�; L�Œ��/

are isomorphisms of graded rings.
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This definition is obtained by dropping the injectivity (or finite injective dimen-
sion, or fp-injectivity, etc.) condition (i) from the definition of a dualizing or
(“cotilting”) complex of A-B-bimodules D� in the papers [34, 65, 12, 46], remov-
ing the Noetherianness/coherence conditions on the rings A and B , and rewriting
the finite generatedness/presentability condition (ii) accordingly.

For example, when the rings A and B coincide, the one-term complex L� D

A D B becomes the simplest example of a pseudo-dualizing complex. This is what
can be called a dedualizing complex in this context. More generally, a “dedualizing
complex of A-B-bimodules” is the same thing as a “(two-sided) tilting complex”
T � in the sense of Rickard’s derived Morita theory [53, 54, 18].

What in our terminology would be called “pseudo-dualizing complexes of
modules over commutative Noetherian rings” were studied in the paper [11] and
the references therein under some other names, such as “semi-dualizing com-
plexes”. What the authors call “semidualizing bimodules” for pairs of associative
rings were considered in the paper [26]. We use this other terminology of our
own in this paper, because in the context of the present author’s work the prefix
“semi” means something related but different and more narrow (as in [42] and [46,
Sections 5–6]).

The main result of this paper provides the following commutative diagram of
triangulated functors associated with a pseudo-dualizing complex of A-B-bimod-
ules L�:

(7)

Dco.A–mod/ Dctr.B–mod/

DL�

0 .A–mod/ DL�

00 .B–mod/

D0
L�.A–mod/ D00

L�.B–mod/

D.A–mod/ D.B–mod/

 �  �
 �

(

(

 �
 �

(

(

 �

Here the vertical arrows are Verdier quotient functors, while the horizontal double
lines are triangulated equivalences.

Thus DL�

0 .A–mod/ and D0

L�.A–mod/ are certain intermediate triangulated cat-
egories between the coderived category of left A-modules Dco.A–mod/ and their
conventional unbounded derived category D.A–mod/. Similarly, DL�

00 .B–mod/

and D00

L�.B–mod/ are certain intermediate triangulated categories between the
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contraderived category of left B-modules Dctr.B–mod/ and their conventional un-
bounded derived category D.B–mod/. These intermediate triangulated quotient
categories depend on, and are determined by, the choice of a pseudo-dualizing
complex L� for a pair of associative rings A and B .

The triangulated category D0

L�.A–mod/ is called the lower pseudo-coderived
category of left A-modules corresponding to the pseudo-dualizing complex L�.
The triangulated category D00

L�.B–mod/ is called the lower pseudo-contraderived
category of left B-modules corresponding to the pseudo-dualizing complex L�.
The triangulated category DL�

0 .A–mod/ is called the upper pseudo-coderived
category of left A-modules corresponding to L�. The triangulated category
DL�

00 .B–mod/ is called the upper pseudo-contraderived category of left B-modules
corresponding to L�. The choice of a pseudo-dualizing complex L� also induces
triangulated equivalences D0

L�.A–mod/ ' D00
L�.B–mod/ and DL�

0 .A–mod/ '

DL�

00 .A–mod/ forming the commutative diagram (7).

In particular, when L� D D� is a dualizing complex, i. e., the condition (i)
of [46, Section 4] is satisfied, assuming additionally that all fp-injective left
A-modules have finite injective dimensions, one has DL�

0 .A–mod/ D Dco.A–mod/

and DL�

00 .B–mod/ D Dctr.B–mod/, that is the upper two vertical arrows in the di-
agram (7) are isomorphisms of triangulated categories. The upper triangulated
equivalence in the diagram (7) coincides with the one provided by [46, Theo-
rem 4.5] in this case.

When L� D A D B , one has D0

L�.A–mod/ D D.A–mod/ and D00

L�.B–mod/ D

D.B–mod/, that is the lower two vertical arrows in the diagram (7) are isomor-
phisms of triangulated categories. The lower triangulated equivalence in the di-
agram (7) is just the identity isomorphism D.A–mod/ D D.B–mod/ is this case.
More generally, the lower triangulated equivalence in the diagram (7) correspond-
ing to a tilting complex L� D T � recovers Rickard’s derived Morita equiva-
lence [53, Theorem 6.4], [54, Theorem 3.3 and Proposition 5.1] (see also [18,
Theorem 4.2]).

0.6. – A delicate point is that when A D B D R is, e. g., a Gorenstein Noetherian
commutative ring of finite Krull dimension, the ring R itself can be chosen as a
dualizing complex of R-R-bimodules. So we are in both of the above-described
situations at the same time. Still, the derived category of R-modules D.R–mod/,
the coderived category Dco.R–mod/, and the contraderived category Dctr.R–mod/

are three quite different quotient categories of the homotopy category of (com-
plexes of ) R-modules Hot.R–mod/. In this case, the commutative diagram (7)
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takes the form

Dco.R–mod/ Dctr.R–mod/

D.R–mod/ D.R–mod/

 �

(

(

 �

(

(

More precisely, the two Verdier quotient functorsHot.R–mod/! Dco.R–mod/

and Hot.R–mod/ ! Dctr.R–mod/ both factorize naturally through the Verdier
quotient functor Hot.R–mod/! Dabs.R–mod/ from the homotopy category onto
the absolute derived category of R-modules Dabs.R–mod/. But the two result-
ing Verdier quotient functors Dabs.R–mod/! Dco.R–mod/ and Dabs.R–mod/!

Dctr.R–mod/ do not form a commutative triangle with the equivalence

Dco.R–mod/ ' Dctr.R–mod/:

Rather, they are the two adjoint functors on the two sides to the fully faithful em-
bedding of a certain (one and the same) triangulated subcategory in Dabs.R–mod/

[43, proof of Theorem 3.9].

This example shows that one cannot hope to have a procedure recovering the
conventional derived category D.A–mod/ D D.B–mod/ from the dedualizing
complex L� D A D B , and at the same time recovering the coderived category
Dco.A–mod/ and the contraderived category Dctr.B–mod/ from a dualizing com-
plex L� D D�. Thus the distinction between the lower and and the upper pseudo-
co/contraderived category constructions is in some sense inevitable.

0.7. – Before we finish this introduction, let us say a few words about where the
pseudo-coderived and pseudo-contraderived categories come from in Section 0.5.
We use “pseudo-derived categories” as a generic term for the pseudo-coderived
and pseudo-contraderived categories. The constructions of such triangulated cat-
egories that we use in this paper were originally introduced for the purposes of
the infinitely generated Wakamatsu tilting theory [52, Section 4] (an even more
general approach to exotic derived categories is suggested in [52, Section 5]).

The pseudo-derived categories are constructed as the conventional unbounded
derived categories of certain exact subcategories E0 � E0 � A and F00 � F00 � B

in the abelian categories A D A–mod and B D B–mod. The idea is that shrink-
ing an abelian (or exact) category to its exact subcategory leads, under certain
assumptions, to a bigger derived category, as complexes in the exact subcategory
are considered up to a finer equivalence relation in the derived category construc-
tion.
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In the situation at hand, the larger subcategories E0 and F00 are our versions of
what are called the Auslander and Bass classes in the literature [11, 24, 21, 12, 26].
Specifically, F00 is the Auslander class and E0 is the Bass class. The two full
subcategories E0 and F00 are certain natural smaller classes. One can say, in some
approximate sense, that E0 and F00 are the maximal corresponding classes, while
E0 and F00 are the minimal corresponding classes in the categories A and B.

More precisely, there is a natural single way to define the full subcategories
E0 � A and F00 � B when the pseudo-dualizing complex L� is a one-term
complex. In the general case, we have two sequences of embedded subcategories
Ed1
� Ed1C1 � Ed1C2 � � � � � A and Fd1

� Fd1C1 � Fd1C2 � � � � � B indexed
by large enough integers. All the subcategories El1

with varying index l1 D d1,
d1 C 1, d1 C 2, . . . are “the same up to finite homological dimension”, and so
are all the subcategories Fl1

. Hence the triangulated functors D.El1
/ ! D.El1C1/

and D.Fl1
/ ! D.Fl1C1/ induced by the exact embeddings El1

! El1C1 and
Fl1
! Fl1C1 are triangulated equivalences, so the pseudo-derived categories

D0

L�.A–mod/ D D.El1
/ and D00

L�.B–mod/ D D.Fl1
/ do not depend on the choice

of a number l1.

The idea of the construction of the triangulated equivalence between the two
lower pseudo-derived categories is that the functor D0

L�.A/ ! D00

L�.B/ should be
a version of RHomA.L�;�/, while the inverse functor D00

L�.B/ ! D0
L�.A/ is a

version of derived tensor product L� ˝L

B �. The full subcategories El1
� A and

Fl1
� B are defined by the conditions of uniform boundedness of cohomology of

such Hom and tensor product complexes (hence dependence on a fixed bound l1)
and the composition of the two operations leading back to the original object.

The point is that the two functors RHomA.L�;�/ and L� ˝L

B � are mutually
inverse when viewed as acting between the pseudo-derived categories D.E/ and
D.F/, but objects of the pseudo-derived categories are complexes viewed up to
a more delicate equivalence relation than in the conventional derived categories
D.A/ and D.B/. When this subtlety is ignored, the two functors cease to be mutually
inverse, generally speaking, and such mutual inverseness needs to be enforced as
an additional adjustness restriction on the objects one is working with.

Similarly, there is a natural single way to define the full subcategories E0 � A

and F00 � F when the pseudo-dualizing complex L� is a one-term complex.
In the general case, we have two sequences of embedded subcategories Ed2 �

Ed2C1 � Ed2C2 � � � � in A and Fd2 � Fd2C1 � Fd2C2 � � � � in B, indexed by
large enough integers. As above, all the subcategories El2 with varying l2 D d2,
d2 C 1, d2 C 2, . . . are “the same up to finite homological dimension”, and so
are all the subcategories Fl2 . Hence the triangulated functors D.El2C1/ ! D.El2/
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and D.Fl2C1/ ! D.Fl2/ induced by the exact embeddings El2C1 ! El2 and
Fl2C1 ! Fl2 are triangulated equivalences, so the pseudo-derived categories
DL�

0 .A–mod/ D D.El2/ and DL�

00 .B–mod/ D D.Fl2/ do not depend on the choice
of a number l2.

The triangulated equivalence between the two upper pseudo-derived cate-
gories is also provided by some versions of derived functors RHomA.L�;�/ and
L� ˝L

B �. The full subcategories El2 � A and Fl2 � B are produced by a kind of
generation process. One starts from declaring that all the injectives in A belong to
El2 and all the projectives in B belong to Fl2 . Then one proceeds with generating
further objects of Fl2 by applying RHomA.L�;�/ to objects of El2 , and further
objects of El2 by applying L� ˝L

B � to objects of Fl2 . One needs to resolve the
complexes so obtained to produce objects of the abelian module categories, and
the number l2 indicates the length of the resolutions used. More objects are added
to El2 and Fl2 to make these full subcategories closed under certain operations.

We refer to the main body of the paper for further details.

0.8. – Inspired by the recent paper [3], in the last three sections of the present
paper we address the question of existence of left and right adjoint functors to the
Verdier quotient functors in the diagram (7) from Section 0.5. More precisely, for
any pseudo-dualizing complex of A-B-bimodules L� the adjoint functors shown
by curvilinear arrows on the following diagram exist:
(8)

Hot.A–mod/ Hot.B–mod/

Dco.A–mod/ Dctr.B–mod/

DL�

0 .A–mod/ DL�

00 .B–mod/

D0

L�.A–mod/ D00

L�.B–mod/

D.A–mod/ D.B–mod/

 �  �
 �  �

 �

(

(

 �
 �

(

(

 �

�

!

�

!

�

!

�

!

�

!

�

!

�
! �

!

�

!

�

!

�

!

�

!

�

!

�

!

�
! �

!

The functors shown by curvilinear arrows, being adjoints to Verdier quotient
functors, are fully faithful. Their existence follows straightforwardly from the
existence of left and right adjoint functors to the natural Verdier quotient functor
Hot.R–mod/! D.R–mod/ for any associative ring R.
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Moreover, assuming that the ring A is left coherent, fp-injective left A-modules
have finite injective dimensions, the ring B is right coherent, and flat left B-mod-
ules have finite projective dimensions, the adjoint functors shown by the curvilin-
ear arrows on the following diagram also exist:

(9)

Dco.A–mod/ Dctr.B–mod/

D0

L�.A–mod/ D00

L�.B–mod/

D.A–mod/ D.B–mod/

 �  �
 �

(

(

�

!

�

!

 �
�

!

�

!

�

!

�

!

�

!

�

!

�

!

�

!

�

!

�

!

As compared to the previous diagram, the nontrivial additional part here is the
existence of the left and right adjoints to the natural Verdier quotient functors
Dco.A–mod/ ! D0

L�.A–mod/ and Dctr.B–mod/ ! D00

L�.B–mod/ between the
co/contraderived categories and the lower pseudo-derived categories of modules
over A and B . In order to prove that these functors exist, we show that the
Auslander and Bass classes of modules Fl1

.L�/ � B–mod and El1
.L�/ � A–mod

are deconstructible, deduce from this the existence of Hom sets in the lower
pseudo-derived categories, recall from the literature that the co/contraderived
categories are compactly generated in the above assumptions, and observe that the
Verdier quotient functors in question preserve infinite direct sums and products.

0.9. – To end, let us say a few words about how the results of this paper compare
to the theory developed in the papers [51, 52]. Both [51, 52] and this paper can
be viewed as generalizations of the classical finitely generated n-tilting theory, as
developed, e. g., in [35] and [13], albeit in different subsets of directions.

Basically, using the notion of a finitely generated n-tilting module as the
starting point, one can

(a) drop the condition that the tilting module is finitely generated; and/or

(b) drop the condition that the tilting module has finite projective dimension n;
and/or

(c) replace a tilting module by a tilting complex; and/or

(d) replace the category of modules over an associative ring by an abelian cate-
gory of more general nature (like, e. g., a Grothendieck category).
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All these four lines of thought have been explored by many authors over
the years; we refer to the introduction to [52] for an (admittedly very possibly
incomplete) collection of references. In particular, it seems that (a) was first done
in [15], (b) was initiated in [61, 62], (c) was introduced in [53, 54], and (d) was
first attempted in [14].

Our paper [51] does (a) and (d). In particular, the generalization to infinitely
generated tilting modules/objects is the reason why contramodule categories ap-
pear (as the tilting hearts) in [51]. The paper [52] does (a), (b), and (d). In particu-
lar, the generalization to tilting modules/objects of infinite projective dimension is
the reason why pseudo-derived categories were needed in [52, Section 4] (and an
even more general approach using t-structures was developed in [52, Section 5]).

The present paper does (b) and (c). The generalization from1-tilting modules
to pseudo-dualizing complexes in this paper (cf. [26] and [52, Example 6.6])
is what makes many aspects of our exposition here so much more complicated
technically than in [52]. In fact, the triangulated equivalences D?.E/ ' D?.F/

come for free in [51, 52], being immediate consequences of the equivalences
of exact categories E ' F. In this paper, a whole (rather long and complicated)
appendix is needed just to construct the pair of adjoint derived functors providing
this triangulated equivalence. On the other hand, our pseudo-dualizing complexes
are presumed to be strongly finitely generated (on each side and up to quasi-
isomorphism) in this paper. That is why the underlying abelian categories on
both sides of our equivalences are the conventional categories of modules over
associative rings, and no contramodules appear.

0.10. – One terminological disclaimer is in order. With the exception of the final
Sections 10–12, throughout this paper we adopt the policy of benign neglect of
the issue of existence of Verdier quotients (cf. [63, Set-Theoretic Remark 10.3.3]).

Generally speaking, given a triangulated subcategory in a triangulated cate-
gory, their Verdier quotient (such as, e. g., the derived category of an abelian or
exact category) may not exist as a category, in the sense that morphisms between
a fixed pair of objects in the Verdier quotient may not form a set. So we tacitly
presume that a Grothendieck universe has been chosen, and all our sets (rings,
modules, etc.) and categories are sets and categories in this universe. If the need
arises, the problem of existence of a Verdier quotient category can be then resolved
by considering such Verdier quotient as a category in a larger universe.

When (in the final two sections) we will need to emphasize that a particular
Verdier quotient category does exist (in the fixed, unchanged universe), we will
say that such a Verdier quotient has Hom sets.
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1. Pseudo-coderived and pseudo-contraderived categories

For any additive category A, we denote by Hot?.A/, where ? D b, C, �, or ¿, the
categories of (respectively bounded or unbounded) cochain complexes in A with
the morphisms considered up to the cochain homotopy.

Let A be an exact category (in Quillen’s sense). A complex in A is said to be
exact if it is obtained by splicing short exact sequences in A. A complex in A is
acyclic if it is homotopy equivalent to an exact complex, or equivalently, if it is a
direct summand of an exact complex. The (bounded or unbounded) conventional
derived category D?.A/ with the symbol ? D b, C, �, or ¿ is defined as the
quotient category of Hot?.A/ by the thick subcategory of (respectively bounded or
unbounded) acyclic complexes (see the paper [36] and the overviews [30, 10]).

A short exact sequence of complexes in A can be viewed as a bicomplex with
three rows. Taking the total complex of such a bicomplex, one obtains an exact
complex in A. A ?-bounded complex in A is said to be absolutely acyclic if it
belongs to the thick subcategory of Hot?.A/ generated by the totalizations of short
exact sequences of ?-bounded complexes in A. In fact, a ?-bounded complex in
A is absolutely acyclic if and only if it is absolutely acyclic as an unbounded
complex [44, Lemma A.1.1]. Any bounded acyclic complex is absolutely acyclic
(as a bounded complex, i. e., for ? D b). The absolute derived categoriesDabsC.A/,
Dabs�.A/, and Dabs.A/ are defined as the quotient categories of the respective
homotopy categories HotC.A/, Hot�.A/, and Hot.A/ by their thick subcategories
of absolutely acyclic complexes (see [44, Section A.1] or [45, Appendix A] for a
further discussion).

We will say that a full subcategory E � A is coresolving if E is closed under
extensions and the passages to the cokernels of admissible monomorphisms in A,
and every object of A is the source of an admissible monomorphism into an
object of E. This definition slightly differs from that in [59, Section 2] in that
we do not require E to be closed under direct summands (cf. [44, Section A.3]).
Obviously, any coresolving subcategory E inherits an exact category structure
from the ambient exact category A.
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Let A be an exact category in which the functors of infinite direct sum are
everywhere defined and exact. A complex in A is said to be coacyclic if it belongs to
the minimal triangulated subcategory of the homotopy categoryHot.A/ containing
the totalizations of short exact sequences of complexes in A and closed under
infinite direct sums. The coderived category Dco.A/ is defined as the Verdier
quotient category of Hot.A/ by the thick subcategory of coacyclic complexes
(see [42, Section 2.1], [44, Section A.1], or [45, Appendix A]).

The conventional unbounded derived categoryD.A/ is naturally a quotient cate-
gory of Dco.A/. A triangulated categoryD0 is called a pseudo-coderived category of
A if triangulated Verdier quotient functors Dco.A/! D0 ! D.A/ are given forming
a commutative triangle with the canonical Verdier quotient functor Dco.A/! D.A/

between the coderived and the conventional derived category of the exact cate-
gory A.

Let E � A be a coresolving subcategory closed under infinite direct sums.
According to the dual version of [44, Proposition A.3.1(b)] (formulated explicitly
in [46, Proposition 2.1]), the triangulated functor between the coderived categories
Dco.E/ ! Dco.A/ induced by the direct sum-preserving embedding of exact cate-
gories E! A is an equivalence of triangulated categories. From the commutative
diagram of triangulated functors

Dco.E/ Dco.A/

D.E/ D.A/

 

�

(

(

 

�

 

!

one can see that the lower horizontal arrow is a Verdier quotient functor. Thus
D0 D D.E/ is a pseudo-coderived category of A [52, Proposition 4.2(a)].

Furthermore, let E0 � E0 � A be two embedded coresolving subcategories,
both closed under infinite direct sums in A. Then the canonical Verdier quotient
functor Dco.A/! D.A/ decomposes into a sequence of Verdier quotient functors

Dco.A/ ��! D.E0/ ��! D.E0/ ��! D.A/:

In other words, when the full subcategory E � A is expanded, the related pseudo-
coderived category D.E/ gets deflated [52, Remark 4.3].

Notice that, as a coresolving subcategory closed under infinite direct sums
E � A varies, its conventional derived category behaves in quite different ways
depending on the boundedness conditions. The functor Db.E0/ ! Db.E0/ induced
by the embedding E0 ! E0 is fully faithful, the functor DC.E0/ ! DC.E0/ is a
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triangulated equivalence (by the assertion dual to [44, Proposition A.3.1(a)]), and
the functor D.E0/! D.E0/ is a Verdier quotient functor.

Let B be another exact category. We will say that a full subcategory F � B

is resolving if F is closed under extensions and the passages to the kernels of
admissible epimorphisms, and every object of B is the target of an admissible
epimorphism from an object of F. Obviously, a resolving subcategory F inherits
an exact category structure from the ambient exact category B.

Let B be an exact category in which the functors of infinite product are every-
where defined and exact. A complex in B is said to be contraacyclic if it belongs
to the minimal triangulated subcategory of Hot.B/ containing the totalizations
of short exact sequences of complexes in B and closed under infinite products.
The contraderived category Dctr.B/ is defined as the Verdier quotient category of
Hot.B/ by the thick subcategory of contraacyclic complexes (see [42, Section 4.1],
[44, Section A.1], or [45, Appendix A]).

The conventional unbounded derived category D.B/ is naturally a quotient
category of Dctr.B/. A triangulated category D00 is called a pseudo-contraderived
category of B if Verdier quotient functors Dctr.B/! D00 ! D.B/ are given forming
a commutative triangle with the canonical Verdier quotient functorDctr.B/! D.B/

between the contraderived and the conventional derived categories of the exact
category B.

Let F � B be a resolving subcategory closed under infinite products. According
to [44, Proposition A.3.1(b)], the triangulated functor between the contraderived
categories Dctr.F/ ! Dctr.B/ induced by the product-preserving embedding of
exact categories F ! B is an equivalence of triangulated categories. From the
commutative diagram of triangulated functors

Dctr.F/ Dctr.B/

D.F/ D.B/

 

�

(

(

 

�

 

!

one can see that the lower horizontal arrow is a Verdier quotient functor. Thus
D00 D D.F/ is a pseudo-contraderived category of B [52, Proposition 4.2(b)].

Let F00 � F00 � B be two embedded resolving subcategories, both closed under
infinite products in F. Then the canonical Verdier quotient functor Dctr.B/! D.B/

decomposes into a sequence of Verdier quotient functors

Dctr.B/ ��! D.F00/ ��! D.F00/ ��! D.B/:
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In other words, when the full subcategory F � B is expanded, the related pseudo-
contraderived category D.F/ gets deflated [52, Remark 4.3].

Once again, we notice that, as a resolving subcategory closed under infinite
products F � B varies, the behavior of its conventional derived category depends
on the boundedness conditions. The functor Db.F00/! Db.F00/ is fully faithful, the
functor D�.F00/! D�.F00/ is a triangulated equivalence [44, Proposition A.3.1(a)],
and the functor D.F00/! D.F00/ is a Verdier quotient functor.

Some of the simplest examples of coresolving subcategories E closed under
infinite direct sums and resolving subcategories F closed under infinite products
in the abelian categories of modules over associative rings will be given in Exam-
ples 2.5–2.6; and more complicated examples will be discussed in Sections 3, 5,
and 8.

2. Strongly finitely presented modules

Let A be an associative ring. We denote by A–mod the abelian category of left
A-modules and by mod–A the abelian category of right A-modules.

We say that an A-module is strongly finitely presented if it has a projective
resolution consisting of finitely generated projective A-modules.

Remark 2.1. In the traditional terminology, such modules are said to be
pseudo-coherent [27, 29] or of type FP1 [5, 8, 9]. More generally, an A-module
M is said to be n-pseudo-coherent or of type FPn if it has a projective resolution
� � � ! P2 ! P1 ! P0 ! M ! 0 such that the A-modules Pi are finitely
generated for all 0 6 i 6 n. We prefer our (admittedly less conventional)
terminology for several reasons, one of them being that we would like to speak
also about strongly finitely presented complexes of modules (see below in this
section), and the term “chain complex of type FP1” already means something
else [7, Section 2.1]. On the other hand, the prefix “pseudo-” is used for quite
different purposes in this paper. Besides, “strongly finitely presented” abbreviates
to a convenient prefix “sfp-”, upon which we build our terminological system.

Lemma 2.2. Let 0 ! K ! L ! M ! 0 be a short exact sequence of
A-modules. Then whenever two of the three modules K, L, M are strongly finitely
presented, so is the third one.

Proof. This result, in a more general version for modules of type FPn�1 and
FPn, goes back to [6, Exercise I.2.6]. For a different proof, see [5, Proposition 1.4],
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and for a discussion with further references, [9, Section 1]. Here is yet another
proof.

If P� ! K and R� ! M are projective resolutions of the A-modules K and
M , then there is a projective resolution Q� ! L of the A-module L with the
terms Qi ' Pi ˚ Ri . If P� ! K and Q� ! L are projective resolutions of the
A-modules K and L, then there exists a morphism of complexes of A-modules
P� ! Q� inducing the given morphism K ! L on the homology modules. The
cone R� of the morphism of complexes P� ! Q� is a projective resolution of the
A-module M with the terms Ri ' Qi ˚ Pi�1.

If Q� ! L and R� ! M are projective resolutions of the A-modules L

and M , then there exists a morphism of complexes of A-modules Q� ! R�

inducing the given morphism L ! M on the homology modules. The cocone
P 0

�
of the morphism of complexes Q� ! R� is a bounded above complex of

R-modules with the terms P 0
i D Qi ˚ RiC1 and the only nonzero cohomology

module H0.P 0
�
/ ' K. Still, the complex P 0

�
is not yet literally a projective

resolution of K, as its term P 0
�1 ' R0 does not vanish. Setting P�1 D 0,

P0 D ker.P 0
0 ! P 0

�1/, and P 0
i D Pi for i > 1, one obtains a subcomplex P� � P 0

�

with a termwise split embedding P� ! P 0
�

such that P� is a projective resolution
of the R-module K. �

Abusing terminology, we will say that a bounded above complex of A-modules
M � is strongly finitely presented if it is quasi-isomorphic to a bounded above
complex of finitely generated projective A-modules. (Such complexes are called
“pseudo-coherent” in [27, 29].) Clearly, the class of all strongly finitely presented
complexes is closed under shifts and cones in D�.A–mod/.

Lemma 2.3. (a) Any bounded above complex of strongly finitely presented
A-modules is strongly finitely presented.

(b) Let M � be a complex of A-modules concentrated in the cohomological
degrees 6 n, where n is a fixed integer. Then M � is strongly finitely presented
if and only if it is quasi-isomorphic to a complex of finitely generated projective
A-modules concentrated in the cohomological degrees 6 n.

(c) Let M � be a finite complex of A-modules concentrated in the cohomologi-
cal degrees n1 6 m 6 n2. Then M � is strongly finitely presented if and only if it is
quasi-isomorphic to a complex of A-modules R� concentrated in the cohomolog-
ical degrees n1 6 m 6 n2 such that the A-modules Rm are finitely generated and
projective for all n1 C 1 6 m 6 n2, while the A-module Rn1 is strongly finitely
presented.
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Proof. Part (a) is provable using Lemma 2.2. Part (b) holds, because the
kernel of a surjective morphism of finitely generated projective A-modules is a
finitely generated projective A-module; and part (c) is also easy. �

Let A and B be associative rings. A left A-module J is said to be sfp-injective
if Ext1A.M; J / D 0 for all strongly finitely presented left A-modules M , or
equivalently, ExtnA.M; J / D 0 for all strongly finitely presented left A-modules M

and all n > 0. A left B-module P is said to be sfp-flat if TorB
1 .N; P / D 0 for all

strongly finitely presented right B-modules N , or equivalently, TorB
n .N; P / D 0

for all strongly finitely presented right B-modules N and all n > 0.

What we call “sfp-injective modules” are otherwise known as “FP1-injective”,
and what we call “sfp-flat” modules would be usually called “FP1-flat” [9, Sec-
tion 3]. In the terminology of the papers [8, Section 2] and [7], the former modules
are also called “absolutely clean”, and the latter ones are called “level”.

Lemma 2.4. (a) The class of all sfp-injective left A-modules is closed under
extensions, the cokernels of injective morphisms, filtered inductive limits, infinite
direct sums, and infinite products.

(b) The class of all sfp-flat left B-modules is closed under extensions, the
kernels of surjective morphisms, filtered inductive limits, infinite direct sums, and
infinite products.

Proof. This is [8, Propositions 2.7 and 2.10]. For a generalization to FPn-in-
jective and FPn-flat modules, n > 2, see [9, Propositions 3.10 and 3.11]. �

Examples 2.5. (1) The following construction using strongly finitely pre-
sented modules provides some examples of pseudo-coderived categories of mod-
ules over an associative ring in the sense of Section 1. Let A be an associa-
tive ring and S be a set of strongly finitely presented left A-modules. Denote by
E � A D A–mod the full subcategory formed by all the left A-modules E such
that ExtiA.S; E/ D 0 for all S 2 S and all i > 0. Then the full subcategory
E � A–mod is a coresolving subcategory closed under infinite direct sums (and
products). So the induced triangulated functor between the two coderived cate-
gories Dco.E/ ! Dco.A–mod/ is a triangulated equivalence by the dual version
of [44, Proposition A.3.1(b)] (cf. [46, Proposition 2.1]). Thus the derived cate-
gory D.E/ of the exact category E is a pseudo-coderived category of the abelian
category A–mod, that is an intermediate quotient category between the coderived
category Dco.A–mod/ and the derived category D.A–mod/.
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(2) In particular, if S D ¿, then one has E D A–mod. On the other hand,
if S is the set of all strongly finitely presented left A-modules, then the full
subcategory E � A–mod consists of all the sfp-injective modules. When the ring
A is left coherent, all the finitely presented left A-modules are strongly finitely
presented, and objects of the class E are called fp-injective left A-modules. In
this case, the derived category D.E/ of the exact category E is equivalent to the
homotopy Hot.A–modinj/ of the additive category of injective left A-modules [60,
Theorem 6.12].

(3) More generally, for any associative ring A, the category Hot.A–modinj/ can
be called the coderived category in the sense of Becker [4] of the category of
left A-modules. A complex of left A-modules X� is called coacyclic in the sense
of Becker if the complex of abelian groups HomA.X�; J �/ is acyclic for any com-
plex of injective left A-modules J �. According to [4, Proposition 1.3.6(2)], the full
subcategories of complexes of injective modules and coacyclic complexes in the
sense of Becker form a semiorthogonal decomposition of the homotopy category
of left A-modules Hot.A–mod/. According to [43, Theorem 3.5(a)], any coacyclic
complex of left A-modules in the sense of [42, Section 2.1], [45, Appendix A] is
also coacyclic in the sense of Becker. Thus Hot.A–modinj/ occurs as an interme-
diate triangulated quotient category between Dco.A–mod/ and D.A–mod/. So the
coderived category in the sense of Becker is a pseudo-coderived category in our
sense.

We do not know whether the Verdier quotient functor Dco.A–mod/ !

Hot.A–modinj/ is a triangulated equivalence (or, which is the same, the natural
fully faithful triangulated functor Hot.A–modinj/! Dco.A–mod/ is a triangulated
equivalence) for an arbitrary associative ring A. Partial results in this direction are
provided by [43, Theorem 3.7] and [46, Theorem 2.4] (see also Proposition 7.1
below).

Examples 2.6. (1) The following dual version of Example 2.5(1) provides
some examples of pseudo-contraderived categories of modules. Let B be an asso-
ciative ring and S be a set of strongly finitely presented right B-modules. Denote
by F � B D B–mod the full subcategory formed by all the left B-modules F

such that TorB
i .S; F / D 0 for all S 2 S and i > 0. Then the full subcategory

F � B–mod is a resolving subcategory closed under infinite products (and di-
rect sums). So the induced triangulated functor between the two contraderived
categories Dctr.F/ ! Dctr.B–mod/ is a triangulated equivalence by [44, Proposi-
tion A.3.1(b)]. Thus the derived category D.F/ of the exact category F is a pseudo-
contraderived category of the abelian category B–mod, that is an intermediate
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quotient category between the contraderived category Dctr.B–mod/ and the de-
rived category D.B–mod/, as it was explained in Section 1.

(2) In particular, if S D ¿, then one has F D B–mod. On the other hand, if S is
the set of all strongly finitely presented right B-modules, then the full subcategory
F � B–mod consists of all the sfp-flat modules. When the ring B is right coherent,
all the sfp-flat left B-modules are flat and F is the full subcategory of all flat left
B-modules. For any associative ring B , the derived category of the exact category
of flat left B-modules is equivalent to the homotopy category Hot.B–modproj/
of the additive category of projective left B-modules [38, Proposition 8.1 and
Theorem 8.6].

(3) For any associative ring B , the category Hot.B–modproj/ can be called the
contraderived category in the sense of Becker of the category of left B-modules.
A complex of left B-modules Y � is called contraacyclic in the sense of Becker
if the complex of abelian groups HomB.P �; Y �/ is acyclic for any complex of
projective left B-modules P �. According to [4, Proposition 1.3.6(1)], the full
subcategories of contraacyclic complexes in the sense of Becker and complexes
of projective modules form a semiorthogonal decomposition of the homotopy
category of left B-modules Hot.B–mod/. According to [43, Theorem 3.5(b)], any
contraacyclic complex of left B-modules in the sense of [42, Section 4.1], [45,
Appendix A] is also contraacyclic in the sense of Becker. Thus Hot.B–modproj/
occurs as an intermediate triangulated quotient category between Dctr.B–mod/

and D.B–mod/. So the contraderived category in the sense of Becker is a pseudo-
contraderived category in our sense.

We do not know whether the Verdier quotient functor Dctr.B–mod/ !

Hot.B–modproj/ is a triangulated equivalence (or, which is the same, the natu-
ral fully faithful triangulated functor Hot.B–modproj/ ! Dctr.B–mod/ is a trian-
gulated equivalence) for an arbitrary associative ring B . A partial result in this
direction is provided by [43, Theorem 3.8] (cf. [46, Theorem 4.4]; see also Propo-
sition 7.2 below).

3. Auslander and Bass classes

We recall the definition of a pseudo-dualizing complex of bimodules from Sec-
tion 0.5 of the introduction. Let A and B be associative rings.

A pseudo-dualizing complex L� for the rings A and B is a finite complex of
A-B-bimodules satisfying the following two conditions:

(ii) the complex L� is strongly finitely presented as a complex of left A-modules
and as a complex of right B-modules;
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(iii) the homothety maps

A �! HomDb.mod–B/.L
�; L�Œ��/ and Bop �! HomDb.A–mod/.L

�; L�Œ��/

are isomorphisms of graded rings.

Here the condition (ii) refers to the definition of a strongly finitely presented
complex of modules in Section 2. The complex L� is viewed as an object of the
bounded derived category of A-B-bimodules Db.A–mod–B/.

We will use the following simplified notation: given two complexes of left
A-modules M � and N �, we denote by ExtnA.M �; N �/ the groups

H nRHomA.M �; N �/ D HomD.A–mod/.M
�; N �Œn�/:

Given a complex of right B-modules N � and a complex of left B-modules M �,
we denote by TorB

n .N �; M �/ the groups H �n.N � ˝L

B M �/.
The tensor product functor L�˝B �WHot.B–mod/! Hot.A–mod/ acting be-

tween the unbounded homotopy categories of left B-modules and left A-modules
is left adjoint to the functor HomA.L�;�/WHot.A–mod/ ! Hot.B–mod/. Us-
ing homotopy flat and homotopy injective resolutions of the second arguments,
one constructs the derived functors L� ˝L

B �WD.B–mod/ ! D.A–mod/ and
RHomA.L�;�/WD.A–mod/! D.B–mod/ acting between the (conventional) un-
bounded derived categories of left A-modules and left B-modules. As always with
the left and right derived functors (e. g., in the sense of Deligne [16, 1.2.1–2]), the
functor L� ˝L

B � is left adjoint to the functor RHomA.L�;�/ [42, Lemma 8.3].
Suppose that the finite complex L� is situated in the cohomological degrees

�d1 6 m 6 d2. Then one has ExtnA.L�; J / D 0 for all n > d1 and all sfp-injective
left A-modules J . Similarly, one has TorB

n .L�; P / D 0 for all n > d1 and all
sfp-flat left B-modules P . Choose an integer l1 > d1 and consider the following
full subcategories in the abelian categories of left A-modules and left B-modules:

� El1
D El1

.L�/ � A–mod is the full subcategory consisting of all the
A-modules E such that ExtnA.L�; E/ D 0 for all n > l1 and the adjunction
morphism L� ˝L

B RHomA.L�; E/! E is an isomorphism in D�.A–mod/;

� Fl1
D Fl1

.L�/ � B–mod is the full subcategory consisting of all the
B-modules F such that TorB

n .L�; F / D 0 for all n > l1 and the adjunction
morphism F ! RHomA.L�; L� ˝L

B F / is an isomorphism in DC.B–mod/.

Clearly, for any l 00
1 > l 0

1 > d1, one has El 0
1
� El 00

1
� A–mod and Fl 0

1
� Fl 00

1
�

B–mod.
The category Fl1

is our version of what is called the Auslander class in [11, 24,
21, 12, 26], while the category El1

is our version of the Bass class. The definition
of such classes of modules goes back to Foxby [23, Section 1].
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The next three Lemmas 3.1–3.3 are our versions of [26, Lemma 4.1, Proposi-
tion 4.2, and Theorem 6.2].

Lemma 3.1. (a) The full subcategory El1
� A–mod is closed under the

cokernels of injective morphisms, extensions, and direct summands.
(b) The full subcategory Fl1

� B–mod is closed under the kernels of surjective
morphisms, extensions, and direct summands. �

Lemma 3.2. (a) The full subcategory El1
� A–mod contains all the injective

left A-modules.
(b) The full subcategory Fl1

� B–mod contains all the flat left B-modules.

Proof. Part (a): let 0L� be a bounded above complex of finitely generated
projective right B-modules endowed with a quasi-isomorphism of complexes of
right B-modules 0L� ! L�. Then the complex 0L� ˝B HomA.L�; J / computes
L� ˝L

B RHomA.L�; J / as an object of the derived category of abelian groups for
any injective left A-module J . Now we have an isomorphism of complexes of
abelian groups 0L� ˝B HomA.L�; J / ' HomA.HomBop.0L�; L�/; J / and a quasi-
isomorphism of complexes of left A-modules A ! HomBop.0L�; L�/, implying
that the natural morphism L� ˝L

B RHomA.L�; J / ! J is an isomorphism in
the derived category of abelian groups, hence also in the derived category of left
A-modules.

Part (b): let 00L� be a bounded above complex of finitely generated projec-
tive left A-modules endowed with a quasi-isomorphism of complexes of left
A-modules 00L� ! L�. Then the complex HomA.00L�; L� ˝B P / represents the
derived category object RHomA.L�; L�˝L

B P / for any flat left B-module P . Now
we have an isomorphism of complexes of abelian groups HomA.00L�; L�˝B P / '

HomA.00L�; L�/˝B P and a quasi-isomorphism of complexes of right B-modules
B ! HomA.00L�; L�/. �

If L� is finite complex of A-B-bimodules that are strongly finitely presented
as left A-modules and as right B-modules, then the class El1

contains also all
the sfp-injective left A-modules and the class Fl1

contains all the sfp-flat left
B-modules.

Lemma 3.3. (a) The full subcategory El1
� A–mod is closed under infinite

direct sums and products.

(b) The full subcategory Fl1
� B–mod is closed under infinite direct sums and

products.
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Proof. The functor RHomA.L�;�/WD.A–mod/ ! D.B–mod/ preserves in-
finite direct sums of uniformly bounded below families of complexes and infinite
products of arbitrary families of complexes. The functor L� ˝L

B �WD.B–mod/!

D.A–mod/ preserves infinite products of uniformly bounded above families of
complexes and infinite direct sums of arbitrary families of complexes. These ob-
servations imply both the assertions (a) and (b). �

For a further result in the direction of the above three lemmas, see Corol-
lary 10.2 below (claiming that the classes of modules El1

and Fl1
are also closed

under filtered inductive limits).
The full subcategories El1

� A–mod and Fl1
� B–mod inherit exact category

structures from the abelian categories A–mod and B–mod. It follows from Lem-
mas 3.1 and 3.2 that the induced triangulated functors Db.El1

/! Db.A–mod/ and
Db.Fl1

/ ! Db.B–mod/ are fully faithful. The following lemma describes their
essential images.

Lemma 3.4. (a) Let M � be a complex of left A-modules concentrated in the
cohomological degrees �n1 6 m 6 n2. Then M � is quasi-isomorphic to a
complex of left A-modules concentrated in the cohomological degrees �n1 6

m 6 n2 with the terms belonging to the full subcategory El1
� A–mod if

and only if ExtnA.L�; M �/ D 0 for n > n2 C l1 and the adjunction morphism
L� ˝L

B RHomA.L�; M �/!M � is an isomorphism in D�.A–mod/.

(b) Let N � be a complex of left B-modules concentrated in the cohomolog-
ical degrees �n1 6 m 6 n2. Then N � is quasi-isomorphic to a complex of
left B-modules concentrated in the cohomological degrees �n1 6 m 6 n2

with the terms belonging to the full subcategory Fl1
� B–mod if and only

if TorB
n .L�; N �/ D 0 for n > n1 C l1 and the adjunction morphism N � !

RHomA.L�; L� ˝L

B N �/ is an isomorphism in DC.B–mod/.

Proof. (a) The “only if” part is obvious. To prove the “if”, replace M � by a
quasi-isomorphic complex 0M � concentrated in the same cohomological degrees
�n1 6 m 6 n2 with 0M m 2 A–modinj for �n1 6 m < n2, and use Lemma 3.2(a)
in order to check that 0M m 2 El1

for all �n1 6 m 6 n2. Part (b): to prove the
“if”, replace N � by a quasi-isomorphic complex 0N � concentrated in the same
cohomological degrees�n1 6 m 6 n2 with 0N m 2 B–modproj for �n1 < m 6 n2,
and use Lemma 3.2(b) in order to check that 0N m 2 Fl1

for all �n1 6 m 6 n2. �

Thus the full subcategory Db.El1
/ � D.A–mod/ consists of all the com-

plexes of left A-modules M � with bounded cohomology such that the complex
RHomA.L�; M �/ also has bounded cohomology and the adjunction morphism
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L� ˝L

B RHomA.L�; M �/ ! M � is an isomorphism. Similarly, the full subcate-
gory Db.Fl1

/ � D.B–mod/ consists of all the complexes of left B-modules N �

with bounded cohomology such that the complex L� ˝L

B N � also has bounded
cohomology and the adjunction morphism N � ! RHomA.L�; L� ˝L

B N �/ is an
isomorphism.

These full subcategories are usually called the derived Bass and Auslander
classes. As any pair of adjoint functors restricts to an equivalence between the full
subcategories of all objects whose adjunction morphisms are isomorphisms [24,
Theorem 1.1], the functors RHomA.L�;�/ and L�˝L

B � restrict to a triangulated
equivalence between the derived Bass and Auslander classes [2, Theorem 3.2],
[11, Theorem 4.6]

(10) Db.El1
/ ' Db.Fl1

/:

Lemma 3.5. (a) For any A-module E 2 El1
, the object RHomA.L�; E/ 2

Db.B–mod/ can be represented by a complex of B-modules concentrated in the
cohomological degrees �d2 6 m 6 l1 with the terms belonging to Fl1

.
(b) For any B-module F 2 Fl1

, the object L� ˝L

B F 2 Db.A–mod/ can
be represented by a complex of A-modules concentrated in the cohomological
degrees �l1 6 m 6 d2 with the terms belonging to El1

.

Proof. Part (a) follows from Lemma 3.4(b), as the derived category object
L� ˝L

B RHomA.L�; E/ ' E has no cohomology in the cohomological degrees
�n < �d2 � l1 6 �d2 � d1 6 0. Part (b) follows from Lemma 3.4(a), as the
derived category object RHomA.L�; L� ˝L

B F / ' F has no cohomology in the
cohomological degrees n > d2 C l1 > d2 C d1 > 0. �

We refer to [59, Section 2] and [44, Section A.5] for discussions of the cores-
olution dimension of objects of an exact category Awith respect to its coresolving
subcategory E and the resolution dimension of objects of an exact category B with
respect to its resolving subcategory F (called the right E-homological dimension
and the left F-homological dimension in [44]).

Lemma 3.6. (a) For any integers l 00
1 > l 0

l
> d1, the full subcategory

El 00
1
� A–mod consists precisely of all the left A-modules whose El 0

1
-coresolution

dimension does not exceed l 00
1 � l 0

1.

(b) For any integers l 00
1 > l 0

1 > d1, the full subcategory Fl 00
1
� B–mod consists

precisely of all the left B-modules whose Fl 0
1
-resolution dimension does not exceed

l 00
1 � l 0

1.
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Proof. Part (a) is obtained by applying Lemma 3.4(a) to a one-term complex
M � D E, concentrated in the cohomological degree 0, with n1 D 0, n2 D l 00

1 � l 0
1,

and l1 D l 0
1. Part (b) is obtained by applying Lemma 3.4(b) to a one-term complex

N � D F , concentrated in the cohomological degree 0, with n2 D 0, n1 D l 00
1 � l 0

1,
and l1 D l 0

1. �

Remark 3.7. In particular, it follows from Lemmas 3.2 and 3.6 that, for any
n > 0, all the left A-modules of injective dimension not exceeding n belong
to Ed1Cn and all the left B-modules of flat dimension not exceeding n belong
to Fd1Cn.

We refer to [44, Section A.1], [45, Appendix A], or Section 1 for the definitions
of exotic derived categories appearing in the next proposition.

Proposition 3.8. For any l 00
1 > l 0

1 > d1 and any conventional or exotic derived
category symbol ? D b,C,�, ¿, absC, abs�, co, ctr, or abs, the exact embedding
functors El 0

1
! El 00

1
and Fl 0

1
! Fl 00

1
induce triangulated equivalences

D?.El 0
1
/ ' D?.El 00

1
/ and D?.Fl 0

1
/ ' D?.Fl 00

1
/:

Proof. The assertions follow from Lemma 3.6 in view of [44, Proposi-
tion A.5.6]. �

In particular, the unbounded derived category D.El1
/ is the same for all l1 > d1

and the unbounded derived category D.Fl1
/ is the same for all l1 > d1.

As it was explained in Section 1, it follows from Lemmas 3.1–3.3 by virtue
of [44, Proposition A.3.1(b)] that the natural Verdier quotient functor

Dco.A–mod/ �! D.A–mod/

factorizes into two Verdier quotient functors

Dco.A–mod/ ��! D.El1
/ ��! D.A–mod/;

and the natural Verdier quotient functor Dctr.B–mod/ ! D.B–mod/ factorizes
into two Verdier quotient functors

Dctr.B–mod/ ��! D.Fl1
/ ��! D.B–mod/:

In other words, the triangulated category D.El1
/ is a pseudo-coderived category

of the abelian category of left A-modules and the triangulated category D.Fl1
/ is

a pseudo-contraderived category of the abelian category of left B-modules.
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These are called the lower pseudo-coderived category of left A-modules and
the lower pseudo-contraderived category of left B-modules corresponding to the
pseudo-dualizing complex L�. The notation is

D0

L�.A–mod/ D D.El1
/ and D00

L�.B–mod/ D D.Fl1
/:

The next theorem provides, in particular, a triangulated equivalence between the
lower pseudo-coderived and the lower pseudo-contraderived category,

D0

L�.A–mod/ D D.El1
/ ' D.Fl1

/ D D00

L�.B–mod/:

Theorem 3.9. For any symbol ? D b, C, �, ¿, absC, abs�, co, ctr, or abs,
there is a triangulated equivalence D?.El1

/ ' D?.Fl1
/ provided by (appropriately

defined) mutually inverse functors RHomA.L�;�/ and L� ˝L

B �.

Proof. This is a particular case of Theorem 4.2 below. The construction of
the derived functors RHomA.L�;�/ and L� ˝L

B � is explained in the proof of
Theorem 4.2 and in the appendix. �

4. Abstract corresponding classes

More generally, suppose that we are given two full subcategories E � A–mod and
F � B–mod satisfying the following conditions (for some fixed integers l1 and l2):

(I) the full subcategory E � A–mod is closed under extensions and the coker-
nels of injective morphisms, and contains all the injective left A-modules;

(II) the full subcategory F � B–mod is closed under extensions and the kernels
of surjective morphisms, and contains all the projective left B-modules;

(III) for any A-module E 2 E, the object RHomA.L�; E/ 2 DC.B–mod/ can be
represented by a complex of B-modules concentrated in the cohomological
degrees �l2 6 m 6 l1 with the terms belonging to F;

(IV) for any B-module F 2 F, the object L� ˝L

B F 2 D�.A–mod/ can be
represented by a complex of A-modules concentrated in the cohomological
degrees �l1 6 m 6 l2 with the terms belonging to E.

One can see from the conditions (I) and (III), or (II) and (IV), that l1 > d1 and
l2 > d2 if H �d1.L�/ ¤ 0 ¤ H d2.L�/. According to Lemmas 3.1, 3.2, and 3.5,
the two classes E D El1

and F D Fl1
satisfy the conditions (I)–(IV) with l2 D d2.
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The following lemma, providing a kind of converse implication, can be ob-
tained as a byproduct of the proof of Theorem 4.2 below (based on the arguments
in the appendix). It is somewhat counterintuitive, claiming that the adjunction iso-
morphism conditions on the modules in the classes E and F, which were necessary
in the context of the previous Section 3, follow from the conditions (I)–(IV) in our
present context. So we prefer to present a separate explicit proof.

Lemma 4.1. (a) For any A-module E 2 E, the adjunction morphism L� ˝L

B

RHomA.L�; E/! E is an isomorphism in Db.A–mod/.

(b) For any B-module F 2 F, the adjunction morphism F ! RHomA.L�;

L� ˝L

B F / is an isomorphism in Db.B–mod/.

Proof. We will prove part (a); the proof of part (b) is similar. Specifically,
let 0 ! E ! K0 ! K1 ! � � � be an exact sequence of left A-modules
with E 2 E and K i 2 E for all i > 0. Suppose that the adjunction morphisms
L� ˝L

B RHomA.L�; K i/ ! K i are isomorphisms in Db.A–mod/ for all i > 0.
We will show that the adjunction morphism L� ˝L

B RHomA.L�; E/ ! E is
also an isomorphism in this case. As injective left A-modules belong to E by the
condition (I), the desired assertion will then follow from Lemma 3.2(a).

Let Zi denote the kernel of the differential K i ! K iC1; in particular, Z0 D E.
The key observation is that, according to the condition (I), one has Zi 2 E

for all i > 0. For every i > 0, choose a coresolution of the short exact se-
quence 0 ! Zi ! K i ! ZiC1 by short exact sequences of injective left
A-modules 0 ! Y i;j ! J i;j ! Y iC1;j ! 0, j > 0. Applying the functor
HomA.L�;�/ to the complexes of left A-modules J i;� and Y i;�, we obtain short ex-
act sequences of complexes of left B-modules 0! Gi;� ! F i;� ! GiC1;� ! 0,
where Gi;� D HomA.L�; Y i;�/ and F i;� D HomA.L�; J i;�/. According to the con-
dition (III), each complex Gi;� and F i;� is quasi-isomorphic to a complex of left
B-modules concentrated in the cohomological degrees �l2 6 m 6 l1 with the
terms belonging to F.

For every i > 0, choose complexes of projective left B-modules Qi;� and
P i;�, concentrated in the cohomological degrees 6 l1 and endowed with quasi-
isomorphisms of complexes of left B-modules Qi;� ! Gi;� and P i;� ! F i;�

so that there are short exact sequences of complexes of left B-modules 0 !

Qi;� ! P i;� ! QiC1;� ! 0 and the whole diagram is commutative. Applying
the functor L� ˝B � to the complexes of left B-modules P i;� and Qi;�, we
obtain short exact sequences of complexes of left A-modules 0 ! N i;� !

M i;� ! N iC1;� ! 0, where N i;� D L� ˝B Qi;� and M i;� D L� ˝B P i;�.
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It follows from the condition (IV) that each complex M i;� and N i;� is quasi-
isomorphic to a complex of left A-modules concentrated in the cohomological
degrees �l1 � l2 6 m 6 l1 C l2. In particular, the cohomology modules of the
complexes M i;� and N i;� are concentrated in the degrees �l1 � l2 6 m 6 l1C l2.

Applying the functors of two-sided canonical truncation �>�l1�l2
�6l1Cl2

to
the complexes M i;� and N i;�, we obtain short exact sequences 0 ! 0N i;� !
0M i;� ! 0N iC1;� ! 0 of complexes whose terms are concentrated in the coho-
mological degrees �l1 � l2 6 m 6 l1 C l2. Similarly, applying the functors of
canonical truncation �6l1Cl2

to the complexes J i;� and Y i;�, we obtain short ex-
act sequences 0 ! 0Y i;� ! 0J i;� ! 0Y iC1;� ! 0 of complexes whose terms are
concentrated in the cohomological degrees 0 6 m 6 l1 C l2. Now we have two
morphisms of bicomplexes 0M i;j ! 0J i;j and K i ! 0J i;j , which are both quasi-
isomorphisms of finite complexes along the grading j at every fixed degree i , by
assumption. Furthermore, we have two morphisms of bicomplexes 0N 0;j ! 0M i;j

and 0Y 0;j ! 0J i;j , which are both quasi-isomorphisms along the grading i at every
fixed degree j , by construction. We also have a quasi-isomorphism E ! 0Y 0;�.

Passing to the total complexes, we see that the morphism of complexes
0N 0;� ! 0Y 0;� is a quasi-isomorphism, because so are the morphisms 0N 0;� !
0M �;�, 0M �;� ! 0J �;�, and 0Y 0;� ! 0J �;� in a commutative square. This proves that
the adjunction morphism L� ˝L

B RHomA.L�; E/! E is an isomorphism in the
derived category. �

Assuming that l1 > d1 and l2 > d2, it is now clear from the condi-
tions (III)–(IV) and Lemma 4.1 that one has E � El1

and F � Fl1
for any

two classes of objects E � A–mod and F � B–mod satisfying (I)–(IV). Fur-
thermore, it follows from the conditions (I)–(II) that the triangulated functors
Db.E/ ! Db.A–mod/ and Db.F/ ! Db.B–mod/ induced by the exact embed-
dings E ! A–mod and F ! B–mod are fully faithful. Hence so are the trian-
gulated functors Db.E/ ! Db.El1

/ and Db.F/ ! Db.Fl1
/. In view of the condi-

tions (III)–(IV), we can conclude that equivalence (10) restricts to a triangulated
equivalence

(11) Db.E/ ' Db.F/:

The following theorem is the main result of this paper.

Theorem 4.2. Let E � A–mod and F � B–mod be a pair of full subcategories
of modules satisfying the conditions (I)–(IV) for a pseudo-dualizing complex
of A-B-bimodules L�. Then for any symbol ? D b, C, �, ¿, absC, abs�,
co, ctr, or abs, there is a triangulated equivalence D?.E/ ' D?.F/ provided by
(appropriately defined) mutually inverse functors RHomA.L�;�/ and L� ˝L

B �.



Pseudo-dualizing complexes and pseudo-derived categories 181

Here, in the case ? D co it is assumed that the full subcategories E � A–mod
and F � B–mod are closed under infinite direct sums, while in the case ? D ctr it
is assumed that these two full subcategories are closed under infinite products.

Proof. The words “appropriately defined” here mean “as defined or con-
structed in the appendix”. Specifically, given a complex of left A-modules E�

with the terms Ei 2 E, we choose its termwise injective coresolution, which is
a bounded below complex of complexes of injective left A-modules J �;�. Ap-
plying the functor HomA.L�;�/ to every bounded below complex of injective
left A-modules J i;� coresolving the left A-module Ei , we obtain a bicomplex
of left B-modules N �;�, which can be replaced by a quasi-isomorphic (in the
sense explained in the appendix, see (20)) bounded complex of complexes of left
B-modules F �;� with the terms F i;j 2 F. Totalizing the bicomplex F �;�, we obtain
the desired complex of left B-modules RHomA.L�; E�/.

Similarly, given a complex of left B-modules F � with the terms F i 2 F, we
choose its termwise projective resolution, which is a bounded above complex of
complexes of projective left B-modules P �;�. Applying the functor L� ˝B � to
every bounded above complex of projective left B-modules P i;� resolving the
left B-module F i , we obtain a bicomplex of left A-modules M �;�, which can be
replaced by a quasi-isomorphic bounded complex of complexes of left A-modules
E�;� with the terms Ei;j 2 E. Totalizing the bicomplex E�;�, we obtain the desired
complex of left A-modules L� ˝L

B F �.
Arguing more formally, the theorem is a straightforward application of the

results of the appendix. In the context of the latter, we set

A D A–mod � E � J D A–modinj;

B D B–mod � F � P D B–modproj:

Consider the adjoint pair of DG-functors

‰ D HomA.L�;�/W CC.J/ ��! CC.B/;

ˆ D L� ˝B �W C
�.P/ ��! C�.A/:

Then the conditions of Sections A.1 and A.3 are satisfied, so the constructions
of Sections A.2–A.3 provide the derived functors R‰ and Lˆ. The arguments
in Section A.4 show that these two derived functors are naturally adjoint to each
other, and the first assertion of Theorem A.5 explains how to deduce the claim
that they are mutually inverse triangulated equivalences from the triangulated
equivalence (11).
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Alternatively, applying the second assertion of Theorem A.5 together with
Lemma 3.2 allows to reprove the triangulated equivalence (11) rather than use
it, thus obtaining another and more “conceptual” proof of Lemma 4.1. �

Now suppose that we have two pairs of full subcategories E0 � E0 � A–mod
and F00 � F00 � B–mod such that both the pairs .E0; F00/ and .E0; F00/ satisfy the
conditions (I)–(IV), and both the full subcategories E0 and E0 are closed under
infinite direct sums in A–mod, while both the full subcategories F00 and F00 are
closed under infinite products in B–mod. Then, in view of the discussion in
Section 1 and according to Theorem 4.2 (for ? D ¿), we have a diagram of
triangulated functors

(12)

Dco.A–mod/ Dctr.B–mod/

D.E0/ D.F00/

D.E0/ D.F00/

D.A–mod/ D.B–mod/

 �  �
 �

(

(

 �
 �

(

(

 �

The vertical arrows are Verdier quotient functors, so both the triangulated cat-
egories D.E0/ and D.E0/ are pseudo-coderived categories of left A-modules, and
both the triangulated categories D.F00/ and D.F00/ are pseudo-contraderived cat-
egories of left B-modules. The horizontal double lines are triangulated equiva-
lences. The inner square in the diagram (12) is commutative, as one can see from
the construction of the derived functors in Theorem 4.2.

More generally, for any symbol ? D b, C, �, ¿, absC, abs�, or abs, there is
a commutative diagram of triangulated functors and triangulated equivalences

(13)

D?.E0/ D?.F00/

D?.E0/ D?.F00/

 

!

(

(

 

!

(

(

When all the four full subcategories E0, E0 � A–mod and F00, F00 � B–mod are
closed under infinite direct sums (respectively, infinite products), there is also a
commutative diagram of triangulated functors and triangulated equivalences (13)
with ? D co (resp., ? D ctr).
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5. Minimal corresponding classes

Let A and B be associative rings, and L� be a pseudo-dualizing complex of
A-B-bimodules.

Proposition 5.1. Fix l1 D d1 and l2 > d2. Then there exists a unique minimal
pair of full subcategories El2 D El2.L�/ � A–mod and Fl2 D Fl2.L�/ � B–mod
satisfying the conditions (I)–(IV) together with the additional requirements that
El2 is closed under infinite direct sums in A–mod and Fl2 is closed under infinite
products in B–mod. For any pair of full subcategories E � A–mod and F �

B–mod satisfying the conditions (I)–(IV) such that E is closed under infinite direct
sums in A–mod and F is closed under infinite products in B–mod one has El2 � E

and Fl2 � F.

Proof. The full subcategories El2 � A–mod and Fl2 � B–mod are con-
structed simultaneously by a kind of generation process. By construction, for any
full subcategories E � A–mod and F � B–mod as above we will have El2 � E and
Fl2 � F. In particular, the pair of full subcategories E D Ed1

and F D Fd1
satisfies

all the mentioned conditions, so we will have El2 � Ed1
and Fl2 � Fd1

.

Firstly, all the injective left A-modules belong to El2 and all the projective
left B-modules belong to Fl2 , as dictated by the conditions (I)–(II). Secondly,
let E be an A-module belonging to El2 . Then E 2 Ed1

, so the derived category
object RHomA.L�; E/ 2 Db.B–mod/ has cohomology modules concentrated in
the degrees �d2 6 m 6 d1. Pick a complex of left B-modules F � representing
RHomA.L�; E/ such that F � is concentrated in the degrees �l2 6 m 6 d1 and
the B-modules F m are projective for all �l2 C 1 6 m 6 d1. According to [44,
Corollary A.5.2], we have F �l2 2 F. So we say that the B-module F �l2 belongs
to Fl2 . Similarly, let F be a B-module belonging to Fl2 . Then F 2 Fd1

, so the
derived category object L� ˝L

B F has cohomology modules concentrated in the
degrees �d1 6 m 6 d2. Pick a complex of left A-modules E� representing
L� ˝L

B F such that E� is concentrated in the degrees �d1 6 m 6 l2 and the
A-modules Em are injective for all �d1 6 m 6 l2 � 1. According to the dual
version of [44, Corollary A.5.2], we have El2 2 E. So we say that the A-module
El2 belongs to El2 .

Thirdly and finally, we add to El2 all the extensions, cokernels of injective
morphisms, and infinite direct sums of its objects, and similarly add to Fl2 all the
extensions, kernels of surjective morphisms, and infinite products of its objects.
Then the second and third steps are repeated in transfinite iterations, as it may be
necessary, until all the modules that can be obtained in this way have been added
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and the full subcategories of all such modules El2 � A–mod and Fl2 � B–mod
have been formed. �

Remark 5.2. It is clear from the construction in the proof of Proposition 5.1
that for any two values of the parameters l1 > d1 and l2 > d2, and any two full
subcategories E � A–mod and F � B–mod satisfying the conditions (I)–(IV) with
the parameters l1 and l2 such that E is closed under infinite direct sums in A–mod
and F is closed under infinite products in B–mod, one has El2 � E and Fl2 � F.

Notice that the conditions (III)–(IV) become weaker as the parameter l2 in-
creases. It follows that one has El2 � El2C1 and Fl2 � Fl2C1 for all l2 > d2. So the
inclusion relations between our classes of modules have the form

� � � � Ed2C2 � Ed2C1 � Ed2 � Ed1
� Ed1C1 � Ed1C2 � � � � � A–mod;

� � � � Fd2C2 � Fd2C1 � Fd2 � Fd1
� Fd1C1 � Fd1C2 � � � � � B–mod:

Lemma 5.3. Let n > 0 and l1 > d1, l2 > d2 C n be some integers. Let
E � A–mod and F � B–mod be a pair of full subcategories satisfying the
conditions (I)–(IV) with the parameters l1 and l2. Denote by E.n/ � A–mod the
full subcategory of all left A-modules of E-coresolution dimension not exceeding n

and by F.n/ � B–mod the full subcategory of all left B-modules of F-resolution
dimension not exceeding n. Then the two classes of modules E.n/ and F.n/ satisfy
the conditions (I)–(IV) with the parameters l1 C n and l2 � n.

Proof. According to [59, Proposition 2.3(2)] or [44, Lemma A.5.4(a-b)] (and
the assertions dual to these), the full subcategories E.n/ � A–mod and F.n/ �

B–mod satisfy the conditions (I)–(II). Using [44, Corollary A.5.5(b)], one shows
that for any A-module E 2 E.n/ the derived category object RHomA.L�; E/ 2

Db.B–mod/ can be represented by a complex concentrated in the cohomological
degrees �l2 6 m 6 l1 C n with the terms belonging to F. Moreover, one
has ExtmA .L�; E/ D 0 for all m < �d2. It follows that RHomA.L�; E/ can
be also represented by a complex concentrated in the cohomological degrees
�l2 C n 6 m 6 l1 C n with the terms belonging to F.n/. Similarly one can
show that for any B-module F 2 F.n/ the derived category object L� ˝L

B F 2

Db.A–mod/ can be represented by a complex concentrated in the cohomological
degrees �l1 � n 6 m 6 l2 with the terms belonging to E. Moreover, one has
TorB

�m.L�; F / D 0 for all m > d2. It follows that L�˝L

B F can be also represented
by a complex concentrated in the cohomological degrees �l1 � n 6 m 6 l2 � n

with the terms belonging to E.n/. This proves the conditions (III)–(IV). �
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Proposition 5.4. For any l 00
2 > l 0

2 > d2 and any conventional or exotic derived
category symbol ? D b, C, �, ¿, absC, abs�, or abs, the exact embedding
functors El 00

2 ! El 0
2 and Fl 00

2 ! Fl 0
2 induce triangulated equivalences

D?.El 00
2 / ' D?.El 0

2/ and D?.Fl 00
2 / ' D?.Fl 0

2/:

The same exact embeddings also induce triangulated equivalences

Dco.El 00
2 / ' Dco.El 0

2/ and Dctr.Fl 00
2 / ' Dctr.Fl 0

2/:

Proof. As in Proposition 3.8, we check that the El 00
2 -coresolution dimension

of any object of El 0
2 does not exceed l 00

2 �l 0
2 and the Fl 00

2 -resolution dimension of any
object of Fl 0

2 does not exceed l 00
2 � l 0

2. Indeed, according to Lemma 5.3, the pair of
full subcategories El 00

2 .l 00
2 � l 0

2/ � A–mod and Fl 00
2 .l 00

2 � l 0
2/ � B–mod satisfies the

conditions (I)–(IV) with the parameters l1 D d1Cl 00
2�l 0

2 and l2 D l 0
2. Furthermore,

since infinite direct sums are exact and the full subcategory El 00
2 is closed under

infinite direct sums in A–mod, so is the full subcategory El 00
2 .l 00

2 �l 0
2/. Since infinite

products are exact and the full subcategory Fl 00
2 is closed under infinite products in

B–mod, so is the full subcategory Fl 00
2 .l 00

2 � l 0
2/. It follows that El 0

2 � El 00
2 .l 00

2 � l 0
2/

and Fl 0
2 � Fl 00

2 .l 00
2 � l 0

2/. �

In particular, the unbounded derived category D.El2/ is the same for all l2 > d2

and the unbounded derived category D.Fl2/ is the same for all l2 > d2.
As it was explained in Section 1, it follows from the condition (I) together

with the condition that El2 is closed under infinite direct sums in A–mod that the
natural Verdier quotient functor Dco.A–mod/ ! D.A–mod/ factorizes into two
Verdier quotient functors

Dco.A–mod/ ��! D.El2/ ��! D.A–mod/:

Similarly, it follows from the condition (II) together with the condition that Fl2 is
closed under infinite products in B–mod that the natural Verdier quotient functor
Dctr.B–mod/! D.B–mod/ factorizes into two Verdier quotient functors

Dctr.B–mod/ ��! D.Fl2/ ��! D.B–mod/:

In other words, the triangulated category D.El2/ is a pseudo-coderived category
of left A-modules and the triangulated category D.Fl2/ is a pseudo-contraderived
category of left B-modules.

These are called the upper pseudo-coderived category of left A-modules and
the upper pseudo-contraderived category of left B-modules corresponding to the
pseudo-dualizing complex L�. The notation is

DL�

0 .A–mod/ D D.El2/ and DL�

00 .B–mod/ D D.Fl2/:
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The next theorem provides, in particular, a triangulated equivalence between the
upper pseudo-coderived and the upper pseudo-contraderived category,

DL�

0 .A–mod/ D D.El2/ ' D.Fl2/ D DL�

00 .B–mod/:

Theorem 5.5. For any symbol ? D b,C, �, ¿, absC, abs�, or abs, there is a
triangulated equivalence D?.El2/ ' D?.Fl2/ provided by (appropriately defined)
mutually inverse functors RHomA.L�;�/ and L� ˝L

B �.

Proof. This is another particular case of Theorem 4.2. It is explained in the
proof of that theorem what “appropriately defined” means. �

Substituting E0 D El1
, E0 D El2 , F00 D Fl1

, and F00 D Fl2 (for some
l1 > d1 and l2 > d2) into the commutative diagram of triangulated functors (12)
from Section 4, one obtains the commutative diagram of triangulated functors (7)
promised in Section 0.5 of the Introduction.

6. Dedualizing complexes

Let A and B be associative rings. A dedualizing complex of A-B-bimodules
L� D T � is a pseudo-dualizing complex (according to the definition in Section 3)
satisfying the following additional condition:

(i) As a complex of left A-modules, T � is quasi-isomorphic to a finite complex
of projective A-modules, and as a complex of right B-modules, T � is quasi-
isomorphic to a finite complex of projective B-modules.

Taken together, the conditions (i) and (ii) mean that, as a complex of left
A-modules, T � is quasi-isomorphic to a finite complex of finitely generated pro-
jective A-modules, and as a complex of right B-modules, T � is quasi-isomorphic
to a finite complex of finitely generated projective B-modules. In other words, T �

is a perfect complex of left A-modules and a perfect complex of right B-modules.

This definition of a dedualizing complex is slightly less general than that of a
tilting complex in the sense of [54, Theorem 1.1] and slightly more general than
that of a two-sided tilting complex in the sense of [54, Definition 3.4].

Let L� D T � be a dedualizing complex of A-B-bimodules. We refer to the
beginning of Section 3 for the discussion of the pair of adjoint derived func-
tors RHomA.T �;�/WD.A–mod/ ! D.B–mod/ and T � ˝L

B �WD.B–mod/ !

D.A–mod/. The following assertion is a version of [54, Proposition 5.1] and [18,
Theorem 4.2 (2) () (4)].
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Proposition 6.1. The derived functors RHomA.T �;�/ and T � ˝L

B � are
mutually inverse triangulated equivalences between the conventional unbounded
derived categories D.A–mod/ and D.B–mod/.

Proof. We have to show that the adjunction morphisms are isomorphisms.
Let J � be a homotopy injective complex of left A-modules. Then the com-
plex of left B-modules HomA.T �; J �/ represents the derived category object
RHomA.T �; J �/ 2 D.B–mod/. Let 0 T � be a finite complex of finitely gener-
ated projective right B-modules endowed with a quasi-isomorphism of com-
plexes of right B-modules 0 T � ! T �. Then the adjunction morphism T � ˝L

B

RHomA.T �; J �/! J � is represented, as a morphism in the derived category of
abelian groups, by the morphism of complexes 0 T �˝B HomA.T �; J �/! J �. Now
the complex of abelian groups 0 T � ˝B HomA.T �; J �/ is naturally isomorphic to
HomA.HomBop.0 T �; T �/; J �/, and the morphism of complexes of left A-modules
A! HomBop.0 T �; T �/ is a quasi-isomorphism by the condition (iii).

Similarly, let P � be a homotopy flat complex of left B-modules. Then the com-
plex of left A-modules T � ˝B P � represents the derived category object T � ˝L

B

P � 2 D.A–mod/. Let 00 T � be a finite complex of finitely generated projective left
A-modules endowed with a quasi-isomorphism of complexes of left A-modules
00T � ! T �. Then the adjunction morphism P � ! RHomA.T �; T � ˝L

B P �/ is
represented, as a morphism in the derived category of abelian groups, by the mor-
phism of complexes P � ! HomA.00 T �; T � ˝B P �/. Now the complex of abelian
groups HomA.00 T �; T �˝B P �/ is naturally isomorphic to HomA.00 T �; T �/˝B P �,
and the morphism of complexes of right B-modules B ! HomA.00 T �; T �/ is a
quasi-isomorphism by the condition (iii). �

In particular, it follows that the derived Bass and Auslander classes associ-
ated with a dedualizing complex L� D T � (as discussed in Section 3) coincide
with the whole bounded derived categories Db.A–mod/ and Db.B–mod/, and the
triangulated equivalence (10) takes the form Db.A–mod/ ' Db.B–mod/.

Now let us choose the parameter l1 in such a way that T � is quasi-isomorphic
to a complex of (finitely generated) projective left A-modules concentrated in the
cohomological degrees �l1 6 m 6 d2 and to a complex of (finitely generated)
projective right B-modules concentrated in the cohomological degrees�l1 6 m 6

d2. Then we have El1
.T �/ D A–mod and Fl1

.T �/ D B–mod.

The next corollary is a (partial) extension of [53, Theorem 6.4], [54, Theo-
rem 3.3 and Proposition 5.1], and [18, Proposition 5.1].
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Corollary 6.2. For any symbol ? D b, C, �, ¿, absC, abs�, co, ctr,
or abs, there is a triangulated equivalenceD?.A–mod/ ' D?.B–mod/ provided by
(appropriately defined) mutually inverse functors RHomA.T �;�/ and T � ˝L

B �.

Proof. In view of the above observations, this is a particular case of Theo-
rem 3.9. �

7. Dualizing complexes

Let A and B be associative rings. Our aim is to work out a generalization of the
results of [28, Theorem 4.8] and [46, Sections 2 and 4] falling in line with the
exposition in the present paper (with the Noetherianness/coherence assumptions
removed).

Firstly we return to the discussion of sfp-injective and sfp-flat modules started
in Section 2. Denote the full subcategory of sfp-injective left A-modules by
A–modsfpin � A–mod and the full subcategory of sfp-flat left B-modules by
B–modsfpfl � B–mod. It is clear from Lemma 2.4 that the categories A–modsfpin
and B–modsfpfl have exact category structures inherited from the abelian cate-
gories A–mod and B–mod.

Proposition 7.1. (a) The triangulated functor

Dco.A–modsfpin/ �! Dco.A–mod/

induced by the embedding of exact categories A–modsfpin ! A–mod is an
equivalence of triangulated categories.

(b) If all sfp-injective left A-modules have finite injective dimensions, then the
triangulated functor

Hot.A–modinj/ �! Dco.A–mod/

induced by the embedding of additive/exact categories A–modinj ! A–mod is an
equivalence of triangulated categories.

Proof. Part (a) is but an application of the assertion dual to [44, Proposi-
tion A.3.1(b)] (cf. [46, Theorem 2.2]). Part (b) was proved in [43, Section 3.7]
(for a more general argument, one can use the assertion dual to [44, Corol-
lary A.6.2]). In fact, the assumption in part (b) can be weakened by requiring
only that fp-injective left A-modules have finite injective dimensions, as infinite
direct sums of fp-injective left A-modules are fp-injective over an arbitrary ring
(cf. [46, Theorem 2.4]). �
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Proposition 7.2. (a) The triangulated functor

Dctr.B–modsfpfl/ �! Dctr.B–mod/

induced by the embedding of exact categories B–modsfpfl ! B–mod is an equiv-
alence of triangulated categories.

(b) If all sfp-flat left B-modules have finite projective dimensions, then the
triangulated functor

Hot.B–modproj/ �! Dctr.B–mod/

induced by the embedding of additive/exact categories B–modproj ! B–mod is
an equivalence of triangulated categories.

Proof. Part (a) is but an application of [44, Proposition A.3.1(b)] (cf. [46,
Theorem 4.4]). Part (b) was proved in [43, Section 3.8] (for a more general
argument, see [44, Corollary A.6.2]). �

The following lemma is a version of [46, Lemma 4.1] applicable to arbitrary
rings.

Lemma 7.3. (a) Let P be a flat left B-module and K be an A-sfp-injective
A-B-bimodule. Then the tensor product K˝B P is an sfp-injective left A-module.

(b) Let J be an injective left A-module and K be a B-sfp-injective A-B-bi-
module. Then the left B-module HomA.K; J / is sfp-flat.

Proof. This is a particular case of the next Lemma 7.4. �

Lemma 7.4. (a) Let P � be a complex of flat left B-modules concentrated in
the cohomological degrees �n 6 m 6 0 and K� be a complex of A-B-bimodules
which, as a complex of left A-modules, is quasi-isomorphic to a complex of
sfp-injective A-modules concentrated in the cohomological degrees �d 6 m 6 l .
Then the tensor product K� ˝B P � is a complex of left A-modules quasi-
isomorphic to a complex of sfp-injective left A-modules concentrated in the coho-
mological degrees �n � d 6 m 6 l .

(b) Let J � be a complex of injective left A-modules concentrated in the coho-
mological degrees 0 6 m 6 n and K� be a complex of A-B-bimodules which, as
a complex of right B-modules, is quasi-isomorphic to a complex of sfp-injective
right B-modules concentrated in the cohomological degrees �d 6 m 6 l . Then
the complex of left B-modules HomA.K�; J �/ is quasi-isomorphic to a complex of
sfp-flat B-modules concentrated in the cohomological degrees �l 6 m 6 nC d .
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Proof. (a) Clearly, the tensor product K� ˝B P � is quasi-isomorphic
to a complex of left A-modules concentrated in the cohomological degrees
�n � d 6 m 6 l ; the nontrivial aspect is to show that there is such a complex
with sfp-injective terms. Equivalently, this means that ExtiA.M; K� ˝B P �/ D 0

for all strongly finitely presented left A-modules M and all i > l . Indeed, let R�

be a resolution of M by finitely generated projective left A-modules. Without loss
of generality, we can assume that K� is a finite complex of A-B-bimodules. Then
the complex HomA.R�; K� ˝B P �/ is isomorphic to HomA.R�; K�/˝B P � and
the cohomology modules of the complex HomA.R�; K�/ are concentrated in the
degrees �d 6 m 6 l .

(b) Clearly, the complex HomA.K�; J �/ is quasi-isomorphic to a complex of
left B-modules concentrated in the cohomological degrees �l 6 m 6 n C d ;
we have to show that there is such a complex with sfp-flat terms. Equivalently,
this means that TorB

i .N; HomA.K�; J �// D 0 for all strongly finitely presented
right B-modules N and all i > l . Indeed, let Q� be a resolution of N by
finitely generated projective right B-modules. Without loss of generality, we
can assume that K� is a finite complex of A-B-bimodules. Then the complex
Q� ˝B HomA.K�; J �/ is isomorphic to HomA.HomBop.Q�; K�/; J �/ and the
cohomology modules of the complex HomBop.Q�; K�/ are concentrated in the
degrees �d 6 m 6 l . �

A dualizing complex of A-B-bimodules L� D D� is a pseudo-dualizing com-
plex (according to the definition in Section 3) satisfying the following additional
condition:

(i) As a complex of left A-modules, D� is quasi-isomorphic to a finite complex
of sfp-injective A-modules, and as a complex of right B-modules, D� is
quasi-isomorphic to a finite complex of sfp-injective B-modules.

This definition of a dualizing complex is a version of the definition of a
“cotilting bimodule complex” in [34, Section 2], reproduced as the definition of
a “weak dualizing complex” in [46, Section 3] (cf. the definition of a “dualizing
complex” in [46, Section 4]), extended from the case of coherent rings to arbitrary
rings A and B in the spirit of [26, Definition 2.1] and [44, Section B.4]. (Other
versions of the definition of a dualizing complex of bimodules known in the
literature can be found in [65, Definition 1.1] and [12, Definition 1.1].) In order
to prove the results below, we will have to impose some homological dimension
conditions on the rings A and B , bringing our definition of a dualizing complex
even closer to the definition in [34] and the definition of a weak dualizing complex
in [46].
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Specifically, we will have to assume that all sfp-injective left A-modules have
finite injective dimensions. This assumption always holds when the ring A is
left coherent and there exists an integer n > 0 such that every left ideal in A

is generated by at most @n elements [46, Proposition 2.3].

We will also have to assume that all sfp-flat left B-modules have finite pro-
jective dimensions. For a right coherent ring B , this would simply mean that all
flat left B-modules have finite projective dimensions. The class of rings satisfying
the latter condition was discussed, under the name of “left n-perfect rings,” in the
paper [21]. We refer to [46, Proposition 4.3], the discussions in [28, Section 3]
and [43, Section 3.8], and the references therein, for further sufficient conditions.

Let us choose the parameter l2 in such a way that D� is quasi-isomorphic
to a complex of sfp-injective left A-modules concentrated in the cohomological
degrees �d1 6 m 6 l2 and to a compex of sfp-injective right B-modules
concentrated in the cohomological degrees �d1 6 m 6 l2.

Proposition 7.5. Let A and B be associative rings such that all sfp-injective
left A-modules have finite injective dimensions and all sfp-flat left B-modules
have finite projective dimensions. Let L� D D� be a dualizing complex of
A-B-bimodules, and let the parameter l2 be chosen as stated above. Then the
related minimal corresponding classes El2 D El2.D�/ and Fl2 D Fl2.D�/

are contained in the classes of sfp-injective A-modules and spf-flat B-modules,
El2 � A–modsfpin and Fl2 � B–modsfpfl.

Moreover, let n > 0 be an integer such that the injective dimensions of
sfp-injective left A-modules do not exceed n and the projective dimensions of
sfp-flat left B-modules do not exceed n. Then the classes of modules E D

A–modsfpin and F D B–modsfpfl satisfy the conditions (I)–(IV) with the param-
eters l1 D nC d1 and l2.

Proof. The second assertion is true, as the conditions (I)–(II) are satisfied by
Lemma 2.4 and the conditions (III)–(IV) hold by Lemma 7.4. The first assertion
follows from the second one together with Lemma 2.4. �

Let B–modflat � B–mod denote the full subcategory of flat left B-modules. It
inherits the exact category structure of the abelian category B–mod.
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Corollary 7.6. Let A and B be associative rings such that all sfp-injective
left A-modules have finite injective dimensions and all sfp-flat left B-modules
have finite projective dimensions. Let L� D D� be a dualizing complex of
A-B-bimodules, and let the parameter l2 be chosen as above. Then there is a tri-
angulated equivalence Dco.A–mod/ ' Dctr.B–mod/ provided by (appropriately
defined) mutually inverse functors RHomA.D�;�/ and D� ˝L

B �.
Furthermore, there is a chain of triangulated equivalences

Dco.A–mod/ ' DabsD¿.A–modsfpin/

' DabsD¿.El2/

' Hot.A–modinj/

' Hot.B–modproj/

' DabsD¿.Fl2/

' DabsD¿.B–modflat/

' DabsD¿.B–modsfpfl/

' Dctr.B–mod/;

where the notation DabsD¿.C/ is a shorthand for an identity isomorphism of
triangulated categories Dabs.C/ D D.C/ between the absolute derived category
and the conventional derived category of an exact category C. Moreover, for any
symbol ? D b, C, �, or ¿, there are triangulated equivalences

D?.A–modsfpin/ ' D?.El2/

' Hot?.A–modinj/

' Hot?.B–modproj/

' D?.Fl2/

' D?.B–modflat/

' D?.B–modsfpfl/:

Proof. The exact categories A–modsfpin and B–modsfpfl have finite homolog-
ical dimensions by assumption. Hence so do their full subcategories El2 , Fl2 , and
B–modflat satisfying the condition (I) or (II). It follows easily (see, e. g., [42, Re-
mark 2.1] and [44, Proposition A.5.6]) that a complex in any one of these exact
categories is acyclic if and only if it is absolutely acyclic, and that their (conven-
tional or absolute) derived categories are equivalent to the homotopy categories
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of complexes of injective or projective objects. The same, of course, applies to
the coderived and/or contraderived categories of those of these exact categories
that happen to be closed under the infinite direct sums or infinite products in their
respective abelian module categories. The same also applies to the bounded ver-
sions of the conventional or absolute derived categories and bounded versions of
the homotopy categories.

Propositions 7.1 and 7.2 provide the equivalences with the coderived cat-
egory Dco.A–mod/ or the contraderived category Dctr.B–mod/. Thus we have
shown in all the cases that the mentioned triangulated categories of complexes
of A-modules are equivalent to each other and the mentioned triangulated cat-
egories of complexes of B-modules are equivalent to each other. It remains to
construct the equivalences connecting complexes of A-modules with complexes
of B-modules.

Specifically, the equivalence Dco.A–mod/ ' Dctr.B–mod/ can be obtained
in the same way as in [46, Theorem 4.5], using the equivalence Dco.A–mod/ '

Hot.A–modinj/ in order to construct the derived functor RHomA.D�;�/ and the
equivalence Dctr.B–mod/ ' Dabs.B–modflat/ or Dctr.B–mod/ ' Hot.B–modproj/
in order to construct the derived functor D�˝L

B�. More generally, the equivalence
D?.El2/ ' D?.Fl2/ can be produced as a particular case of Theorem 5.5 above. �

8. Base change

The aim of this section and the next one is to formulate a generalization of the
definitions and results of [46, Section 5] that would fit naturally in our present
context. Our exposition is informed by that in [11, Section 5].

Let A ! R and B ! S be two homomorphisms of associative rings. Let
E � A–mod be a full subcategory satisfying the condition (I), and let F � B–mod
be a full subcategory satisfying the condition (II). We denote by G D GE � R–mod
the full subcategory formed by all the left R-modules whose underlying left
A-modules belong to E, and by H D HF � S–mod the full subcategory formed
by all the left S -modules whose underlying left B-modules belong to F.

Lemma 8.1. (a) The full subcategory GE � R–mod satisfies the condition (I)
if and only if the underlying A-modules of all the injective left R-modules belong
to E.

(b) The full subcategory HF � S–mod satisfies the condition (II) if and only if
the underlying B-modules of all the projective left S -modules belong to F. �
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Assume further that the equivalent conditions of Lemma 8.1(a) and (b) hold,
and additionally that the full subcategory E � A–mod is closed under infinite di-
rect sums and the full subcategory F � B–mod is closed under infinite products.
Then we get two commutative diagrams of triangulated functors, where the verti-
cal arrows are Verdier quotient functors described in Section 1, and the horizontal
arrows are the forgetful functors:

Dco.R–mod/ Dco.A–mod/

D.GE/ D.E/

D.R–mod/ D.A–mod/

 �

 

!

 �

 �

 

!

 �

 

!

Dctr.S–mod/ Dctr.B–mod/

D.HF/ D.F/

D.S–mod/ D.B–mod/

 �

 

!

 �

 �

 

!

 �

 

!

We recall that a triangulated functor is called conservative if it reflects isomor-
phisms, or equivalently, takes nonzero objects to nonzero objects. For example,
the forgetful functors D.R–mod/ ! D.A–mod/ and D.S–mod/ ! D.B–mod/

are conservative, while the forgetful functors Dco.R–mod/ ! Dco.A–mod/ and
Dctr.S–mod/! Dctr.B–mod/ are not, in general.

Lemma 8.2. The forgetful functors D.GE/ ! D.E/ and D.HF/ ! D.F/ are
conservative.

Proof. Follows from the definition of the derived category of an exact cate-
gory. �

One can say that a complex of left A-modules is E-pseudo-coacyclic if its image
under the Verdier quotient functor Dco.A–mod/ ! D.E/ vanishes. All coacyclic
complexes are pseudo-coacyclic, and all pseudo-coacyclic complexes are acyclic.

Similarly, one can say that a complex of left B-modules is F-pseudo-con-
traacyclic if its image under the Verdier quotient functor Dctr.B–mod/ ! D.F/

vanishes. All contraacyclic complexes are pseudo-contraacyclic, and all pseudo-
contraacyclic complexes are acyclic.

Lemma 8.3. (a) Let E � A–mod be a full subcategory satisfying the condi-
tion (I), closed under infinite direct sums, and containing the underlying A-mod-
ules of injective left R-modules. Then a complex of left R-modules is GE-pseudo-
coacyclic if and only if it is E-pseudo-coacyclic as a complex of left A-modules.
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(b) Let F � B–mod be a full subcategory satisfying the condition (II), closed
under infinite products, and containing the underlying B-modules of projective
left S -modules. Then a complex of left S -modules is HF-pseudo-contraacyclic if
and only if it is F-pseudo-contraacyclic as a complex of left B-modules.

Proof. This is a restatement of Lemma 8.2. �

The terminology in the following definition follows that in [46, Section 5],
where “relative dualizing complexes” are discussed. In [11, Section 5], a related
phenomenon is called “base change”.

A relative pseudo-dualizing complex for a pair of associative ring homomor-
phisms A ! R and B ! S is a set of data consisting of a pseudo-dualizing
complex of A-B-bimodules L�, a pseudo-dualizing complex of R-S -bimodules
U �, and a morphism of complexes of A-B-bimodules L� ! U � satisfying the
following condition:

(iv) the induced morphism R ˝L

A L� ! U � is an isomorphism in the derived
category of left R-modules D�.R–mod/, and the induced morphism L� ˝L

B

S ! U � is an isomorphism in the derived category of right S -modules
D�.mod–S/.

Notice that the condition (ii) in the definition of a pseudo-dualizing complex in
Section 3 holds for the complex U � whenever it holds for the complex L� and the
above condition (iv) is satisfied. The following result, which is our version of [11,
Theorem 5.1], explains what happens with the condition (iii). We will assume that
the complex L� is concentrated in the cohomological degrees �d1 6 m 6 d2 and
the complex U � is concentrated in the cohomological degrees �t1 6 m 6 t2. Let
L� op denote the complex L� viewed as a complex of Bop-Aop-bimodules.

Proposition 8.4. Let L� be a pseudo-dualizing complex of A-B-bimodules,
U � be a finite complex of R-S -bimodules, and L� ! U � be a morphism of
complexes of A-B-bimodules satisfying the condition (iv). Then U � is a pseudo-
dualizing complex of R-S -bimodules if and only if there exists an integer l1 > d1

such that the right A-module R belongs to the class Fl1
.L� op/ � Aop–mod and

the left B-module S belongs to the class Fl1
.L�/ � B–mod.

Proof. The key observation is that the natural isomorphism

RHomR.U �; U �/ ' RHomR.R˝L

A L�; U �/

' RHomA.L�; U �/

' RHomA.L�; L� ˝L

B S/



196 L. Positselski

identifies the homothety morphism Sop ! RHomR.U �; U �/ with the adjunc-
tion morphism S ! RHomA.L�; L� ˝L

B S/. Similarly, the natural isomor-
phism RHomSop.U �; U �/ ' RHomBop.L�; R ˝L

A L�/ identifies the homoth-
ety morphism R ! RHomSop.U �; U �/ with the adjunction morphism R !

RHomBop.L�; R ˝L

A L�/. It remains to say that one can take any integer l1 such
that l1 > d1 and l1 > t1. �

The next proposition is our version of [11, Proposition 5.3].

Proposition 8.5. Let L� ! U � be a relative pseudo-dualizing complex for a
pair of ring homomorphisms A ! R and B ! S . Let l1 be an integer such that
l1 > d1 and l1 > t1. Then

(a) a left R-module belongs to the full subcategory El1
.U �/ � R–mod if and

only if its underlying A-module belongs to the full subcategory El1
.L�/ � A–mod;

(b) a left S -module belongs to the full subcategory Fl1
.U �/ � S–mod if and

only if its underlying B-module belongs to the full subcategory Fl1
.L�/ � B–mod.

Proof. The assertions follow from the commutative diagrams of the pairs of
adjoint functors and the forgetful functors

D.R–mod/ D.S–mod/

D.A–mod/ D.B–mod/

 

!
RHomR.U �;�/

 

!

 

!

 

!
RHomA.L�;�/

D.R–mod/ D.S–mod/

D.A–mod/ D.B–mod/

 

!

 

!

 

!U
�˝L

S
�

 

!L
�˝L

B
�

together with the compatibility of the adjunctions with the forgetful functors and
conservativity of the forgetful functors. �

Proposition 8.6. Let L� ! U � be a relative pseudo-dualizing complex for
a pair of ring homomorphisms A ! R and B ! S , and let E � A–mod and
F � B–mod be a pair of full subcategories satisfying the conditions (I)–(IV) with
respect to the pseudo-dualizing complex L� with some parameters l1 and l2 such
that l1 > d1, l1 > t1, l2 > d2, and l2 > t2. Suppose that the underlying A-modules
of all the injective left R-modules belong to E and the underlying B-modules of
all the projective left S -modules belong to F. Then the pair of full subcategories
GE � R–mod and HF � S–mod satisfies the conditions (I)–(IV) with respect to
the pseudo-dualizing complex U � with the same parameters l1 and l2.
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Proof. The conditions (I)–(II) hold by Lemma 8.1, and (III)–(IV) are easy to
check using the standard properties of the (co)resolution dimensions [44, Corol-
lary A.5.2]. �

Corollary 8.7. In the context and assumptions of Proposition 8.6, for any
symbol ? D b,C, �, ¿, absC, abs�, co, ctr, or abs, there is a triangulated equiv-
alence D?.GE/ ' D?.HF/ provided by (appropriately defined) mutually inverse
functors RHomR.U �;�/ and U � ˝L

S �.
Here, in the case ? D co it is assumed that the full subcategories E � A–mod

and F � B–mod are closed under infinite direct sums, while in the case ? D ctr it
is assumed that these two full subcategories are closed under infinite products.

Proof. This is a particular case of Theorem 4.2. �

In the situation of Corollary 8.7 the triangulated equivalences D?.GE/ '

D?.HF/ and D?.E/ ' D?.F/ form a commutative diagram with the triangulated
forgetful functors

(14)

D?.GE/ D?.HF/

D?.E/ D?.F/

(

(

 

!
 

!

(

(

9. Relative dualizing complexes

Let A be an associative ring. The sfp-injective dimension of an A-module is the
minimal length of its coresolution by sfp-injective A-modules. The sfp-injective
dimension of a left A-module E is equal to the supremum of all the integers n > 0

for which there exists a strongly finitely presented left A-module M such that
ExtnA.M; E/ ¤ 0. The sfp-flat dimension of an A-module is the minimal length of
its resolution by sfp-flat A-modules. The sfp-flat dimension of a left A-module F

is equal to the supremum of all the integers n > 0 for which there exists a strongly
finitely presented right A-module N such that TorA

n .N; F / ¤ 0.

Lemma 9.1. The sfp-flat dimension of a right A-module G is equal to the
sfp-injective dimension of the left A-module HomZ.G;Q=Z/. �

Let A! R and B ! S be homomorphisms of associative rings.
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Lemma 9.2. (a) The supremum of sfp-injective dimensions of the underlying
left A-modules of injective left R-modules is equal to the sfp-flat dimension of the
right A-module R.

(b) The supremum of sfp-flat dimensions of the underlying left B-modules of
projective left S -modules is equal to the sfp-flat dimension of the left B-module S .

Proof. In (a), one notices that the injective left R-modules are precisely the
direct summands of infinite products of copies of the R-module HomZ.R;Q=Z/,
and takes into account Lemma 9.1. Part (b) is easy (cf. Lemma 2.4). �

Assume that all sfp-injective left A-modules have finite injective dimensions
and all sfp-flat left B-modules have finite projective dimensions, as in Section 7.
Fix an integer n > 0, and set E D A–modsfpin.n/ � A–mod to be the full sub-
category of all left A-modules whose sfp-injective dimension does not exceed n.
Similarly, set F D B–modsfpfl.n/ � B–mod to be the full subcategory of all left
B-modules whose sfp-flat dimension does not exceed n.

Proposition 9.3. (a) The embedding of exact/abelian categories E! A–mod
induces an equivalence of triangulated categories DabsD¿.E/ ' Dco.A–mod/.

(b) The embedding of exact/abelian categories F ! B–mod induces an
equivalence of triangulated categories DabsD¿.F/ ' Dctr.B–mod/.

Proof. Follows from [42, Remark 2.1], Propositions 7.1–7.2, and [44, Propo-
sition A.5.6] (cf. the proof of Corollary 7.6). �

In other words, in the terminology of Section 8, one can say that the class of
E-pseudo-coacyclic complexes coincides with that of coacyclic complexes of left
A-modules, while the class of F-pseudo-contraacyclic complexes coincides with
that of contraacyclic complex of left B-modules.

The following definitions were given in the beginning of [46, Section 5].
The R=A-semicoderived category of left R-modules DsicoA .R–mod/ is defined as
the quotient category of the homotopy category of complexes of left R-modules
Hot.R–mod/ by its thick subcategory of complexes of R-modules that are coa-
cyclic as complexes of A-modules. Similarly, the S=B-semicontraderived cate-
gory of left S -modules DsictrB .S–mod/ is defined as the quotient category of the
homotopy category of complexes of left S -modules Hot.S–mod/ by its thick
subcategory of complexes of S -modules that are contraacyclic as complexes of
B-modules.

As in Section 8, we denote by GE � R–mod the full subcategory of all left
R-modules whose underlying A-modules belong to E, and by HF � S–mod the
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full subcategory of all left S -modules whose underlying B-modules belong to F.
The next proposition is our version of [46, Theorems 5.1 and 5.2].

Proposition 9.4. (a) Assume that all sfp-injective left A-modules have finite
injective dimensions and the sfp-flat dimension of the right A-module R does not
exceed n. Then the embedding of exact/abelian categories GE ! R–mod induces
an equivalence of triangulated categories D.GE/ ' DsicoA .R–mod/.

(b) Assume that all sfp-flat left B-modules have finite projective dimensions
and the sfp-flat dimension of the left B-module S does not exceed n. Then the
embedding of exact/abelian categories HF ! S–mod induces an equivalence of
triangulated categories D.HF/ ' DsictrB .S–mod/.

Proof. The assumptions of Lemma 8.3(a) or (b) hold by Lemma 9.2, so its
conclusion is applicable, and it remains to recall Proposition 9.3. �

So, in the assumptions of Proposition 9.4, the R=A-semicoderived category
of left R-modules is a pseudo-coderived category of left R-modules and the
S=B-semicontraderived category of left S -modules is a pseudo-contraderived
category of left S -modules, in the sense of Section 1.

A relative dualizing complex for a pair of associative ring homomorphisms
A ! R and B ! S is a relative pseudo-dualizing complex L� ! U � in the
sense of the definition in Section 8 such that L� D D� is a dualizing complex of
A-B-bimodules in the sense of the definition in Section 7. In other words, the
condition (i) of Section 7 and the conditions (ii)–(iii) of Section 3 have to be
satisfied for D�, the condition (iii) of Section 3 has to be satisfied for U �, and
the condition (iv) of Section 8 has to be satisfied for the morphism D� ! U �.

Notice that, in the assumption of finiteness of flat dimensions of the right
A-module R and the left B-module S , the condition (iii) for the complex U �

follows from the similar condition for the complex L� together with the condi-
tion (iv), by Proposition 8.4 and Remark 3.7.

The following corollary is our generalization of [46, Theorem 5.6].

Corollary 9.5. Let A and B be associative rings such that all sfp-injective
left A-modules have finite injective dimensions and all sfp-flat left B-modules
have finite projective dimensions. Let A ! R and B ! S be associative ring
homomorphisms such that the ring R is a right A-module of finite flat dimension
and the ring S is a left B-module of finite flat dimension. Let D� ! U � be a
relative dualizing complex for A ! R and B ! S . Then there is a triangulated
equivalenceDsicoA .R–mod/ ' DsictrB .S–mod/ provided by mutually inverse functors
RHomR.U �;�/ and U � ˝L

S �.
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Proof. Combine Corollary 8.7 (for ? D ¿) with Proposition 9.4. �

The triangulated equivalences provided by Corollaries 7.6 and 9.5 form a
commutative diagram with the (conservative) triangulated forgetful functors

(15)

DsicoA .R–mod/ DsictrB .S–mod/

Dco.A–mod/ Dctr.B–mod/

 

!

(

(

 

!

(

(

This is the particular case of the commutative diagram (14) that occurs in the
situation of Corollary 9.5.

10. Deconstructibility of the Auslander and Bass classes

Let L� be a pseudo-dualizing complex for associative rings A and B . Assume that
the finite complex L� is situated in the cohomological degrees �d1 6 m 6 d2,
and choose an integer l1 > d1. As in Section 3, we consider the Auslander class
of left B-modules Fl1

D Fl1
.L�/ � B–mod and the Bass class of left A-modules

El1
D El1

.L�/ � A–mod. In this section we will show, generalizing the result
of [22, Proposition 3.10], that Fl1

and El1
are deconstructible classes of modules.

We recall the notation �6n and �>n for the functors of canonical truncation of
complexes of modules.

Lemma 10.1. (a) For every n 2 Z, the functor assigning to a left B-module
N the left A-module TorB

n .L�; N / preserves filtered inductive limits.

(b) For every n 2 Z and i 2 Z, the functor assigning to a left B-module N

the left B-module ExtiA.L�; �>�n.L� ˝L

B N // preserves filtered inductive limits.

(c) For every n 2 Z, the functor assigning to a left A-module M the left
B-module ExtnA.L�; M/ preserves filtered inductive limits.

(d) For every i 2 Z, the functor assigning to a left A-module M the left
A-module TorB

i .L�;RHomA.L�; M// preserves filtered inductive limits.

Proof. First of all we notice that in all the four cases it suffices to check
that the functor in question preserves filtered inductive limits when viewed as
a functor taking values in the category of abelian groups. Part (a) holds for any
complex of A-B-bimodules L� (it suffices to replace L�, viewed as a complex
of right B-modules, by its homotopy flat resolution). Part (c) holds because the
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complex L�, viewed as a complex of left A-modules, is quasi-isomorphic to a
bounded above complex of finitely generated projective left A-modules.

To prove part (b), it is convenient to use the existence of a (nonadditive)
functor assigning to a module its free resolution. Given a filtered diagram of
left B-modules .N˛/, this allows to construct a filtered diagram of nonpositively
cohomologically graded complexes of free left B-modules .Q�

˛/ endowed with a
quasi-isomorphism of diagrams of complexes of left B-modules Q�

˛ ! N˛ . Then
the inductive limit of such free resolutions lim

�!˛
Q�

˛ is a flat resolution of the left
B-module lim

�!˛
N˛ .

We have a filtered diagram of complexes of left A-modules �>�n.L� ˝B Q�

˛/

representing the derived category objects �>�n.L� ˝L

B N˛/, and the complex of
left A-modules �>�n.L� ˝B lim

�!˛
Q�

˛/ representing the derived category object

�>�n.L� ˝L

B lim
�!˛

N˛/ is the inductive limit of this diagram. Denote by 0L� a
bounded above complex of finitely generated projective left A-modules endowed
with a quasi-isomorphism of complexes of left A-modules 0L� ! L�. It remains
to observe the functor HomA.0L�;�/ preserves inductive limits of diagrams of
uniformly bounded below complexes of left A-modules.

To prove part (d), we use the existence of an (also nonadditive) functor as-
signing to a module its injective resolution. Given a filtered diagram of left
A-modules .M˛/, this allows to produce a filtered diagram of nonnegatively co-
homologically graded complexes of injective left A-modules .J �

˛ / endowed with
a quasi-isomorphism of diagrams of complexes of left A-modules M˛ ! J �

˛ .
By Lemma 2.4(a), the inductive limit lim

�!˛
J �

˛ is a complex of sfp-injective left
A-modules (but we will not need to use this fact). Let H � be a nonnegatively co-
homologically graded complex of injective left A-modules endowed with a quasi-
isomorphism of complexes of left A-modules lim

�!˛
J �

˛ ! H �. Then H � is an
injective resolution of the left A-module lim

�!˛
M˛ .

Let us show that the induced morphism of complexes of left B-modules
lim
�!˛

HomA.L�; J �

˛ / ! HomA.L�; H �/ is a quasi-isomorphism. It is enough
to check that this is a quasi-isomorphism of complexes of abelian groups. As
above, let 0L� be a bounded above complex of finitely generated projective left
A-modules endowed with a quasi-isomorphism of complexes of left A-modules
0L� ! L�. Then the morphisms of complexes of abelian groups HomA.L�; J �

˛/!

HomA.0L�; J �

˛/ and HomA.L�; H �/ ! HomA.0L�; H �/ are quasi-isomorphisms,
since J �

˛ and H � are bounded below complexes of injective left A-modules.
Hence it suffices to check that the morphism of complexes of abelian groups
lim
�!˛

HomA.0L�; J �

˛ /! HomA.0L�; H �/ is a quasi-isomorphism.
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The natural map lim
�!˛

HomA.0L�; J �

˛ / ! HomA.0L�; lim
�!˛

J �

˛ / is an isomor-
phism of complexes of abelian groups, since 0L� is a bounded above complex of
finitely presented left A-modules and J �

˛ are uniformly bounded below complexes
of left A-modules. So it remains to check that applying the functor HomA.0L�;�/

to the morphism of complexes of left A-modules lim
�!˛

J �

˛ ! H � produces a quasi-
isomorphism of complexes of abelian groups. Let K� denote the cone of the latter
morphism of complexes of left A-modules. Then K� is a bounded below acyclic
complex of left A-modules. Since 0L� is a bounded above complex of projective
left A-modules, the complex of abelian groups HomA.0L�; K�/ is acyclic.

Therefore the morphism of complexes of left B-modules lim
�!˛

HomA.L�; J �

˛/

! HomA.L�; H �/ is a quasi-isomorphism. Now the complex HomA.L�; J �

˛/

represents the derived category object RHomA.L�; M˛/, while the complex
HomA.L�; H �/ represents the derived category object RHomA.L�; lim

�!˛
M˛/ 2

DC.B–mod/. Denote by 00L� a bounded above compelex of flat right B-modules
endowed with a quasi-isomorphism of complexes of right B-modules 00L� ! L�.
It remains to observe that the functor 00L� ˝B � takes inductive limits of com-
plexes of left B-modules to inductive limits of complexes of abelian groups, and
quasi-isomorphisms of complexes of left B-modules to quasi-isomorphisms of
complexes of abelian groups. �

Corollary 10.2. (a) The full subcategory Fl1
� B–mod is closed under

filtered inductive limits.
(b) The full subcategory El1

� A–mod is closed under filtered inductive limits.

Proof. (a) let .F˛/ be a filtered diagram of left B-modules F˛ 2 Fl1
. Set

F D lim
�!˛

F˛ . Then, by the definition, TorB
n .L�; F˛/ D 0 for n > l1, and by

Lemma 10.1(a) it follows that TorB
n .L�; F / D 0 for n > l1. Hence L� ˝L

B F˛ D

�>�l1
.L� ˝L

B F˛/ and L� ˝L

B F D �>�l1
.L� ˝L

B F /. By the definition, the
adjunction morphisms F˛ ! RHomA.L�; L� ˝L

B F˛/ are isomorphisms in
D.B–mod/, and by Lemma 10.1(b) we can conclude that the adjunction morphism
F ! RHomA.L�; L� ˝L

B F / is an isomorphism in D.B–mod/, too.

The proof of part (b) is similar, based on Lemma 10.1(c-d). �

Let R be an associative ring and G � R–mod be a class of left R-modules.
Following the papers [22, 56], we say that G is a Kaplansky class if there exists a
cardinal � such that for every left R-module G 2 G and every element x 2 G there
is an R-submodule F � G with less than � generators for which F , G=F 2 G and
x 2 F .
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Lemma 10.3. Let � be an infinite cardinal not smaller than the cardinalities
of the rings A and B . Then

(a) for every complex N � of left B-modules with the cohomology modules
H i .N �/, i 2 Z, of the cardinalities not exceeding �, the cardinalities of
the left A-modules TorB

j .L�; N �/, j 2 Z, do not exceed �;

(b) for every bounded below complex M � of left A-modules with the cohomology
modules H i .M �/, i 2 Z, of the cardinalities not exceeding �, the cardinal-
ities of the left B-modules ExtjA.L�; N �/, j 2 Z, do not exceed �.

Proof. (a) Representing the complex N � as the inductive limit of its subcom-
plexes of canonical truncation �6n.N �/, one can assume N � to be bounded above
(since the Tor commutes with filtered inductive limits and the class of all mod-
ules of the cardinality not exceeding � is preserved by countable inductive limits).
Then there is a bounded above complex of left B-modules 0N � with the terms 0N i of
the cardinality not exceeding �, endowed with a quasi-isomorphism of complexes
of left B-modules 0N � ! N �. One can also replace L� by a quasi-isomorphic
bounded above complex of finitely generated projective right B-modules, and the
desired assertion follows.

(b) For every given degree j , the left B-module ExtjA.L�; M �/ only depends
on a large enough finite truncation �6nM � of the complex M � (since the complex
L� is bounded above). So one can assume M � to be a finite complex; and then there
is a finite complex of left A-modules 0M � with the terms 0M i of the cardinality not
exceeding �, endowed with a quasi-isomorphism of complexes of left A-modules
0M � ! M �. It remains to replace L� by a quasi-isomorphic bounded above
complex of finitely generated projective left A-modules. �

The following lemma is our version of [22, Proposition 3.10].

Lemma 10.4. (a) The class of left B-modules Fl1
� B–mod is a Kaplansky

class.
(b) The class of left A-modules El1

� A–mod is a Kaplansky class.

Proof. Let � be an infinite cardinal not smaller than the cardinalities of the
rings A and B . We will show that for every left B-module G 2 Fl1

and any
B-submodule N � G with at most � generators there exists a B-submodule
F � G with at most � generators such that F , G=F 2 Fl1

and N � F � G.
The class of left A-modules El1

has the same property (with respect to the same
cardinals �).
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Indeed, by Lemma 10.3, for any left B-module N of the cardinality not ex-
ceeding � and every i , n 2 Z, the cardinalities of the modules TorB

i .L�; N /

do not exceed �; and it follows that the cardinalities of the modules ExtiA.L�;

�>�n.L� ˝L

B N // do not exceed �, either. (Similarly, for any left A-module M

of the cardinality not exceeding �, the cardinalities of the modules ExtiA.L�; M/

do not exceed �, and consequently the cardinalities of the modules TorB
i .L�,

RHomA.L�; M// do not exceed � as well.)

Furthermore, for any left B-module G 2 Fl1
and a submodule N � G of

the cardinality not exceeding �, from the homology long exact sequence induced
by the short exact sequence of left B-modules 0 ! N ! G ! G=N ! 0

one observes that the cardinalities of the modules Tori
B.L�; G=N / do not ex-

ceed � for all i > l1. The same applies to the cardinalities of the modules
ExtiA.L�; �>�l1

.L� ˝L

B G=N //, i 2 Z n ¹0º, and the cardinalities of the kernel
and the cokernel of the natural map G=N ! Ext0A.L�; �>�l1

.L� ˝L

B G=N //.

Let N˛ denote the filtered diagram of all B-submodules N � N˛ � G

such that the left B-module N˛=N is finitely generated. Then G D lim
�!˛

N˛ .

By Lemma 10.1(a), for every n > l1 lim
�!˛

TorB
n .L�; N˛/ D TorB

n .L�; G/ D 0.

Hence for every element � 2 TorB
n .L�; N / there exists an index ˛ D ˛.�/ such

that the image of � in TorB
n .L�; N˛/ vanishes. Similarly, lim

�!˛
TorB

n .L�; G=N˛/ D

TorB
n .L�; 0/ D 0. Hence for every element � 0 2 TorB

n .L�; G=N /, n > l1, there
exists ˛ D ˛.� 0/ such that the image of � 0 in TorB

n .L�; G=N˛/ vanishes.

In the same fashion, using Lemma 10.1(b), one finds an index ˛.�/ for every
element � of ExtiA.L�; �>�l1

.L� ˝L

B N //, i 2 Z n ¹0º, an index ˛.�0/ for every
element �0 of ExtiA.L�; �>�l1

.L�˝L

B G=N //, i 2 Z n ¹0º, an index ˛.�/ for every
element � of the kernel or cokernel of the map N ! Ext0A.L�; �>�l1

.L� ˝L

B N //,
and an index ˛.�0/ for every element �0 of the kernel or cokernel of the map
G=N ! Ext0A.L�; �>�l1

.L� ˝L

B G=N //. Set N 0 � G to be the sum of all the
submodules N˛ � G over the chosen indices ˛ D ˛.�/, ˛.� 0/, ˛.�/, etc. The
cardinality of the set of all chosen indices does not exceed �, hence the cardinality
of left B-module N 0 does not exceed �, either.

By construction, the map TorB
n .L�; N / ! TorB

n .L�; N 0/ induced by the em-
bedding of left B-modules N ! N 0 vanishes for all n > l1, and so does the
map TorB

n .L�; G=N /! TorB
n .L�; G=N 0/, the map ExtiA.L�; �>�l1

.L�˝L

B N //!

ExtiA.L�; �>�l1
.L�˝L

BN 0// for i 2 Zn¹0º, etc. It remains to iterate our construction
over the well-ordered set of nonnegative integers, producing an increasing chain
of B-submodules N � N 0 � N 00 � � � � � G, and put F D

S
m>0 N .m/ � G.

By Lemma 10.1(a-b), we have F 2 Fl1
and G=F 2 Fl1

. This finishes the proof of
part (a), and the proof of part (b) is similar. �
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Let R be an associative ring and S � R–mod be a class of left R-modules.
A left R-module G is said to be S-filtered if there exists a ordinal ˛ and an
increasing chain of R-submodules Gi � G indexed by 0 6 i 6 ˛, such that
G0 D 0, G˛ D G, Gj D

S
i<j Gi for all limit ordinals j 6 ˛, and the quotient

module GiC1=Gi is isomorphic to a left R-module from S for every 0 6 i < ˛.
A class of left R-modules G � R–mod is said to be deconstructible if there is a
set (rather than a proper class) of left R-modules S such that G consists precisely
of all the S-filtered left R-modules.

Corollary 10.5. (a) The class of left B-modules Fl1
� B–mod is decon-

structible.
(b) The class of left A-modules El1

� A–mod is deconstructible.

Proof. It is not difficult to see that any Kaplansky class of modules G closed
under extensions and filtered inductive limits is deconstructible (one take S to
be a set of representatives of the isomorphism classes of left R-modules from G

with less than � generators). Conversely, any deconstructible class is Kaplansky
(see [25, Lemmas 6.7 and 6.9] or [56, Lemma 2.5]). Thus the assertions of the
corollary follow from Lemmas 3.1, 10.2, and 10.4. �

In view of the Eklof–Trlifaj theorem [20, Theorem 10], it follows from
Lemma 3.1(b) and Corollary 10.5(a) that the Auslander class Fl1

.L�/ � B–mod
is the left-hand part of a hereditary complete cotorsion pair in B–mod (cf. [22,
Theorem 3.11]). It would be interesting to know whether the Bass class El1

.L�/ �

A–mod is always the right-hand part of a hereditary complete cotorsion pair (cf.
the recent paper [55], where the authors prove that Gorenstein injective modules
over an arbitrary ring form the right-hand part of a hereditary complete cotorsion
pair).

11. Derived deconstructible classes have Hom sets

The notions of a Kaplansky class and a deconstructible class of objects are appli-
cable not only to the categories of modules, but more generally to Grothendieck
abelian categories [58] (and even more generally to locally presentable abelian
categories [50, Section 4]). For the purposes of this section, it is important that
one can speak about Kaplansky or deconstructible classes of complexes of mod-
ules.

Specifically, let G � R–mod be a deconstructible class of modules (e. g.,
a Kaplansky class of modules closed under extensions and filtered inductive
limits). Then the full subcategory G inherits the exact category structure from
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the abelian category R–mod, so one can speak about exact sequences in G. It is
important for us that the class of all exact sequences in G is a Kaplansky class in
the abelian category C.R–mod/ of complexes of left R-modules. The following
lemma provides a precise formulation suitable for our purposes.

Lemma 11.1. Let G � R–mod be a deconstructible class of left R-modules.
Then there is a proper class of cardinals � with the following property. For every
exact complex G� in G and any subcomplex of left R-modules N � � G� whose
every term N i , i 2 Z, is an R-module with less than � generators, there exists a
subcomplex of left R-modules F � � G� for which N � � F � � G�, both F � and
G�=F � are exact complexes in G, and every term F i , i 2 Z, of the complex F � is
an R-module with less than � generators.

Proof. This is a particular case of [58, Theorem 4.2(2)]. �

For the terminological discussion of “existence of Hom sets in Verdier quotient
categories”, see Section 0.10 in the introduction.

Theorem 11.2. Let R be an associative ring and G � R–mod be a decon-
structible class of left R-modules. Then, for any conventional derived category
symbol ? D b, C, �, or ¿, the derived category D?.G/ has Hom sets.

Proof. The derived category D?.G/ is obtained from the (similarly bounded
or unbounded) homotopy category Hot?.G/ by inverting all the morphisms whose
cones are homotopy equivalent to exact complexes in G [36, 30, 10]. In order
to show that the resulting category has Hom sets, we check that the class of
all morphisms we are inverting is locally small in Hot?.G/ in the sense of [63,
Set-Theoretic Considerations 10.3.6]. Indeed, given any (?-bounded) complex
X� in G, morphisms X�

1 ! X� in Hot?.G/ with an exact cone are in bijection
with morphisms X� ! G� in Hot?.G/ with G� an exact complex. Given a fixed
complex X�, let � be the maximal cardinality of generator sets of its terms X i ,
i 2 Z. Let � > � be a cardinal with the property described in Lemma 11.1. Then,
for any complex Y � in G, it suffices, for the purposes of constructing morphisms
X� ! Y � in D?.G/, to consider cocones X�

1 ! X� of morphisms X� ! F �,
where F � ranges over the (?-bounded) exact complexes in G whose terms are left
R-modules with less than � generators. �

Let L� be a pseudo-dualizing complex for associative rings A and B . As
in Sections 3 and 10, we assume that the finite complex L� is situated in the
cohomological degrees �d1 6 m 6 d2, and choose an integer l1 > d1.
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Corollary 11.3. For any pseudo-dualizing complex L�, the lower pseudo-
coderived category of left A-modules D0

L�.A–mod/ D D.El1
/ and the lower

pseudo-contraderived category of left B-modules D00
L�.B–mod/ D D.Fl1

/ have
Hom sets.

Proof. Follows from Theorem 11.2 and Corollary 10.5. �

12. Existence of fully faithful adjoints

The aim of this section is to prove existence of the adjoint functors promised in
Section 0.8. We start with the adjoint functors on the diagram (8) before passing
to the ones on the diagram (9).

Lemma 12.1. Let qWD2 ! D1 and pWD1 ! D0 be Verdier quotient functors
between triangulated categories. Let r WD0 ! D2 be a right adjoint functor to the
composition pqWD2 ! D0. Then the composition qr WD0 ! D1 is a right adjoint
functor to the functor pWD1 ! D0.

Proof. Let K0 � D2 denote the kernel of the functor pq and K1 � D2 the
kernel of the functor q; so K1 � K0. Then K0=K1 � D2=K1 D D1 is the kernel of
the functor p. The functor r WD0 ! D2 is fully faithful (as an adjoint to a Verdier
quotient functor) and its essential image r.D0/ together with the full subcategory
K0 form a semi-orthogonal decomposition of the triangulated category D2. The
composition .pq/r is the identity functor D0 ! D0.

Passing to the quotient category by the full subcategory K1 � K0 � D2, we
conclude that the functor qr is fully faithful, the two full subcategories K0=K1 and
qr.D0/ form a semi-orthogonal decomposition of the triangulated category D1,
and the composition p.qr/ is the identity functor. Thus the functor qr is right
adjoint to p. �

Now we can construct the adjoint functors shown on the diagram (8). More
generally, let E � A–mod and F � B–mod be a pair of full subcategories satisfying
the conditions (I)–(IV) of Section 4 for a given pseudo-dualizing complex L�

and two integers l1 and l2. Assume that the full subcategory E is closed under
infinite direct sums in A–mod, while the full subcategory F is closed under infinite
products in B–mod. Then there exist fully faithful adjoint functors shown by
curvilinear arrows on the diagram
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(16)

Hot.A–mod/ Hot.B–mod/

Dco.A–mod/ Dctr.B–mod/

D.E/ D.F/

D.A–mod/ D.B–mod/

 �  �
 �  �

 �

(

(

 �

�

!

�

!

�

!

�

!

�
! �

!

�

!

�

!

�

!

�

!

�
! �

!

Indeed, for any associative ring R the natural Verdier quotient functor
KWHot.R–mod/ ! D.R–mod/ has a right and a left adjoint. The fully faithful
left adjoint functor K�WD.R–mod/! Hot.R–mod/ to the functor K assigns to a
complex of left R-modules its homotopy projective resolution. The fully faithful
right adjoint functor K�WD.R–mod/ ! Hot.R–mod/ to the functor K assigns to
a complex of right R-modules its homotopy injective resolution.

Lemma 12.1 tells that the other fully faithful adjoint functors on the dia-
gram (16) can be obtained as the compositions of the functors K� and K� with the
Verdier quotient functors on the diagram. We refer to the discussion in Section 1,
based on [44, Proposition A.3.1(b)], for the constructions of the Verdier quotient
functors Dco.A–mod/! D.E/ and Dctr.B–mod/! D.F/.

In particular, the right adjoint functor P�WD.A–mod/ ! D.E/ to the Verdier
quotient functor P WD.E/! D.A–mod/ assigns to a complex of left A-modules M �

a homotopy injective complex of injective left A-modules J � quasi-isomorphic
to M �, viewed as an object P�.M �/ D J � 2 D.E/ of the conventional derived
category of the exact category E. Here it is important that, according to the
condition (I), all the injective left A-modules belong to E.

To construct the image P�.M �/ of the complex M � under the left adjoint
functor P�WD.A–mod/! D.E/ to the functor P , consider a homotopy projective
complex of left A-modules G� quasi-isomorphic to M �. Let G� ! E� be a
morphism of complexes of left A-modules with a coacyclic cone acting from the
complex G� to a complex E� with the terms Ei belonging to the full subcategory
E � A–mod. Then P�.M �/ D E� 2 D.E/.

Similarly, the left adjoint functor Q�WD.B–mod/ ! D.F/ to the Verdier quo-
tient functor QWD.F/! D.B–mod/ assigns to a complex of left B-modules N � a
homotopy projective complex of projective left B-modules G� quasi-isomorphic
to N �, viewed as an object Q�.N �/ D G� 2 D.F/ of the conventional derived
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category of the exact category F. Here it is important that, according to the condi-
tion (II), all the projective left B-modules belong to F.

To construct the image Q�.N �/ of the complex N � under the right adjoint
functor Q�WD.B–mod/ ! D.F/ to the functor Q, consider a homotopy injective
complex of left B-modules J � quasi-isomorphic to N �. Let F � ! J � be a
morphism of complexes of left B-modules with a contraacyclic cone acting into
the complex J � from a complex F � with the terms F i belonging to the full
subcategory F � B–mod. Then Q�.N �/ D F � 2 D.F/.

To end, let us prove existence of the adjoint functors on the diagram (9) from
Section 0.8.

Theorem 12.2. Let L� be a pseudo-dualizing complex for associative rings A

and B . Then

(a) assuming that all sfp-injective left A-modules have finite injective dimen-
sions, the natural Verdier quotient functor

Dco.A–mod/ �! D0
L�.A–mod/

has a right adjoint;

(b) assuming that the ring A is left coherent and all fp-injective left A-modules
have finite injective dimensions, the natural Verdier quotient functor

Dco.A–mod/ �! D0

L�.A–mod/

has a left adjoint;

(c) assuming that all sfp-flat left B-modules have finite projective dimensions,
the natural Verdier quotient functor

Dctr.B–mod/ �! D00
L�.B–mod/

has a right adjoint;

(d) assuming that the ring B is right coherent and all flat left B-modules have
finite projective dimensions, the natural Verdier quotient functor

Dctr.B–mod/ �! D00

L�.B–mod/

has a left adjoint.
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Proof. First of all we show that all the four exotic derived categories in
question have infinite direct sums and products, and both the Verdier quotient
functors preserve both the infinite direct sums and products. It is helpful to keep
in mind that the Verdier quotient category of a triangulated category with infinite
direct sums by a triangulated subcategory closed under infinite direct sums has
infinite sums, and the Verdier quotient functor in such a situation preserves infinite
direct sums [37, Lemma 3.2.10]. Dually, the same assertions apply to infinite
products.

Assume that the finite complex L� is situated in the cohomologiclal degrees
�d1 6 m 6 d2, and choose an integer l1 > d1. By Lemma 3.3, both the full
subcategories El1

� A–mod and Fl1
� B–mod are closed under both the infinite

direct sums and products. Thus El1
and Fl1

are exact categories with exact functors
of infinite direct sums and products, and it follows that their derived categories
D0

L�.A–mod/ D D.El1
/ and D00

L�.B–mod/ D D.Fl1
/ have infinite direct sums and

products.
The coderived category Dco.A–mod/ is the Verdier quotient category of the

homotopy category Hot.A–mod/ by the full subcategory of coacyclic complexes,
which is, by the definition, closed under infinite direct sums in Hot.A–mod/.
Hence the triangulated category Dco.A–mod/ has infinite direct sums. Similarly,
the contraderived category Dctr.B–mod/ is the Verdier quotient category of the
homotopy category Hot.B–mod/ by the full subcategory of contraacyclic com-
plexes, which is, by the definition, closed under infinite products in Hot.B–mod/.
Hence the triangulated category Dctr.B–mod/ has infinite products.

The Verdier quotient functor

Dco.A–mod/ D Dco.El1
/ �! D.El1

/ D D0
L�.A–mod/

preserves infinite direct sums, since El1
is an exact category with exact functors

of infinite direct sums. The Verdier quotient functor

Dctr.B–mod/ D Dctr.Fl1
/ �! D.Fl1

/ D D00
L�.B–mod/

preserves infinite products, since Fl1
is an exact category with exact fuctors of

infinite products.
Assuming that all sfp-injective left A-modules have finite injective dimensions,

the triangulated functor Hot.A–modinj/ ! Dco.A–mod/ induced by the inclusion
A–modinj ! A–mod is an equivalence by Proposition 7.1(b). The additive cate-
gory of injective left A-modules A–modinj has infinite products, hence so does its
homotopy category. Similarly, assuming that all sfp-flat left B-modules have finite
projective dimensions, the triangulated functor Hot.B–modproj/ ! Dctr.B–mod/
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induced by the inclusion B–modproj ! B–mod is an equivalence by Proposi-
tion 7.2(b). The additive category of projective left B-modules B–modproj has
infinite direct sums, hence so does its homotopy category.

The functor Dco.A–mod/ D Hot.A–modinj/ ! D.El1
/ preserves infinite prod-

ucts, since El1
is an exact category with exact functors of infinite products and

A–modinj � El1
is a split exact subcategory closed under infinite products. The

functor Dctr.B–mod/ D Hot.B–modproj/! D.Fl1
/ preserves infinite direct sums,

since Fl1
is an exact category with exact functors of infinite direct sums and

B–modproj � Fl1
is a split exact subcategory closed under infinite direct sums.

For the rest of our argument, it is important that the lower pseudo-derived
categories D0

L�.A–mod/ and D00

L�.B–mod/ have Hom sets by Corollary 11.3.
By [38, Theorem 5.9], for any associative ring B the homotopy category of pro-

jective modules Hot.B–modproj/ is well-generated in the sense of [37, 31]. By [39,
Theorem 3.13], for any associative ring A the homotopy category of injective
modules Hot.A–modinj/ is well-generated. According to the Brown representabil-
ity theorem for well-generated triangulated categories (see [37, Proposition 8.4.2]
or [33, Theorem 5.1.1]), a triangulated functor from a well-generated triangulated
category to a triangulated category with small Hom sets has a right adjoint if and
only if it preserves infinite direct sums. This proves parts (a) and (c).

By [38, Proposition 7.14], for any right coherent ring B the homotopy cate-
gory of projective left B-modulesHot.B–modproj/ is compactly generated. By [60,
Corollary 6.13] (see also [46, Corollary 2.6(b)]), for any left coherent ring A the
homotopy category of injective left A-modules Hot.A–modinj/ is compactly gen-
erated. According to the covariant Brown representability theorem for compactly
generated triangulated categories (see [37, Theorem 8.6.1], [32, Section 2], or [33,
Proposition 5.3.1(2)]), a triangulated functor from a compactly triangulated cate-
gory to a triangulated category with small Hom sets has a left adjoint if and only
if it preserves infinite products. This proves parts (b) and (d). �

Appendix A. Derived functors of finite homological dimension II

The aim of this appendix is to work out a generalization of the constructions of [45,
Appendix B] that is needed for the purposes of the present paper. We use an idea
borrowed from [19, Appendix A] in order to simplify and clarify the exposition.

A.1 – Posing the problem

First we need to recall some notation from [45]. Given an additive category A,
we denote by CC.A/ the category of bounded below complexes in A, viewed
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either as a DG-category (with complexes of morphisms), or simply as an additive
category, with closed morphisms of degree 0. When A is an exact category,
the full subcategory C>0.A/ � CC.A/ of nonnegatively cohomologically graded
complexes in A and closed morphisms of degree 0 between them has a natural
exact category structure, with termwise exact short exact sequences of complexes.

Let E be an exact category and J � E be a coresolving subcategory (in the
sense of Section 1), endowed with the exact category structure inherited from E.
As it was pointed out in [45], a closed morphism in CC.J/ is a quasi-isomorphism
of complexes in J if and only if it is a quasi-isomorphism of complexes in E.
A short sequence in C>0.J/ is exact in C>0.J/ if and only if it is exact in C>0.E/.

Modifying slightly the notation in [45], we denote by EC
>0.J/ the full subcat-

egory in the exact category C>0.J/ consisting of all the complexes 0 ! J 0 !

J 1 ! J 2 ! � � � in J for which there exists an object E 2 E together with a
morphism E ! J 0 such that the sequence 0 ! E ! J 0 ! J 1 ! � � � is exact
in E. By the definition, one has EC

>0.J/ D C>0.J/ \ EC
>0.E/ � C>0.E/. The full

subcategory EC
>0.J/ is closed under extensions and the cokernels of admissible

monomorphisms in C>0.J/; so it inherits an exact category structure.

Let B be another exact category and F � B be a resolving subcategory.
We will suppose that the additive category B contains the images of idempo-
tent endomorphisms of its objects. Let �l2 6 l1 be two integers. Denote by
C>�l2.B/ the exact category C>0.B/Œl2� � CC.B/ of complexes in B concentrated
in the cohomological degrees > �l2, and by C>�l2.B/6l1 � C>�l2.B/ the full
subcategory consisting of all complexes 0 ! B�l2 ! � � � ! B l1 ! � � �

such that the sequence B l1 ! B l1C1 ! B l1C2 ! � � � is exact in B. Fur-
thermore, let C>�l2

F .B/6l1 � C>�l2.B/6l1 be the full subcategory of all com-
plexes that are isomorphic in the derived category D.B/ to complexes of the form
0 ! F �l2 ! � � � ! F l1 ! 0, with the terms belonging to F and concentrated in
the cohomological degrees �l2 6 m 6 l1.

For example, one has C>0.B/60 D BC
>0.B/. The full subcategory C>�l2.B/6l1

is closed under extensions and the cokernels of admissible monomorphisms in
the exact category C>�l2.B/, while (essentially by [59, Proposition 2.3(2)] or [44,
Lemma A.5.4(a-b)]) the full subcategory C>�l2

F .B/6l1 is closed under extensions
and the kernels of admissible epimorphisms in C>�l2.B/6l1 . So the full subcate-
gory C>�l2

F .B/6l1 inherits an exact category structure from C>�l2.B/.

Suppose that we are given a DG-functor ‰W CC.J/ ! CC.B/ taking acyclic
complexes in the exact category J to acyclic complexes in the exact category B.
Suppose further that the restriction of ‰ to the subcategory EC

>0.J/ � CC.J/ is



Pseudo-dualizing complexes and pseudo-derived categories 213

an exact functor between exact categories

(17) ‰W EC
>0.J/ ��! C

>�l2

F .B/6l1 :

Our aim is to construct the right derived functor

(18) R‰WD?.E/ ��! D?.F/

acting between any bounded or unbounded, conventional or absolute derived
categories D? with the symbols ? D b, C, �, ¿, absC, abs�, or abs.

Under certain conditions, one can also have the derived functor R‰ acting
between the coderived or contraderived categories, ? D co or ctr, of the exact
categories E and F. When the exact categories E and B have exact functors of
infinite product, the full subcategories J � E and F � B are closed under infinite
products, and the functor ‰ preserves infinite products, there will be the derived
functor R‰ acting between the contraderived categories, R‰WDctr.E/! Dctr.F/.

When the exact categories E and B have exact functors of infinite direct sum,
the full subcategory F � B is closed under infinite direct sums, and for any family
of complexes J �

˛ 2 C>0.J/ and a complex I � 2 C>0.J/ endowed with a quasi-
isomorphism

L
˛ J �

˛ ! I � of complexes in the exact category E, the induced
morphism M

˛
‰.J �

˛ / ��! ‰.I �/

is a quasi-isomorphism of complexes in the exact category B, there will be the
derived functor R‰ acting between the coderived categories, R‰WDco.E/ !

Dco.F/.
The construction of the derived functor R‰ in [45, Appendix B] is the partic-

ular case of the construction below corresponding to the situation with F D B.

A.2 – The construction of derived functor

The following construction of the derived functor (18) is based on a version of the
result of [19, Proposition A.3].

Since the DG-functor ‰W CC.J/ ! CC.B/ preserves quasi-isomorphisms, it
induces a triangulated functor

‰WDC.J/ ��! DC.B/:

Taking into account the triangulated equivalence DC.J/ ' DC.E/ (provided by the
dual version of [44, Proposition A.3.1(a)]), we obtain the derived functor

R‰WDC.E/ ��! DC.B/:
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Now our assumptions on ‰ imply that the functor R‰ takes the full subcategory
Db.E/ � DC.E/ into the full subcategory Db.F/ � Db.B/ � DC.B/; hence the
triangulated functor

(19) R‰WDb.E/ ��! Db.F/:

For any exact category A, we denote by C.A/ the exact category of unbounded
complexes in A, with termwise exact short exact sequences of complexes. In order
to construct the derived functor R‰ for the derived categories with the symbols
other than ? D b, we are going to substitute into (19) the exact category C.E/ in
place of E and the exact category C.F/ in place of F.

For any category � and DG-category DG, there is a DG-category whose objects
are all the functors � ! DG taking morphisms in � to closed morphisms of de-
gree 0 in DG, and whose complexes of morphisms are constructed as the complexes
of morphisms of functors. We denote this DG-category by DG� . So diagrams of
any fixed shape in a given DG-category form a DG-category. Given a DG-functor
F W 0DG ! 00DG, there is the induced DG-functor between the categories of di-
agrams F � W 0DG� ! 00DG� . In particular, the DG-category of complexes C.DG/

in a given DG-category DG can be constructed as a full DG-subcategory of the
DG-category of diagrams of the corresponding shape in DG.

Applying this construction to the DG-functor ‰ and restricting to the full
DG-subcategories of bicomplexes that are uniformly bounded on the relevant side,
we obtain a DG-functor

‰CW C
C.C.J// ��! CC.C.B//:

Here the categories of unbounded complexes C.J/ and C.B/ are simply viewed as
additive/exact categories of complexes and closed morphisms of degree 0 between
them. The DG-structures come from the differentials raising the degree in which
the bicomplexes are bounded below.

The functor ‰C takes acyclic complexes in the exact category C.J/ to acyclic
complexes in the exact category C.B/. In view of the standard properties of the res-
olution dimension [44, Corollary A.5.2], the functor ‰C takes the full subcategory

C.E/C
>0.C.J// � CC.C.J// into the full subcategory C>�l2

C.F/
.C.B//6l1 � CC.C.B//,

‰CW C.E/C
>0.C.J// ��! C

>�l2

C.F/
.C.B//6l1 :

Finally, the functor ‰C is exact in restriction to the exact category C.E/C
>0.C.J//,

since the functor ‰ is exact in restriction to the exact category EC
>0.J/.

Applying the construction of the derived functor (19) to the DG-functor ‰C in
place of ‰, we obtain a triangulated functor

(20) R‰CWD
b.C.E// ��! Db.C.F//:
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Similarly one can construct the derived functors R‰C60 WDb.C60.E//!Db.C60.F//

and R‰C>0 WDb.C>0.E//! Db.C>0.F// acting between the bounded derived cate-
gories of the exact categories of nonpositively or nonnegatively cohomologically
graded complexes. Shifting and passing to the direct limits of fully faithful em-
beddings, one can obtain the derived functors R‰C� WDb.C�.E//! Db.C�.F// and
R‰CC WDb.CC.E// ! Db.CC.F// acting between the bounded derived categories
of the exact categories of bounded above or bounded below complexes, etc.

In order to pass from (20) to (18) with ? D abs, we will apply the following
version of [19, Proposition A.3(2)]. Clearly, for any exact category A the totaliza-
tion of bounded complexes of complexes in A is a triangulated functor

(21) Db.C.A// ��! Dabs.A/:

Proposition A.1. For any exact category A, the totalization functor (21) is
a Verdier quotient functor. Its kernel is the thick subcategory generated by the
contractible complexes in A, viewed as objects of C.A/.

Proof. Denote by Aspl the additive category A endowed with the split exact
category structure (i. e., all the short exact sequences are split). Following [19],
one first checks the assertion of proposition for the exact category Aspl.

In this case, C.Aspl/ is a Frobenius exact category whose projective-injective
objects are the contractible complexes, and Dabs.Aspl/ D Hot.Aspl/ is the stable
category of the Frobenius exact category C.Aspl/. The quotient category of the
bounded derived category Db.C.Aspl// by the bounded homotopy category of com-
plexes of projective-injective objects in C.Aspl/ is just another construction of the
stable category of a Frobenius exact category, and the totalization functor is the
inverse equivalence to the comparison functor between the two constructions of
the stable category.

Then, in order to pass from the functor (21) for the exact category Aspl to
the similar functor for the exact category A, one takes the quotient category by
the acyclic bounded complexes of complexes on the left-hand side, transforming
Db.C.Aspl// into Db.C.A//, and the quotient category by the totalizations of such
bicomplexes on the right-hand side, transforming Hot.A/ into Dabs.A/. �

It remains to notice that the contractible complexes in A are the direct sum-
mands of the cones of identity endomorphisms of complexes in A, and the func-
tor (20) obviously takes the cones of identity endomorphisms of complexes in E
(viewed as objects of C.E/) to bicomplexes whose totalizations are contractible
complexes in F. This provides the desired derived functor (18) for ? D abs.
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In order to pass from (20) to (18) with ? D ¿, the following corollary of
Proposition A.1 can be applied. Consider the totalization functor

(22) Db.C.A// ��! D.A/:

Corollary A.2. For any exact category A, the totalization functor (22) is
a Verdier quotient functor. Its kernel is the thick subcategory generated by the
acyclic complexes in A, viewed as objects of C.A/. �

Using the condition that the functor (17) takes short exact sequences to short
exact sequences together with [45, Lemma B.2(e)], one shows that the functor (20)
takes acyclic complexes in E (viewed as objects of C.E/) to bicomplexes with
acyclic totalizations. This provides the derived functor (18) for ? D ¿.

To construct the derived functors R‰ acting between the bounded above
and bounded below versions of the conventional and absolute derived categories
(with ? D C, �, absC, or abs�), one can notice that the functors R‰ for
? D ¿ or abs take bounded above/below complexes to (objects representable by)
bounded above/below complexes, and use the fact that the embedding functors
from the bounded above/below conventional/absolute derived categories into the
unbounded ones are fully faithful [44, Lemma A.1.1]. Alternatively, one can repeat
the above arguments with the categories of unbounded complexes C.A/ replaced
with the bounded above/below ones C�.A/ or CC.A/. The derived functor R‰ with
? D b constructed in such a way agrees with the functor (19).

To construct the derived functor R‰ acting between the coderived or con-
traderived categories (under the respective assumptions in Section A.1), one con-
siders the derived functor R‰ for ? D abs, and checks that the kernel of the com-
position C.E/ ! Dabs.E/ ! Dabs.F/ ! Dco.F/ or C.E/ ! Dabs.E/ ! Dabs.F/ !

Dctr.F/ is closed under the infinite direct sums or infinite products, respectively.
The facts that the kernels of the additive functors C.F/ ! Dco=ctr.F/ are closed
under the infinite direct sums/products and the total complex of a finite acyclic
complex of unbounded complexes in F is absolutely acyclic need to be used.

A.3 – The dual setting

The notation C60.B/ � C�.B/ for an additive or exact category B has the similar
or dual meaning to the one in Section A.1.

Let F be an exact category and P � F be a resolving subcategory, endowed
with the inherited exact category structure. A closed morphism in C�.P/ is a
quasi-isomorphism of complexes in P if and only if it is a quasi-isomorphism of
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complexes in F. A short sequence in C60.P/ is exact in C60.P/ if and only if it is
exact in C60.F/.

Following the notation in Section A.1, denote by FC
60.P/ the full subcategory

in the exact category C60.P/ consisting of all the complexes � � � ! P �2 ! P �1 !

P 0 ! 0 in P for which there exists an object F 2 F together with a morphism
P 0 ! F such that the sequence � � � ! P �1 ! P 0 ! F ! 0 is exact in F. By the
definition, one has FC

60.P/ D C60.P/ \ FC
60.F/ � C60.F/. The full subcategory

FC
60.P/ is closed under extensions and the kernels of admissible epimorphisms

in C60.P/; so it inherits an exact category structure.

Let A be another exact category and E � A be a coresolving subcategory.
Suppose that the additive category A contains the images of idempotent endo-
morphisms of its objects. Let �l1 6 l2 be two integers. Denote by C6l2.A/

the exact category C60.A/Œ�l2� � C�.A/ of complexes in A concentrated in the
cohomological degrees 6 l2, and by C6l2.A/>�l1 � C6l2.A/ the full subcat-
egory consisting of all complexes � � � ! A�l1 ! � � � ! Al2 ! 0 such
that the sequence � � � ! A�l1�2 ! A�l1�1 ! A�l1 is exact in A. Fur-
thermore, let C6l2

E .A/>�l1 � C6l2.A/>�l1 be the full subcategory of all com-
plexes that are isomorphic in the derived category D.A/ to complexes of the form
0 ! E�l1 ! � � � ! El2 ! 0, with the terms belonging to E and concentrated in
the cohomological degrees �l1 6 m 6 l2.

For example, one has C60.A/>0 D AC
60.A/. The full subcategory C6l2.A/>�l1

is closed under extensions and the kernels of admissible epimorphisms in the
exact category C6l2.A/, while the full subcategory C

6l2

E .A/>�l1 is closed under
extension and the cokernels of admissible monomorphisms in C6l2.A/>�l1 . So the
full subcategory C6l2

E .A/>�l1 inherits an exact category structure from C6l2.A/.

Suppose that we are given a DG-functor ˆW C�.P/ ! C�.A/ taking acyclic
complexes in the exact category P to acyclic complexes in the exact category A.
Suppose further that the restriction of ˆ to the subcategory FC

60.P/ � C�.P/ is
an exact functor between exact categories

(23) FC
60.P/ ��! C

6l2

E .A/>�l1 :

Then the construction dual to that in Section A.2 provides the left derived functor

(24) LˆWD?.F/ �! D?.E/

acting between any bounded or unbounded, conventional or absolute derived
categories D? with the symbols ? D b, C, �, ¿, absC, abs�, or abs.
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Under certain conditions, one can also have the derived functor Lˆ acting
between the coderived or contraderived categories. When the exact categories F
and A have exact functors of infinite direct sum, the full subcategories P � F and
E � A are closed under infinite direct sums, and the functor ˆ preserves infinite
direct sums, there is the derived functor LˆWDco.F/! Dco.E/.

When the exact categories F and A have exact functors of infinite product, the
full subcategory E � A is closed under infinite products, and for any family of
complexes P �

˛ 2 C60.P/ and a complex Q� 2 C60.P/ endowed with a quasi-
isomorphism Q� !

Q
˛ P �

˛ of complexes in the exact category F, the induced
morphism

ˆ.Q�/ ��!
Y

˛
ˆ.P �

˛ /

is a quasi-isomorphism of complexes in the exact category A, there is the derived
functor LˆWDctr.F/! Dctr.E/.

Let us spell out the major steps of the construction of the derived functor (24).
Since the DG-functor ˆW C�.P/ ! C�.A/ preserves quasi-isomorphisms, it in-
duces a triangulated functor ˆWD�.P/ ! D�.A/. Taking into account the trian-
gulated equivalence D�.P/ ' D�.F/ provided by [44, Proposition A.3.1(a)], we
obtain the derived functor LˆWD�.F/! D�.A/. Our assumptions on ˆ imply that
this functor Lˆ takes the full subcategory Db.F/ � D�.F/ into the full subcategory
Db.E/ � Db.A/ � D�.A/; hence the triangulated functor

(25) LˆWDb.F/ �! Db.E/:

Passing from the DG-functor ˆW C�.P/ ! C�.A/ to the induced DG-functor
between the DG-categories of unbounded complexes in the given DG-categories,
as explained in Section A.2, and restricting to the full DG-subcategories of uni-
formly bounded bicomplexes, one obtains the DG-functor

ˆCW C
�.C.P// ��! C�.C.A//:

The functor ˆC takes acyclic complexes in the exact category C.P/ to acyclic com-
plexes in the exact category C.A/. It also takes the full subcategory C.F/C

60.C.P// �

C�.C.P// into the full subcategory C6l2

C.E/
.C.A//>�l1 � C�.C.A//. So we can apply

the construction of the derived functor (25) to the DG-functor ˆC in place of ˆ,
and produce a triangulated functor

(26) LˆCWD
b.C.F// �! Db.C.E//:
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Using Proposition A.1 and Corollary A.2, one shows that the triangulated
functor (26) descends to a triangulated functor (24) between the absolute or
conventional derived categories, ? D abs or ¿. The cases of bounded above or
below absolute or conventional derived categories, ? D C, �, absC, or abs�
can be treated as explained in Section A.2. Under the respective assumptions,
one can also descend from the absolute derived categories to the coderived or
contraderived categories, producing the derived functor (24) for ? D co or ctr.

A.4 – Deriving adjoint functors

Let A and B be exact categories containing the images of idempotent endomor-
phisms of its objects, let J � E � A be coresolving subcategories in A, and let
P � F � B be resolving subcategories in B.

Let ‰W CC.J/ ! CC.B/ be a DG-functor satisfying the conditions of Sec-
tion A.1, and let ˆW C�.P/ ! C�.A/ be a DG-functor satisfying the conditions
of Section A.3. Suppose that the DG-functors ˆ and ‰ are partially adjoint, in the
sense that for any two complexes J � 2 CC.J/ and P � 2 C�.P/ there is a natural
isomorphism of complexes of abelian groups

(27) HomA.ˆ.P �/; J �/ ' HomB.P �; ‰.J �//;

where HomA and HomB denote the complexes of morphisms in the DG-categories
of unbounded complexes C.A/ and C.B/.

Our aim is to show that the triangulated functor Lˆ (24) is left adjoint to
the triangulated functor Rˆ (18), for any symbol ? D b, C, �, ¿, absC, abs�,
or abs. When the functors Lˆ and R‰ acting between the categories Dco or Dctr

are defined (i. e., the related conditions in Sections A.1 and A.3 are satisfied), the
former of them is also left adjoint to the latter one.

Our first step is the following lemma.

Lemma A.3. In the assumptions above, the induced triangulated functors
ˆWD�.P/! D�.A/ and ‰WDC.J/! DC.B/ are partially adjoint, in the sense that
for any complexes J � 2 CC.J/ and P � 2 C�.P/ there is a natural isomorphism of
abelian groups of morphisms in the unbounded derived categories

HomD.A/.ˆ.P �/; J �/ ' HomD.B/.P
�; ‰.J �//:

Proof. Passing to the cohomology groups in the DG-adjunction isomor-
phism (27), one obtains an isomorphism of the groups of morphisms in the ho-
motopy categories

HomHot.A/.ˆ.P �/; J �/ ' HomHot.B/.P
�; ‰.J �//:
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In order to pass from this to the desired isomorphism of the groups of mor-
phisms in the unbounded derived categories, one can notice that for any (un-
bounded) complex A� 2 C.A/ endowed with a quasi-isomorphism J � ! A� of
complexes in A there exists a bounded below complex I � 2 CC.J/ together with a
quasi-isomorphism A� ! I � of complexes in A. The composition J � ! A� ! I �

is then a quasi-isomorphism of bounded below complexes in J. Similarly, for any
(unbounded) complex B� 2 C.B/ endowed with a quasi-isomorphism B� ! P �

of complexes in B there exists a bounded above complex Q� 2 C�.P/ to-
gether with a quasi-isomorphism Q� ! B� of complexes in B. The composi-
tion Q� ! B� ! P � is then a quasi-isomorphism of bounded above complexes
in P. �

Restricting to the full subcategories Db.E/ � DC.J/ � D.A/ and Db.F/ �

D�.P/ � D.B/, we conclude that the derived functor LˆWDb.F/ ! Db.E/ (25)
is left adjoint to the derived functor R‰WDb.E/ ! Db.F/ (19). Replacing all the
exact categories with the categories of unbounded complexes in them, we see that
the derived functor LˆCWD

b.C.F// ! Db.C.E// (26) is left adjoint to the derived
functor R‰CWD

b.C.E//! Db.C.F// (20).

In order to pass to the desired adjunction between the derived functors
R‰WD?.E/ ! D?.F/ (18) and LˆWD?.F/ ! D?.E/ (24), it remains to apply the
next (well-known) lemma.

Lemma A.4. Suppose that we are given two commutative diagrams of trian-
gulated functors

D1 D2

xD1
xD2

 

!
G

 

�

 

�

 

!
xG

D1 D2

xD1
xD2

 

�

 

�

 

!F

 

! xF

where the vertical arrows are Verdier quotient functors. Suppose further that the
functor F WD2 ! D1 is left adjoint to the functor GWD1 ! D2. Then the functor
xF W xD2 ! xD1 is also naturally left adjoint to the functor xGW xD1 ! xD2.

Proof. The adjunction morphisms F ıG ! IdD1
and IdD2

! G ı F induce
adjunction morphisms xF ı xG ! IdxD1

and IdxD2
! xG ı xF . �
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A.5 – Triangulated equivalences

The following theorem describes the situation in which the adjoint triangulated
functors R‰ andLˆ turn out to be triangulated equivalences (cf. the proofs of [45,
Theorems 4.9 and 5.10], [49, Theorems 3.6 and 4.3], and [48, Theorem 7.6], where
this technique was used).

Theorem A.5. In the context of Section A.4, suppose that the adjoint de-
rived functors R‰WDb.E/ ! Db.F/ (19) and LˆWDb.F/ ! Db.E/ (25) are mu-
tually inverse triangulated equivalences. Then so are the adjoint derived functors
R‰WD?.E/! D?.F/ (18) and LˆWD?.F/! D?.E/ (24) for all the symbols ? D b,
C, �, ¿, absC, abs�, or abs, and also for any one of the symbols ? D co or ctr
for which these two functors are defined by the constructions of Sections A.2–A.3.

Moreover, assume that the adjunction morphisms Lˆ.‰.J // ! J and P !

R‰.ˆ.P // are isomorphisms in Db.E/ and Db.F/ for all objects J 2 J and P 2 P.
Then the adjoint derived functors (18) and (24) are mutually inverse triangulated
equivalences for all the symbols ? for which they are defined.

Proof. A complex of complexes in an exact category G is acyclic if and only
if it is termwise acyclic. In other words, one can consider the family of functors
‚n
GW C.G// ! G, indexed by the integers n, assigning to a complex G� its n-th

term Gn. Then the family of induced triangulated functors ‚n
GWD.C.G//! D.G/ is

conservative in total. This means that for any nonzero object G�;� 2 D.C.G// there
exists n 2 Z such that ‚n

G.G�;�/ ¤ 0 in D.G/.

Now the two such functors ‚n
E WD

b.C.E// ! Db.E/ and ‚n
F WD

b.C.F// !

Db.F/ form commutative diagrams with the adjoint derived functors (19)–(20)
and (25)–(26). Therefore, the adjoint functors (20) and (26) are mutually inverse
equivalences whenever so are the adjoint functors (19) and (25). It remains to
point out that, in the context of Lemma A.4, the two adjoint functors xF and xG are
mutually inverse equivalences whenever so are the two adjoint functors F and G.

This proves the first assertion of the theorem, and in fact somewhat more
than that. We have shown that the adjunction morphism Lˆ.R‰.E�// ! E�

is an isomorphism in D?.E/ whenever for every n 2 Z the adjunction morphism
Lˆ.R‰.En//! En is an isomorphism in Db.E/. Now, replacing an object E 2 E

by its coresolution J � by objects from J, viewed as an object in D?.E/ with ? D C,
we see that it suffices to check that the adjunction morphism is an isomorphism
for an object J 2 J. Similarly, the adjunction morphism F � ! R‰.Lˆ.F �//

is an isomorphism in D?.F/ whenever for every n 2 Z the adjunction morphism
F n ! R‰.Lˆ.F n// is an isomorphism in Db.F/. Replacing an object F 2 F by



222 L. Positselski

its resolution P � by objects from P, viewed as an object in D?.F/ with ? D �, we
see that it suffices to check that the adjunction morphism is an isomorphism for
an object P 2 P. �
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