@article{RSMUP_2014__131__217_0,
author = {Colombo, R. M. and Rossi, E.},
title = {On the {Micro-Macro} limit in traffic flow},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {217--236},
year = {2014},
publisher = {Seminario Matematico of the University of Padua},
volume = {131},
mrnumber = {3217759},
zbl = {1295.35314},
language = {en},
url = {https://www.numdam.org/item/RSMUP_2014__131__217_0/}
}
TY - JOUR AU - Colombo, R. M. AU - Rossi, E. TI - On the Micro-Macro limit in traffic flow JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2014 SP - 217 EP - 236 VL - 131 PB - Seminario Matematico of the University of Padua UR - https://www.numdam.org/item/RSMUP_2014__131__217_0/ LA - en ID - RSMUP_2014__131__217_0 ER -
%0 Journal Article %A Colombo, R. M. %A Rossi, E. %T On the Micro-Macro limit in traffic flow %J Rendiconti del Seminario Matematico della Università di Padova %D 2014 %P 217-236 %V 131 %I Seminario Matematico of the University of Padua %U https://www.numdam.org/item/RSMUP_2014__131__217_0/ %G en %F RSMUP_2014__131__217_0
Colombo, R. M.; Rossi, E. On the Micro-Macro limit in traffic flow. Rendiconti del Seminario Matematico della Università di Padova, Tome 131 (2014), pp. 217-236. https://www.numdam.org/item/RSMUP_2014__131__217_0/
[1] , , , and . A rigorous treatment of a follow-the-leader traffic model with traffic lights present. SIAM J. Appl. Math., 63(1):149–168 (electronic), 2002. | Zbl | MR
[2] . Hyperbolic systems of conservation laws, volume 20 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2000. The one-dimensional Cauchy problem. | Zbl | MR
[3] , and . A 2-phase traffic model based on a speed bound. SIAM J. Appl. Math., 70(7):2652–2666, 2010. | Zbl | MR
[4] and . A Hólder continuous ODE related to traffic flow. Proc. Roy. Soc. Edinburgh Sect. A, 133(4):759–772, 2003. | Zbl | MR
[5] . Analyse et modelisation du trafic routier: Passage du microscopique au macroscopique. Master’s thesis, Ecole des Ponts ParisTech, 2011.
[6] . Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2002. | Zbl | MR
[7] and . On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. Roy. Soc. London. Ser. A., 229:317–345, 1955. | Zbl | MR
[8] and . Description and Use of LSODE, the Livermore Solver for Ordinary Differential Equations. LLNL report UCRL-ID-113855. National Aeronautics and Space Administration, Lewis Research Center, 1993.
[9] . Measure theory and integration. Pure and Applied Mathematics (New York). John Wiley & Sons Inc., New York, 1987. A Wiley-Interscience Publication. | Zbl | MR
[10] . Shock waves on the highway. Operations Res., 4:42–51, 1956. | MR
[11] . On the micro–macro limit in traffic flow. Master’s thesis, Università Cattolica del Sacro Cuore, Brescia, 2012.
[12] Transportation Research Board of the National Academies. 75 Years of the Fundamental Diagram for Traffic Flow Theory, Greenshields Symposium, Transportation Research Circular E-C149, Washington, June 2011.





