@article{RSMUP_2014__131__15_0,
author = {Fuchs, L\'aszl\'o and Bum Lee, Sang},
title = {When all reduced strongly flat modules are projective},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {15--22},
year = {2014},
publisher = {Seminario Matematico of the University of Padua},
volume = {131},
mrnumber = {3217748},
zbl = {06329755},
language = {en},
url = {https://www.numdam.org/item/RSMUP_2014__131__15_0/}
}
TY - JOUR AU - Fuchs, László AU - Bum Lee, Sang TI - When all reduced strongly flat modules are projective JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2014 SP - 15 EP - 22 VL - 131 PB - Seminario Matematico of the University of Padua UR - https://www.numdam.org/item/RSMUP_2014__131__15_0/ LA - en ID - RSMUP_2014__131__15_0 ER -
%0 Journal Article %A Fuchs, László %A Bum Lee, Sang %T When all reduced strongly flat modules are projective %J Rendiconti del Seminario Matematico della Università di Padova %D 2014 %P 15-22 %V 131 %I Seminario Matematico of the University of Padua %U https://www.numdam.org/item/RSMUP_2014__131__15_0/ %G en %F RSMUP_2014__131__15_0
Fuchs, László; Bum Lee, Sang. When all reduced strongly flat modules are projective. Rendiconti del Seminario Matematico della Università di Padova, Tome 131 (2014), pp. 15-22. https://www.numdam.org/item/RSMUP_2014__131__15_0/
[1] , Finitistic dimension and a homological generalization of semiprimary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488. | Zbl | MR
[2] and , Almost perfect domains, Coll. Math. 95(2003), 285–301. | Zbl | MR
[3] and , Testing for cotorsionness over domains, Rendiconti Sem. Mat. Univ. Padova 118 (2007), 85–99. | Zbl | MR | Numdam
[4] and , Modules over non-Noetherian Domains, Math. Surveys and Monographs, vol. 84 (Amer. Math. Society, Providence, 2001). | Zbl | MR
[5] and , Independence in completions and endomorphism algebras, Forum Math. 1 (1989), 215–226. | Zbl | MR
[6] and , Approximations and Endomorphism Algebras of Modules, Expositions in Math., vol. 41 (W. de Gruyter, 2006). | Zbl
[7] , Strongly flat modules over Matlis domains (submitted).
[8] , Cotorsion modules, Memoirs Amer. Math. Soc. 49 (1964). | Zbl | MR






