@article{RSMUP_2012__128__109_0,
author = {Colmez, Pierre},
title = {Une construction de $\mathbf {B}_{\rm dR}^+$},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {109--130},
year = {2012},
publisher = {Seminario Matematico of the University of Padua},
volume = {128},
mrnumber = {3076833},
zbl = {1272.11129},
language = {fr},
url = {https://www.numdam.org/item/RSMUP_2012__128__109_0/}
}
TY - JOUR
AU - Colmez, Pierre
TI - Une construction de $\mathbf {B}_{\rm dR}^+$
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2012
SP - 109
EP - 130
VL - 128
PB - Seminario Matematico of the University of Padua
UR - https://www.numdam.org/item/RSMUP_2012__128__109_0/
LA - fr
ID - RSMUP_2012__128__109_0
ER -
%0 Journal Article
%A Colmez, Pierre
%T Une construction de $\mathbf {B}_{\rm dR}^+$
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2012
%P 109-130
%V 128
%I Seminario Matematico of the University of Padua
%U https://www.numdam.org/item/RSMUP_2012__128__109_0/
%G fr
%F RSMUP_2012__128__109_0
Colmez, Pierre. Une construction de $\mathbf {B}_{\rm dR}^+$. Rendiconti del Seminario Matematico della Università di Padova, Tome 128 (2012), pp. 109-130. https://www.numdam.org/item/RSMUP_2012__128__109_0/
[1] , -adic periods and derived de Rham cohomology , J. of A.M.S. 25 (2012), pp. 715-738. | Zbl | MR
[2] - - , Non-Archimedean Analysis: A Systematic Approach to Rigid Analytic Geometry, Grundlehren der math. Wiss. 261, Springer-Verlag 1984. | Zbl | MR
[3] , Lettre à Luc Illusie (2010).
[4] , Sur certains types de représentations -adiques du groupe de Galois d’un corps local; construction d’un anneau de Barsotti-Tate , Ann. of Math. 115 (1982), pp. 529-577. | Zbl | MR
[5] , Le corps des périodes -adiques, avec un appendice de Pierre Colmez , Astérisque, 223 (1994), pp. 59-111. | Zbl | MR | Numdam
[6] et al., Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques, 3, Soc. Math. de France, 2003. | MR
[7] , Galois theory of in the imperfect residue field case , J. Number Theory, 130 (2010), pp. 1609-1641. | Zbl | MR





