@article{RSMUP_2010__124__231_0,
author = {Lukyanenko, Vladimir O. and Skiba, Alexander N.},
title = {Finite groups in which $\tau $-quasinormality is a transitive relation},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {231--246},
year = {2010},
publisher = {Seminario Matematico of the University of Padua},
volume = {124},
mrnumber = {2752688},
zbl = {1217.20012},
language = {en},
url = {https://www.numdam.org/item/RSMUP_2010__124__231_0/}
}
TY - JOUR AU - Lukyanenko, Vladimir O. AU - Skiba, Alexander N. TI - Finite groups in which $\tau $-quasinormality is a transitive relation JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2010 SP - 231 EP - 246 VL - 124 PB - Seminario Matematico of the University of Padua UR - https://www.numdam.org/item/RSMUP_2010__124__231_0/ LA - en ID - RSMUP_2010__124__231_0 ER -
%0 Journal Article %A Lukyanenko, Vladimir O. %A Skiba, Alexander N. %T Finite groups in which $\tau $-quasinormality is a transitive relation %J Rendiconti del Seminario Matematico della Università di Padova %D 2010 %P 231-246 %V 124 %I Seminario Matematico of the University of Padua %U https://www.numdam.org/item/RSMUP_2010__124__231_0/ %G en %F RSMUP_2010__124__231_0
Lukyanenko, Vladimir O.; Skiba, Alexander N. Finite groups in which $\tau $-quasinormality is a transitive relation. Rendiconti del Seminario Matematico della Università di Padova, Tome 124 (2010), pp. 231-246. https://www.numdam.org/item/RSMUP_2010__124__231_0/
[1] , Finite groups whose subnormal subgroups permute with all Sylow subgroups, Proc. Amer. Math. Soc. 47 (1) (1975), pp. 77--83. | Zbl | MR
[2] , On maximal subgroups of Sylow subgroups of finite groups, Comm. Algebra, 26 (1998), pp. 3647--3652. | Zbl | MR
[3] , On the solvability of finite groups, Arch. Math., 51 (1988), pp. 289--293. | Zbl | MR
[4] - , The influence of minimal subgroups on the structure of finite groups, Arch. Math., 72 (1999), pp. 401--404. | Zbl | MR
[5] - - , Influence of -quasinormality on maximal subgroups of Sylow subgroups of Fitting subgroup of a finite group, Arch. Math., 56 (1991), pp. 521--527. | Zbl | MR
[6] - , Sylow permutable subnormal subgroups of finite groups, J. Algebra, 251 (2002), pp. 727--738. | Zbl | MR
[7] - , Sylow permutable subnormal subgroups of finite groups, II, Bull. Austral. Math. Soc., 64 (2001), pp. 479--486. | Zbl | MR
[8] - , Classes of Finite Groups, Springer, Dordrecht, 2006. | Zbl | MR
[9] - , On minimal subgroups of finite groups, Acta Math. Hungar., 73 (1996), pp. 335--342. | Zbl | MR
[10] - - , Criteria for permutability to be transitive in finite groups, J. Algebra, 222 (1999), pp. 400--412. | Zbl | MR
[11] - - , Solvable -groups, strong Sylow bases and mutually permutable products, J. Algebra, 321 (7) (2009), pp. 2022--2027. | Zbl | MR
[12] - , The Wielandt subgroup of a finite soluble group, J. London Math. Soc., 40 (1989), pp. 244--256. | Zbl | MR
[13] , Finite groups whose minimal subgroups are normal, Math. Z., 15 (1970), pp. 15--17. | Zbl | MR
[14] , Minimal nicht uberauflosbare, endlicher Gruppen, Math. Z., 91 (1966), pp. 198--205. | Zbl | MR
[15] - , Finite Soluble Groups, Walter de Gruyter, Berlin - New York, 1992. | Zbl | MR
[16] , Topics in Finite Groups, Cambridge University Press, 1976. | Zbl | MR
[17] , Gruppen in denen das Normalteilersein transitiv ist, J. Reine Angew. Math., 198 (1957), pp. 87--92. | Zbl | MR
[18] , Finite Groups, Harper & Row Publishers, New York - Evanston - London, 1968. | Zbl | MR
[19] , Endliche Gruppen I, Springer, Berlin - Heidelberg - New York, 1967. | Zbl | MR
[20] , Normalteiler and maximale Untergruppen endlicher Gruppen, Math. Z., 60 (1954), pp. 409--434. | Zbl | MR
[21] - , Finite Groups III, Springer - Verlag, Berlin - New York, 1982. | Zbl | MR
[22] , Sylow-Gruppen and Subnormalteiler endlicher Gruppen, Math. Z., 78 (1962), pp. 205--221. | Zbl | MR
[23] , On -semipermutable and -normal subgroups of finite groups, Arabian J. Sci. Engineering, 34(2A) (2009), pp. 167--175.
[24] - - , Finite groups in which ()-semipermutability is a transitive relation, Internat. J. Algebra, 2(3) (2008), pp. 143--152. | Zbl | MR
[25] - - , The influence of -quasinormality of some subgroups of a finite group, Arch. Math., 81 (2003), pp. 245--252. | Zbl | MR
[26] - , The influence of minimal subgroups on the structure of a finite group, Proc. Amer. Math. Soc., 131 (2002), pp. 337--341. | Zbl | MR
[27] - , On -quasinormal and weakly -quasinormal subgroups of finite groups, Math. Sci. Res. J., 12(10) (2008), pp. 243--257. | Zbl | MR
[28] - , On weakly -quasinormal subgroups of finite groups, Acta Math. Hungar., 125 (3) (2009), pp. 237--248. | MR
[29] , Influence of normality on maximal subgroups of Sylow subgroups of a finite group, Acta Math. Hungar., 59 (1992), pp. 107--110. | Zbl | MR
[30] , A note of finite groups in which normality is transitive, Proc. Amer. Math. Soc., 19 (1968), pp. 933--937. | Zbl | MR
[31] , Subgroups permutable with all Sylow subgroups, J. Algebra, 182 (1998), pp. 285--293. | Zbl | MR
[32] , A criterion for the -solubility of finite groups, Mat. Zam., 9 (1971), pp. 375--383 (Russian, English translation in Math. Notes, 9 (1971), pp. 216--220). | Zbl | MR
[33] , The influence of -permutability of some subgroups, Acta Math. Hungar., 56 (1990), pp. 287--293. | Zbl | MR
[34] , Formations of Finite Groups, Nauka, Moscow, 1978. | Zbl | MR
[35] - , Formations of Algebraic Systems, Nauka, Moscow, 1989. | Zbl | MR
[36] , A characterization of the hypercyclically embedded subgroups of finite groups, J. Pure Appl. Algebra, (2010), DOI: 10.1016/j.jpaa.2010.04.017.
[37] , Two sufficient conditions for supersolubility of finite groups, Israel J. Math., 3 (35) (1980), pp. 210--214. | Zbl | MR
[38] - , On -semipermutable maximal and minimal subgroups of Sylow -subgroups of finite groups, Comm. Algebra, 34 (2006), pp. 143--149. | Zbl | MR
[39] , I gruppi risolubili finiti in cui i sottogrupi di composizione coincidono con i sottogruppi quasi-normali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 37 (8) (1964), pp. 150--154. | Zbl | MR





