@article{RSMUP_2010__124__185_0,
author = {Tralli, Giulio},
title = {Levi curvature with radial symmetry : a sphere theorem for bounded {Reinhardt} domains of $\mathbb {C}^2$},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {185--196},
year = {2010},
publisher = {Seminario Matematico of the University of Padua},
volume = {124},
mrnumber = {2752684},
zbl = {1248.32002},
language = {en},
url = {https://www.numdam.org/item/RSMUP_2010__124__185_0/}
}
TY - JOUR
AU - Tralli, Giulio
TI - Levi curvature with radial symmetry : a sphere theorem for bounded Reinhardt domains of $\mathbb {C}^2$
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2010
SP - 185
EP - 196
VL - 124
PB - Seminario Matematico of the University of Padua
UR - https://www.numdam.org/item/RSMUP_2010__124__185_0/
LA - en
ID - RSMUP_2010__124__185_0
ER -
%0 Journal Article
%A Tralli, Giulio
%T Levi curvature with radial symmetry : a sphere theorem for bounded Reinhardt domains of $\mathbb {C}^2$
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2010
%P 185-196
%V 124
%I Seminario Matematico of the University of Padua
%U https://www.numdam.org/item/RSMUP_2010__124__185_0/
%G en
%F RSMUP_2010__124__185_0
Tralli, Giulio. Levi curvature with radial symmetry : a sphere theorem for bounded Reinhardt domains of $\mathbb {C}^2$. Rendiconti del Seminario Matematico della Università di Padova, Tome 124 (2010), pp. 185-196. https://www.numdam.org/item/RSMUP_2010__124__185_0/
[1] - , An Alexandrov type theorem for Reinhardt domains of , Contemporary Math., 400 (2006), pp. 129--146. | Zbl
[2] - , A sphere theorem for a class of Reinhardt domains with constant Levi curvature, Forum Math., 20 (2008), pp. 571--586. | MR
[3] , Function theory of several complex variables, Wiley, New York, 1982. | Zbl | MR
[4] - , Integral formulas for a class of curvature PDE's and applications to isoperimetric inequalities and to symmetry problems, Forum Math, 22 (2010), pp. 255--267. | Zbl | MR
[5] - , Pseudoconvex fully nonlinear partial differential operators: strong comparison theorems, J. Differential Equations, 202 (2004), pp. 306--331. | Zbl | MR
[6] - , Levi umbilical surfaces in complex space, J. Reine Angew. Math., 603 (2007), pp. 113--131. | Zbl | MR





