@article{RSMUP_2010__123__141_0,
author = {P\v{r}{\'\i}hoda, Pavel},
title = {Fair-sized projective modules},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {141--168},
year = {2010},
publisher = {Seminario Matematico of the University of Padua},
volume = {123},
mrnumber = {2683295},
language = {en},
url = {https://www.numdam.org/item/RSMUP_2010__123__141_0/}
}
TY - JOUR AU - Příhoda, Pavel TI - Fair-sized projective modules JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2010 SP - 141 EP - 168 VL - 123 PB - Seminario Matematico of the University of Padua UR - https://www.numdam.org/item/RSMUP_2010__123__141_0/ LA - en ID - RSMUP_2010__123__141_0 ER -
Příhoda, Pavel. Fair-sized projective modules. Rendiconti del Seminario Matematico della Università di Padova, Tome 123 (2010), pp. 141-168. https://www.numdam.org/item/RSMUP_2010__123__141_0/
[1] , Idempotent ideals of integral group rings, J. Algebra, 23 (1972), pp. 343--346. | Zbl | MR
[2] - , Rings and categories of modules, Springer - Verlag, 1974. | Zbl | MR
[3] , Big projective modules are free, Illinois J. Math. (1963), pp. 24--31. | Zbl | MR
[4] - , On semilocal rings, Israel J. Math., 81 (1993), pp. 203--211. | Zbl | MR
[5] - , Methods of representation theory with applications to finite groups and orders, Vol. 1, Wiley-Interscience (1981). | MR
[6] , Enveloping algebras, Akademie - Verlag (Berlin, 1977). | Zbl | MR
[7] , Rank element of a projective module, Nagoya Math. J., 25 (1965), pp. 113--120. | Zbl | MR
[8] - - , Properties and examples of FCR-algebras, Manuscripta math., 104 (2001), pp. 443--450. | Zbl | MR
[9] - , The Kourovka notebook. Unsolved problems in group theory, 15th augm. ed, Novosibirsk Institut Matematiki (2002). | Zbl | MR
[10] , A first course in noncommutative rings, Springer, New York, 2001. | Zbl | MR
[11] - , Noncommutative noetherian rings, AMS, Providence, R. I., 2001. | Zbl | MR
[12] , When a projective module is a direct sum of finitely generated modules, preprint, 2004.
[13] , Projective modules are determined by their radical factors, J. Pure Appl. Algebra, 210 (2007), pp. 827--835. | Zbl | MR
[14] , Integral group rings of solvable finite groups have no idempotent ideals, Arch. Math., 25 (1974), pp. 125--128. | Zbl | MR
[15] - , Idempotent ideals in P.I. rings, Journal London Math. Soc. (2), 14 (1976), pp. 120--122. | Zbl | MR
[16] , Induced representations and projective modules, Ann. of Math., 71 (1960), pp. 552--578. | Zbl | MR
[17] , The Grothendieck ring of a finite group, Topology, 2 (1963), pp. 85--110. | Zbl | MR
[18] , Projective modules and their trace ideals, Comm. Algebra, 8 (19) (1980), pp. 1873--1901. | Zbl | MR





